JPS61184367A - Refrigerant flow controller - Google Patents
Refrigerant flow controllerInfo
- Publication number
- JPS61184367A JPS61184367A JP60023419A JP2341985A JPS61184367A JP S61184367 A JPS61184367 A JP S61184367A JP 60023419 A JP60023419 A JP 60023419A JP 2341985 A JP2341985 A JP 2341985A JP S61184367 A JPS61184367 A JP S61184367A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- electric signal
- temperature
- expansion valve
- control circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は回転数可変の圧縮機を備えた冷凍サイクルの冷
媒流量制御装置に係り、特に蒸発器出口の冷媒過熱度を
一定値に保つ冷媒流量制御装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a refrigerant flow rate control device for a refrigeration cycle equipped with a variable rotation speed compressor, and particularly relates to a refrigerant flow rate control device for maintaining the refrigerant superheat degree at a constant value at the outlet of an evaporator. Regarding a control device.
従来の冷媒流量制御装置は、特開昭56−44569号
に示されるように、蒸発器出口の冷媒過熱度と設定値と
の温度差に相当する電気信号に第1の比例定数を乗じた
第1の電気信号と、前記温度差を時間について積分した
値に相当する電気信号に第2の比例定数を乗じた第2の
電気信号と、前記温贋差を時間について微分した値に相
当する電気信号に第3の比例定数を乗じた第3の電気信
号との和に応じて電動式膨脹弁の開度を制御するように
構成されておシ、温度式膨脹弁を用いる場合に比べて、
良好な過熱度側脚ができる。A conventional refrigerant flow rate control device, as shown in Japanese Patent Application Laid-Open No. 56-44569, uses an electric signal corresponding to the temperature difference between the degree of superheating of the refrigerant at the evaporator outlet and a set value, multiplied by a first proportionality constant. 1 electric signal, a second electric signal obtained by multiplying the electric signal corresponding to the value obtained by integrating the temperature difference with respect to time by a second proportionality constant, and an electric signal corresponding to the value obtained by differentiating the temperature difference with respect to time. The electric expansion valve is configured to control the opening degree of the electric expansion valve according to the sum of the signal and a third electric signal obtained by multiplying the signal by a third proportionality constant.
A good degree of superheating can be achieved on the side legs.
しかし、冷凍空調装置のように広範囲に運転される冷凍
サイクルに適用する場合に、運転条件(負荷条件)の変
化の影響については何ら配慮されていなかった。However, when applied to a refrigeration cycle that is operated over a wide range such as a refrigeration air conditioner, no consideration was given to the influence of changes in operating conditions (load conditions).
不発明の目的は、冷凍サイクルの負荷条件が大きく変化
しても、常に蒸発器出口の冷媒過熱度を適正に制−する
ことができる冷媒流量制御装置を提供することにある。An object of the invention is to provide a refrigerant flow rate control device that can always appropriately control the degree of superheating of the refrigerant at the evaporator outlet even if the load conditions of the refrigeration cycle change significantly.
本発明は、圧1illI機の回転数に応じて3つの比例
定数全補正する定数補正器を制御回路に付加することに
より、冷媒過熱度全適正に制御するようにしたものであ
る。In the present invention, the degree of superheating of the refrigerant is appropriately controlled by adding to the control circuit a constant corrector that corrects all three proportionality constants in accordance with the rotational speed of the pressure IllI machine.
以下、本発明の一実施例を第1図、第2図に従って説明
する。第1図は本発明による冷媒流量制御装置11に備
えた冷凍サイクル系統図、第2図は第1図における制御
回路のブロック線図を示している。第1図において、1
は回転数可変の圧1M機、2は凝縮器、3は電気信号に
よって弁開度が設定される電動式膨脹弁(以下、単に膨
脹弁と称す)、4は蒸発器、5は蒸発器40入口温度T
11検知する第1温度センサ、6は蒸発器4の出口温L
TZを検知する第2温度センサ、7は圧m機1の回転
数を検知するセンサ、8は各センサ5,6.7の信号全
取込んで膨脹弁3の開度制御用の電気信号を出力する制
御回路である。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows a refrigeration cycle system diagram provided in a refrigerant flow rate control device 11 according to the present invention, and FIG. 2 shows a block diagram of the control circuit in FIG. 1. In Figure 1, 1
2 is a condenser, 3 is an electric expansion valve whose opening degree is set by an electric signal (hereinafter simply referred to as an expansion valve), 4 is an evaporator, and 5 is an evaporator 40. Inlet temperature T
11 a first temperature sensor that detects; 6 a temperature L at the outlet of the evaporator 4;
A second temperature sensor that detects TZ, 7 a sensor that detects the rotation speed of the pressure m machine 1, and 8 a sensor that takes in all the signals from each sensor 5, 6.7 and generates an electric signal for controlling the opening of the expansion valve 3. This is a control circuit that outputs.
第2図において、制御回路は、演算器9、比較器10、
乗算器11,12.13および秋分器14、微分子2F
15、加算器16と、定数補正器17とt備えている。In FIG. 2, the control circuit includes an arithmetic unit 9, a comparator 10,
Multipliers 11, 12, 13 and equinox 14, minute molecule 2F
15, an adder 16, and a constant corrector 17.
そして、この制御回路において、膨脹弁3で冷媒流tG
が決められ、その時の冷媒の蒸発温度T1と蒸発器4出
口の冷媒温度T2がそれぞれ第1、第2温匿センサ5,
6によシ検知されると、その温度信号は演算器9に入力
される。。In this control circuit, the expansion valve 3 controls the refrigerant flow tG.
is determined, and the evaporation temperature T1 of the refrigerant and the refrigerant temperature T2 at the outlet of the evaporator 4 at that time are determined by the first and second thermal storage sensors 5 and 5, respectively.
When the temperature signal is detected by 6, the temperature signal is input to a calculator 9. .
演算器9は両温度信号から温腿差(T2−T1)に相当
する電気信号を比較器10に出力する。比較器10は演
算器9からの電気信号と設定過熱度ΔT0とを比較して
、その差E=(Tz Tl)−ΔToに相当する電気
信号を乗算器11、積分器14、微分器←枦−−÷辱1
5にそれぞれ出力する。乗算器11へ出力された電気信
号は定数に1が乗ぜられて加算器16に入力される。積
分器14へ入力された電気信号は時刻について積分され
、乗算器12で定数に2が乗ぜられて加算器16に入力
される。The calculator 9 outputs an electric signal corresponding to the temperature difference (T2-T1) from both temperature signals to the comparator 10. The comparator 10 compares the electrical signal from the calculator 9 with the set superheat degree ΔT0, and sends the electrical signal corresponding to the difference E=(Tz Tl)−ΔTo to the multiplier 11, the integrator 14, and the differentiator ← --÷humiliation 1
5, respectively. The electrical signal output to the multiplier 11 is multiplied by a constant by 1 and input to the adder 16. The electrical signal input to the integrator 14 is integrated with respect to time, multiplied by 2 by a constant in the multiplier 12, and input to the adder 16.
また微分器15へ入力された電気信号は時刻について微
分され、乗算器13で定数に3が乗ぜられて加算器16
に入力される。加算器16はこれら3つの電気信号の和
tとり、膨脹弁3へ一度制御用の電気信号を出力する。Further, the electrical signal input to the differentiator 15 is differentiated with respect to time, multiplied by 3 by a constant in the multiplier 13, and then added to the adder 16.
is input. The adder 16 takes the sum t of these three electric signals and once outputs a control electric signal to the expansion valve 3.
即ち、これは、P(比例)動作、■(積分)動作、D(
微分)動作を合わせたものであシ、制御工学でPID制
御として知られている制御法である。これらを式で表わ
すと、以下のようになる。That is, this is P (proportional) action, ■ (integral) action, D (
This is a control method known as PID control in control engineering. These can be expressed as formulas as follows.
αE
■=に1・E十に2・/Bαt−1−に3.−・・・・
・・・・・(1)但し、V:膨脹弁の弁開度。αE ■=1・E×2・/Bαt−1−−3. −・・・・
...(1) However, V: Valve opening degree of the expansion valve.
一方、圧縮機の回転数がセンサ7で検知されると、その
信が定数補正器17に入力される。定数補正器17はセ
ンサ7からの信号、即ち圧縮機の回転数に応じて各乗算
器+1.12.13の定数に工、 N2. N3を設定
する。On the other hand, when the rotation speed of the compressor is detected by the sensor 7, the signal is input to the constant corrector 17. The constant corrector 17 adjusts the constants of each multiplier +1, 12, and 13 according to the signal from the sensor 7, that is, the rotation speed of the compressor, N2. Set N3.
次に本実施例の動作を第3図〜第6図を含めて説明する
。第3図は縦軸に膨脹弁を通過する冷媒流量Gを、横軸
に膨脹弁開度v金とりて、膨脹弁前後の差圧ΔP工、Δ
P2.ΔPa(ΔP1>ΔP2>ΔP3)および圧縮機
の回転数Nl + N2 + N3 (N1>N2>N
3)をパラメータとして膨脹弁を通過する冷媒流量を示
したものである。圧縮機1の回転数がN1のとき膨脹弁
前後の差圧はΔP1であシ、Δ■の弁開度、変化に対し
、流量変化はΔG1となる。同様に、回転数がN2のと
き、差圧はΔP2で、ΔVの弁開度変化に対し、流量変
化はΔG2となり、また回転数がN3のとき差圧はΔP
3で、Δ■の弁開成に対し、流量変化はΔG3となる。Next, the operation of this embodiment will be explained with reference to FIGS. 3 to 6. Figure 3 shows the refrigerant flow rate G passing through the expansion valve on the vertical axis, and the expansion valve opening degree v on the horizontal axis, and the differential pressure ΔP before and after the expansion valve, Δ
P2. ΔPa (ΔP1>ΔP2>ΔP3) and compressor rotation speed Nl + N2 + N3 (N1>N2>N
3) is used as a parameter to show the flow rate of refrigerant passing through the expansion valve. When the rotational speed of the compressor 1 is N1, the differential pressure before and after the expansion valve is ΔP1, and the flow rate change is ΔG1 for a change in the valve opening of Δ■. Similarly, when the rotation speed is N2, the differential pressure is ΔP2, and for a change in valve opening of ΔV, the flow rate change is ΔG2, and when the rotation speed is N3, the differential pressure is ΔP.
3, the flow rate change is ΔG3 for the valve opening of Δ■.
即ち、一定の弁開度変化に対し圧f1i1機1の回転数
が高いときは、流量変化幅は大きいことになる。いま、
前記(1)式の比例定数Kt + N2 + N3を一
定とし、圧縮機10回転数がN2のときを定格運転とす
ると、回転数が高くなるに従い大きめの流量変化幅を与
えることになり、制御系は応答が良くなるが、安定性が
低下する。また回転数が低くなると小さめの流量変化幅
を与えることになり、制御系の安定性は良くなるが、応
答性が悪くなる。しかるに、本実施例においては、定数
補正器17に第4図に示すような特性をもたせ、圧縮機
1の回転数が高い場合は、定数に1゜K2.に3を大き
くシ、反対に回転数が低い場合は、定数11.に2.に
3を小さくするので、膨脹弁の弁開度が適正に保たれて
、蒸発器の冷媒過熱度を常に安定に制御することができ
る。That is, when the rotation speed of the pressure f1i1 machine 1 is high for a constant change in the valve opening degree, the flow rate change range is large. now,
If the proportional constant Kt + N2 + N3 in the above equation (1) is constant and the rated operation is when the compressor 10 rotation speed is N2, a larger flow rate change width will be given as the rotation speed increases, and the control The system becomes more responsive but less stable. Furthermore, when the rotational speed is lower, a smaller flow rate variation range is given, which improves the stability of the control system, but reduces responsiveness. However, in this embodiment, the constant corrector 17 has characteristics as shown in FIG. 4, and when the rotation speed of the compressor 1 is high, the constant is adjusted by 1°K2. If the rotation speed is low, set the constant 11. 2. Since 3 is made small, the opening degree of the expansion valve is maintained appropriately, and the degree of superheating of the refrigerant in the evaporator can always be stably controlled.
第5図、第6図は本実施例の効果を示す特性図である。FIGS. 5 and 6 are characteristic diagrams showing the effects of this embodiment.
第5図は圧m機の回転数Nが、ステップ状に増加した場
合の冷媒過熱度ΔTの変化を示し、回転数Nが変化した
場合、定数補正器がない場合には、冷媒流量変化幅が大
きいので、破線で示す如く冷媒過熱度ΔTが不安定とな
るが、本実施例では、実線で示す如く冷媒過熱度ΔTは
少し変動するが、すぐに元の値に制御される。Figure 5 shows the change in the degree of refrigerant superheating ΔT when the rotation speed N of the pressure m machine increases in a stepwise manner. is large, so the refrigerant superheat degree ΔT becomes unstable as shown by the broken line. However, in this embodiment, the refrigerant superheat degree ΔT fluctuates slightly as shown by the solid line, but is quickly controlled to the original value.
第6図は圧縮機の回転数Nがステップ状に低下した場合
バ冷媒過熱度ΔTの変化を示し、回転数Nが変化した場
合、定数補正器がない場合には、冷媒rX世輪が小さい
ので、破線で示す如く冷媒過熱度ΔTが元の値に戻るま
でかなりの時間を要することになるが、本実施例では、
実線で示す如く冷媒過熱度ΔTは短時間で元の値に制御
される。Figure 6 shows the change in the degree of superheating ΔT of the refrigerant when the rotational speed N of the compressor decreases in a stepwise manner. Therefore, as shown by the broken line, it will take a considerable amount of time for the refrigerant superheat degree ΔT to return to its original value, but in this example,
As shown by the solid line, the refrigerant superheat degree ΔT is controlled to the original value in a short time.
本発明によれば、冷凍サイクルの負荷条件が変化しても
、蒸発器の冷媒過熱度を常に安定に制御することができ
る。その結果、圧縮機への液戻シ遜転を防ぎ、冷凍サイ
クルの信頼性を向上させることができるばかシでなく、
蒸発器を有効に利用できて、省エネルギー化を図れる。According to the present invention, even if the load conditions of the refrigeration cycle change, the degree of superheating of the refrigerant in the evaporator can always be stably controlled. As a result, it is possible to prevent the liquid from returning to the compressor and improve the reliability of the refrigeration cycle.
The evaporator can be used effectively and energy can be saved.
第1図は本発明による冷媒流量制御装置を備えた冷凍サ
イクル系統図、第2図は第1図における制御回路のブロ
ック縁図、第3図は電動式膨脹弁の特性図、第4図は定
数補正器の特性図、第5図、第6図は圧縮機の回転数の
変化に対する冷媒過熱度の制御状況を説明する線図であ
る。
1・・・圧縮機 3・・・電動式膨脹弁 5・・・
第1温度センサ 6・・・第2温寂センサ 7・・
・圧縮機の回転数検知用のセンサ 8・・・制御回路
17・・・定数補正器。Fig. 1 is a refrigeration cycle system diagram equipped with a refrigerant flow rate control device according to the present invention, Fig. 2 is a block diagram of the control circuit in Fig. 1, Fig. 3 is a characteristic diagram of the electric expansion valve, and Fig. 4 is a diagram of the control circuit in Fig. 1. The characteristic diagrams of the constant corrector, FIGS. 5 and 6, are diagrams illustrating the state of control of the refrigerant superheat degree with respect to changes in the rotational speed of the compressor. 1... Compressor 3... Electric expansion valve 5...
First temperature sensor 6...Second temperature sensor 7...
- Sensor for detecting the rotation speed of the compressor 8...Control circuit 17...Constant corrector.
Claims (1)
によって弁開度が可変する膨脹弁から成る冷凍サイクル
において、冷媒の蒸発温度を検知する第1の温度センサ
と、蒸発器出口の冷媒温度を検知する第2の温度センサ
と、前記膨脹弁の開度を制御する電気信号を出力する制
御回路とを備え、前記制御回路は、第1の温度センサお
よび第2の温度センサの検出温度差と蒸発器出口冷媒の
設定過熱度との温度差に相当する電気信号に、第1の比
例定数を乗じた第1の電気信号を、前記温度差を時間に
ついて積分した値に相当する電気信号に、第2の比例定
数を乗じた第2の電気信号を、前記温度差を時間につい
て微分した値に相当する電気信号に、第3の比例定数を
乗じた第3の電気信号をそれぞれ発生し、第1、第2お
よび第3の電気信号の和に応じて膨脹弁制御用の電気信
号を出力するように構成されている冷媒流量制御装置に
おいて、圧縮機の回転数に応じて前記の第1、第2、第
3の比例定数を補正する定数補正器を制御回路に付加し
たことを特徴とする冷媒流量制御装置。In a refrigeration cycle consisting of a compressor with a variable rotation speed, a condenser, an evaporator, and an expansion valve whose valve opening degree is variable according to an electric signal, a first temperature sensor detects the evaporation temperature of the refrigerant, and a refrigerant at the outlet of the evaporator. The control circuit includes a second temperature sensor that detects temperature, and a control circuit that outputs an electric signal that controls the opening degree of the expansion valve, and the control circuit detects the temperatures detected by the first temperature sensor and the second temperature sensor. an electric signal corresponding to a value obtained by integrating the temperature difference over time by multiplying an electric signal corresponding to the temperature difference between the difference and the set superheat degree of the evaporator outlet refrigerant by a first proportionality constant; A second electrical signal is generated by multiplying the temperature difference by a second proportionality constant, and a third electrical signal is generated by multiplying the electrical signal corresponding to the value obtained by differentiating the temperature difference with respect to time by a third proportionality constant. , a refrigerant flow rate control device configured to output an electric signal for controlling an expansion valve according to the sum of the first, second, and third electric signals. A refrigerant flow rate control device characterized in that a constant corrector for correcting the first, second, and third proportionality constants is added to the control circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60023419A JPH0686961B2 (en) | 1985-02-12 | 1985-02-12 | Refrigerant flow controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60023419A JPH0686961B2 (en) | 1985-02-12 | 1985-02-12 | Refrigerant flow controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61184367A true JPS61184367A (en) | 1986-08-18 |
JPH0686961B2 JPH0686961B2 (en) | 1994-11-02 |
Family
ID=12109978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60023419A Expired - Fee Related JPH0686961B2 (en) | 1985-02-12 | 1985-02-12 | Refrigerant flow controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686961B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074779A (en) * | 2007-09-25 | 2009-04-09 | Sanyo Electric Co Ltd | Cooling apparatus |
WO2016139736A1 (en) * | 2015-03-02 | 2016-09-09 | 三菱電機株式会社 | Control device and method for refrigeration cycle device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714156A (en) * | 1980-06-27 | 1982-01-25 | Matsushita Electric Ind Co Ltd | Airconditioning equipment |
-
1985
- 1985-02-12 JP JP60023419A patent/JPH0686961B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714156A (en) * | 1980-06-27 | 1982-01-25 | Matsushita Electric Ind Co Ltd | Airconditioning equipment |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009074779A (en) * | 2007-09-25 | 2009-04-09 | Sanyo Electric Co Ltd | Cooling apparatus |
WO2016139736A1 (en) * | 2015-03-02 | 2016-09-09 | 三菱電機株式会社 | Control device and method for refrigeration cycle device |
JPWO2016139736A1 (en) * | 2015-03-02 | 2017-09-14 | 三菱電機株式会社 | Control device for refrigeration cycle apparatus, refrigeration cycle apparatus, and control method for refrigeration cycle apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0686961B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4848099A (en) | Adaptive refrigerant control algorithm | |
US4617804A (en) | Refrigerant flow control device | |
US7331191B2 (en) | Heating, ventilation and air conditioning (HVAC) system and method using feedback linearization | |
JPH0541904B2 (en) | ||
JP2634139B2 (en) | Refrigeration apparatus and control method thereof | |
JPS61197967A (en) | Cooling cycle | |
JP2001124387A (en) | Air-conditioning device for vehicle | |
JPS61184367A (en) | Refrigerant flow controller | |
JPS6314047A (en) | Refrigerant flow controller for air conditioner for automobile | |
JP2982322B2 (en) | Automatic temperature control device for absorption refrigerator | |
JPH03164657A (en) | Air conditioner | |
JPS58104465A (en) | Controller for refrigeration cycle | |
JPH0663668B2 (en) | Refrigerant flow controller | |
JP3039941B2 (en) | Refrigeration equipment | |
JPS5912269A (en) | Refrigerator | |
JPS58106363A (en) | Controller for flow rate of refrigerant | |
JPH06201198A (en) | Refrigerating cycle control device | |
JPS6189455A (en) | Flow controller for refrigerant in refrigeration cycle | |
JPS5873A (en) | Controller for flow rate of refrigerant | |
JPS6058383B2 (en) | Refrigerant flow control device | |
JPH087314Y2 (en) | refrigerator | |
JPS63113260A (en) | Controller for refrigeration cycle | |
JPS6383556A (en) | Refrigeration cycle | |
JPS62153653A (en) | Refrigerator | |
JPS61237982A (en) | Flow controller for refrigerant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |