JPH0524417B2 - - Google Patents

Info

Publication number
JPH0524417B2
JPH0524417B2 JP29014585A JP29014585A JPH0524417B2 JP H0524417 B2 JPH0524417 B2 JP H0524417B2 JP 29014585 A JP29014585 A JP 29014585A JP 29014585 A JP29014585 A JP 29014585A JP H0524417 B2 JPH0524417 B2 JP H0524417B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
detection element
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29014585A
Other languages
Japanese (ja)
Other versions
JPS62153653A (en
Inventor
Makoto Endo
Naoki Tanaka
Masaki Ikeuchi
Hitoshi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29014585A priority Critical patent/JPS62153653A/en
Publication of JPS62153653A publication Critical patent/JPS62153653A/en
Publication of JPH0524417B2 publication Critical patent/JPH0524417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は非共沸混合冷媒を使用した冷凍サイ
クルによる冷凍装置に関し、特にそのサイクル効
率を向上させ得るようにした冷凍装置の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a refrigeration system using a refrigeration cycle using a non-azeotropic mixed refrigerant, and more particularly to an improvement of a refrigeration system that can improve the cycle efficiency.

〔従来の技術〕[Conventional technology]

第4図は特願昭60−39368号に示された従来の
冷凍サイクルの冷媒回路構成を示し、図において
1は冷凍サイクル内での冷媒ガスを断熱圧縮する
圧縮機、2はこの圧縮機1にて圧縮された冷媒ガ
スを凝縮する凝縮器、3はこの凝縮器2からの冷
媒ガスを減圧する減圧装置(膨張弁)、4はこの
減圧装置3で減圧された冷媒ガスを蒸発させる蒸
発器である。
Fig. 4 shows the refrigerant circuit configuration of the conventional refrigeration cycle shown in Japanese Patent Application No. 60-39368. 3 is a pressure reducing device (expansion valve) that reduces the pressure of the refrigerant gas from the condenser 2; 4 is an evaporator that evaporates the refrigerant gas reduced in pressure by the pressure reducing device 3; It is.

そして、このような冷凍装置においてその冷媒
ガスとして目的に合せた非共沸混合冷媒を使用す
ることにより、単一冷媒では得られなかつたより
低い蒸発温度、あるいはより高い凝縮温度、さら
にサイクル効率の向上化等といつた利点が得られ
ることは従来から知られている。なお第5図は上
述の冷凍サイクルを用いた冷凍装置において冷媒
として使用した非共沸混合冷媒の状態変化をモリ
エル線図上に示したもので、図中Aは圧縮機1の
吸込口および蒸発器4の出口、Bは圧縮機1の吐
出口および凝縮器2の入口、Cは凝縮器2の出口
および減圧装置3の入口、Dは減圧装置3の出口
および蒸発器4の入口での非共沸混合冷媒状態を
示し、第4図において対応する部分には同一符号
を付している。またa1−b1,a2−b2,a3−b3,a4
−b4はモリエル線図上の二相域における同一温度
点を示す。
By using a non-azeotropic refrigerant mixture tailored to the purpose as the refrigerant gas in such refrigeration equipment, it is possible to achieve lower evaporation temperatures or higher condensation temperatures that could not be obtained with a single refrigerant, as well as improved cycle efficiency. It has been known for a long time that advantages such as reduction can be obtained. In addition, Fig. 5 shows the state changes of the non-azeotropic mixed refrigerant used as a refrigerant in a refrigeration system using the above-mentioned refrigeration cycle on a Mollier diagram. B is the outlet of the compressor 1 and the inlet of the condenser 2, C is the outlet of the condenser 2 and the inlet of the pressure reducing device 3, and D is the outlet of the pressure reducing device 3 and the inlet of the evaporator 4. The azeotropic mixed refrigerant state is shown, and corresponding parts in FIG. 4 are given the same reference numerals. Also, a 1 −b 1 , a 2 −b 2 , a 3 −b 3 , a 4
−b 4 indicates the same temperature point in the two-phase region on the Mollier diagram.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の非共沸混合冷媒を使用した冷凍装置は以
上のように構成されているので、冷凍装置の運転
される条件が一定であれば、第5図に示す効率の
良い冷凍サイクルを構成するが、負荷条件の変化
した場合、冷媒圧力が変わるため凝縮器や蒸発器
内の冷媒量が変化することから、非共沸混合冷媒
の封入混合比に対する実際の冷凍サイクル内を循
環する循環混合比が変化し、また凝縮器、蒸発器
の熱交換量も変つてくるので、各状態変化に応じ
たその時々の冷媒流量の調整が必要でそのために
は減圧装置の開度調整を必要とするところである
が、非共沸混合冷媒故にそのままでは調整が困難
であるという問題点があつた。
Since the conventional refrigeration system using a non-azeotropic mixed refrigerant is constructed as described above, if the operating conditions of the refrigeration system are constant, an efficient refrigeration cycle as shown in Fig. 5 can be constructed. When the load conditions change, the refrigerant pressure changes and the amount of refrigerant in the condenser and evaporator changes. Therefore, the actual circulation mixture ratio circulating in the refrigeration cycle relative to the charged mixture ratio of the non-azeotropic refrigerant mixture changes. The amount of heat exchanged in the condenser and evaporator also changes, so it is necessary to adjust the refrigerant flow rate from time to time according to each state change, and to do this, it is necessary to adjust the opening of the pressure reducing device. However, since it is a non-azeotropic mixed refrigerant, it is difficult to adjust it as it is, which is a problem.

この発明は上記の問題点を解消するためになさ
れたもので、冷凍装置の負荷条件の変化に応じ
て、減圧装置の開度を自動的に調整し冷媒流量の
最適値を決定して、最も効率良く運転できる非共
沸混合冷媒を用いた冷凍装置を得ることを目的と
する。
This invention was made to solve the above problems, and automatically adjusts the opening degree of the pressure reducing device according to changes in the load conditions of the refrigeration equipment to determine the optimal value of the refrigerant flow rate. The purpose is to obtain a refrigeration system using a non-azeotropic mixed refrigerant that can be operated efficiently.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置では第1の手段として
は冷凍サイクルを構成する配管の途中に液溜めを
設け、この液溜め内の冷媒の圧力と温度を検出す
ると共に、蒸発器出口と圧縮機を結ぶ冷媒配管内
の冷媒の圧力と温度を検出し、液溜内の温度およ
び圧力から循環混合比を求め、この循環混合比か
ら求められる蒸発器出口の最適の温度および圧力
に、蒸発器出口における温度および圧力が一致す
るよう減圧装置の開度の調整を行なうものであ
る。
In the refrigeration system according to the present invention, as a first means, a liquid reservoir is provided in the middle of the piping constituting the refrigeration cycle, and the pressure and temperature of the refrigerant in this liquid reservoir are detected, and the evaporator outlet and the compressor are connected. Detect the pressure and temperature of the refrigerant in the refrigerant piping, determine the circulation mixing ratio from the temperature and pressure in the liquid reservoir, and adjust the temperature at the evaporator outlet to the optimum temperature and pressure at the evaporator outlet determined from this circulation mixing ratio. and the opening degree of the pressure reducing device is adjusted so that the pressures match.

また第2の手段としては蒸発器の入口、中央お
よび出口部における冷媒配管内の冷媒の温度を検
出し、蒸発器の入口と中央とでの温度差と、中央
と出口とでの温度差との差が常に一定になるよう
減圧装置の開度の調整を行なうものである。
A second method is to detect the temperature of the refrigerant in the refrigerant piping at the inlet, center, and outlet of the evaporator, and detect the temperature difference between the inlet and center of the evaporator and the temperature difference between the center and outlet. The opening degree of the pressure reducing device is adjusted so that the difference between the two is always constant.

〔作用〕[Effect]

この発明における第1の手段では液溜め内の冷
媒の圧力と温度により、冷凍サイクル内の循環混
合比を得、この循環混合比より最も効率の良い冷
凍サイクルを構成し得る蒸発器出口における冷媒
の圧力と温度を計算し、そして蒸発器出口の冷媒
の圧力と温度が計算された値と異なる時には、減
圧装置の開度を調整して最適な冷媒流量を得るも
のである。また第2の手段では蒸発器の入口と中
央とでの温度差と、中央と出口とでの温度差との
差が常に一定になるように制御器によつて減圧装
置の開度が調整される。
In the first means of the present invention, the circulation mixing ratio in the refrigeration cycle is obtained based on the pressure and temperature of the refrigerant in the liquid reservoir, and the refrigerant at the evaporator outlet is determined based on this circulation mixing ratio, which can configure the most efficient refrigeration cycle. The pressure and temperature are calculated, and when the pressure and temperature of the refrigerant at the evaporator outlet differ from the calculated values, the opening degree of the pressure reducing device is adjusted to obtain the optimal refrigerant flow rate. In the second method, the opening degree of the pressure reducing device is adjusted by a controller so that the difference in temperature between the inlet and the center of the evaporator and the difference in temperature between the center and the outlet of the evaporator are always constant. Ru.

〔実施例〕〔Example〕

以下この発明の一実施例について説明するが、
従来例と同一個所は同一符号で示しており、さら
に第1図において5は使用される非共沸混合冷媒
の液溜め、6はこの液溜め5内の冷媒の温度を検
出する温度検出素子、7は液溜め5内の冷媒の圧
力を検出する圧力検出素子、8は蒸発器4の出口
の冷媒の温度を検出する温度検出素子、9は蒸発
器4の出口の冷媒の圧力を検出する圧力検出素
子、10は制御器である。
An embodiment of this invention will be described below.
The same parts as in the conventional example are indicated by the same reference numerals, and in FIG. 1, 5 is a liquid reservoir for the non-azeotropic mixed refrigerant used, 6 is a temperature detection element for detecting the temperature of the refrigerant in this liquid reservoir 5, 7 is a pressure detection element for detecting the pressure of the refrigerant in the liquid reservoir 5; 8 is a temperature detection element for detecting the temperature of the refrigerant at the outlet of the evaporator 4; 9 is a pressure detection element for detecting the pressure of the refrigerant at the outlet of the evaporator 4. The detection element 10 is a controller.

次にこの発明のものの動作について説明する。
まず第1図に示したものにおいて液溜め5内には
凝縮器2で液化された非共沸混合冷媒の液冷媒に
充たされ、これが減圧装置3に流れ込む。ところ
でこの液溜め5内の冷媒の圧力、温度は冷凍サイ
クルを流れる非共沸混合冷媒の循環混合比によつ
て定まる。即ち、ラウールの法則によれば、例え
ばある温度T℃の条件下での冷媒R22、R114の
混合冷媒の圧力Pは、R22のモル分率ζ22、R22の
純粋冷媒圧力P22、R114のモル分率(1−ζ22)、
R114の純粋冷媒圧力P114から P=ζ22P22+(1−ζ22)P114 となる関係がある。従つて液溜め内の冷媒の圧力
と温度を検出することによつて循環混合比を知る
ことができ、そのために温度検出素子6と圧力検
出素子7によつて得られた出力を制御器10に送
る。
Next, the operation of this invention will be explained.
First, in the system shown in FIG. 1, a liquid reservoir 5 is filled with liquid refrigerant of a non-azeotropic mixed refrigerant liquefied in a condenser 2, which flows into a pressure reducing device 3. By the way, the pressure and temperature of the refrigerant in this liquid reservoir 5 are determined by the circulation mixing ratio of the non-azeotropic refrigerant mixture flowing through the refrigeration cycle. That is, according to Raoult's law, for example, the pressure P of a mixed refrigerant of refrigerants R22 and R114 at a certain temperature T°C is the molar fraction ζ 22 of R22, the pure refrigerant pressure P 22 of R22, and the molar ratio of R114. fraction (1-ζ 22 ),
From the pure refrigerant pressure P 114 of R114, there is a relationship such that P = ζ 22 P 22 + (1-ζ 22 ) P 114 . Therefore, the circulation mixing ratio can be determined by detecting the pressure and temperature of the refrigerant in the liquid reservoir, and for this purpose, the outputs obtained by the temperature detection element 6 and the pressure detection element 7 are sent to the controller 10. send.

一方冷凍サイクルを効率良く運転するには第3
図におけるA点とb3点の温度差を一定にする必要
があり、これが大きい時には蒸発圧力が低過ぎる
ことを意味し、圧縮機1の効率が低下する。また
小さい時には蒸発器4での液冷媒が完全に蒸発し
終らないで、圧縮機1に液冷媒が流れ込み、やは
り効率が低下する。
On the other hand, the third step is to operate the refrigeration cycle efficiently.
It is necessary to keep the temperature difference between points A and 3 points b in the figure constant, and when this is large, it means that the evaporation pressure is too low, and the efficiency of the compressor 1 decreases. Furthermore, when the amount is small, the liquid refrigerant in the evaporator 4 does not completely evaporate and flows into the compressor 1, which also reduces efficiency.

そして上記のA点とb3点の最適な温度差は冷媒
として非共沸混合冷媒を使用する場合、その循環
混合比によつて定まり(通常0〜5℃)、これが
上記温度検出素子6と圧力検出素子7によつて得
られる。したがつてここで得られた最適な温度差
の状態が蒸発器4の出口に取付けられた上記の温
度検出素子8と圧力検出素子9によつて確認され
る。そして最適なA点とb3点の温度差に対し温度
検出素子8と圧力検出素子9によつて得られた温
度差が小さい時には減圧装置3の開度が大き過ぎ
ることを意味するので、制御器10内にて計算さ
れた最適絞り量の信号を減圧装置3に送り、冷凍
サイクル内を流れる冷媒流量を減少させる。
When a non-azeotropic refrigerant mixture is used as the refrigerant, the optimum temperature difference between the three points A and b is determined by the circulation mixing ratio (usually 0 to 5°C), and this is the difference between the temperature detection element 6 and the temperature detection element 6. This is obtained by the pressure detection element 7. Therefore, the optimum temperature difference state obtained here is confirmed by the above-mentioned temperature detection element 8 and pressure detection element 9 attached to the outlet of the evaporator 4. When the temperature difference obtained by the temperature detection element 8 and the pressure detection element 9 is small compared to the optimum temperature difference between the three points A and B, it means that the opening degree of the pressure reducing device 3 is too large. A signal of the optimum throttling amount calculated in the device 10 is sent to the pressure reducing device 3 to reduce the flow rate of refrigerant flowing in the refrigeration cycle.

また温度差が大きい時には上記の場合と逆の信
号を送り、冷媒流量を増加させる。以上述べた制
御によつて負荷の変動に応じた減圧装置3の開度
の調整によつて最適な冷凍サイクルが構成される
ものである。
Furthermore, when the temperature difference is large, a signal opposite to the above case is sent to increase the refrigerant flow rate. Through the control described above, an optimal refrigeration cycle is constructed by adjusting the opening degree of the pressure reducing device 3 in accordance with changes in load.

なお上記の実施例では冷凍装置に加わる負荷条
件によつて変化する冷凍サイクル内の非共沸混合
冷媒の循環混合比を、減圧装置3の上流側に設け
た液溜め5内の冷媒の圧力と温度を検出し、蒸発
器4の出口における冷媒の温度と圧力が適正にな
るよう減圧装置3の開度を制御器10で調整する
ようにした場合を示したが、蒸発器4の入口、中
央および出口の3点における冷媒の温度を検出す
ることにより蒸発器出口における冷媒の圧力と温
度を適正に調整することもできる。
In the above embodiment, the circulating mixing ratio of the non-azeotropic refrigerant mixture in the refrigeration cycle, which changes depending on the load conditions applied to the refrigeration system, is determined by the pressure of the refrigerant in the liquid reservoir 5 provided upstream of the pressure reducing device 3. The temperature is detected and the opening degree of the pressure reducing device 3 is adjusted by the controller 10 so that the temperature and pressure of the refrigerant at the outlet of the evaporator 4 are appropriate. By detecting the temperature of the refrigerant at three points at the outlet, it is also possible to appropriately adjust the pressure and temperature of the refrigerant at the evaporator outlet.

すなわち第2図はその実施例であり、この図に
おいて11は蒸発器4の入口における冷媒の温度
を検出する温度検出素子であり、12は蒸発器4
の中央に取り付けた該部での冷媒の温度を検出す
る温度検出素子である。そして第3図のT8はA
点における温度検出素子8によつて測定された温
度であり、T11はD点における温度検出素子11
によつて測定された温度、T12は蒸発器4の中央
における温度検出素子12によつて測定された温
度である。T12とT11との温度差とb3点の温度と
T12との温度差とは略等しいので、T8とT12との
温度差とT12とT11との温度差との差が、A点と
b3点の温度差に等しいことになる。
That is, FIG. 2 shows an example thereof, and in this figure, 11 is a temperature detection element that detects the temperature of the refrigerant at the inlet of the evaporator 4, and 12 is a temperature detection element that detects the temperature of the refrigerant at the inlet of the evaporator 4.
This is a temperature detection element that detects the temperature of the refrigerant at the center of the refrigerant. And T 8 in Figure 3 is A
T11 is the temperature measured by the temperature detection element 8 at the point D, and T11 is the temperature measured by the temperature detection element 11 at the point D.
T 12 is the temperature measured by the temperature detection element 12 at the center of the evaporator 4 . Temperature difference between T12 and T11 and temperature at three points b
Since the temperature difference with T12 is almost equal, the difference between the temperature difference between T8 and T12 and the temperature difference between T12 and T11 is the difference between point A and
b is equal to the temperature difference between the three points.

従つて、これらの測定温度より(T8−T12)−
(T12−T11)が一定になるよう制御器10によつ
て減圧装置3の開度の調整を行なうことにより、
A点とb3点の温度差が一定になり冷凍サイクルの
効率の良い運転が可能となる。
Therefore, from these measured temperatures (T 8 −T 12 ) −
By adjusting the opening degree of the pressure reducing device 3 using the controller 10 so that (T 12 −T 11 ) becomes constant,
The temperature difference between points A and B becomes constant, allowing efficient operation of the refrigeration cycle.

〔発明の効果〕〔Effect of the invention〕

この発明の第1の発明は以上のように蒸発器の
出口における冷媒の温度等の条件をその循環混合
比による減圧装置の制御によつて調整するように
構成したので冷凍サイクルの制御が精度良く行わ
れ、負荷条件の変化に対応して効率の良い運転が
可能になるという効果を有する。また、第2の発
明によれば、高価な圧力検出素子を使用する必要
がなく、安価な温度検出素子のみが使用できるた
め、装置の低コスト化が図れるという効果ある。
The first aspect of the present invention is configured so that conditions such as the temperature of the refrigerant at the outlet of the evaporator are adjusted by controlling the pressure reducing device based on the circulation mixture ratio, so that the refrigeration cycle can be controlled with high accuracy. This has the effect of enabling efficient operation in response to changes in load conditions. Further, according to the second invention, there is no need to use an expensive pressure detection element, and only an inexpensive temperature detection element can be used, so that the cost of the apparatus can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の冷凍装置の一実施例を示す
冷媒回路図、第2図はこの発明の他の実施例を示
す同様の冷媒回路図、第3図は第2図のものにお
ける冷媒の状態を示すモリエル線図、第4図は従
来の冷媒装置を示す冷媒回路図、第5図はモリエ
ル線図上の冷凍装置内の冷媒の状態を示す曲線図
である。 なお図中1は圧縮機、2は凝縮器、3は減圧装
置、4は蒸発器、5は液溜め、6,8,11およ
び12はそれぞれ温度検出素子、7および9は圧
力検出素子、10は制御器を示す。その他図中同
一符号は同一部分を示すものとする。
FIG. 1 is a refrigerant circuit diagram showing one embodiment of the refrigeration system of the present invention, FIG. 2 is a similar refrigerant circuit diagram showing another embodiment of the invention, and FIG. FIG. 4 is a refrigerant circuit diagram showing a conventional refrigerant device, and FIG. 5 is a curve diagram showing the state of the refrigerant in the refrigeration device on the Mollier diagram. In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device, 4 is an evaporator, 5 is a liquid reservoir, 6, 8, 11 and 12 are temperature detection elements, 7 and 9 are pressure detection elements, 10 indicates a controller. In other figures, the same reference numerals indicate the same parts.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、減圧装置および蒸発器を冷
媒配管により順次接続してなる冷凍回路におい
て、冷媒として非共沸混合冷媒を使用すると共
に、上記の凝縮器と減圧装置との間に液溜めを設
け、この液溜めには内部の冷媒の温度および圧力
を検出する温度検出素子および圧力検出素子を設
けると共に、さらに蒸発器出口にも冷媒配管内の
冷媒の温度および圧力を検出する温度検出素子お
よび圧力検出素子を設け、これら各温度、圧力検
出素子にて測定された測定値を使つて、上記液溜
における温度検出素子および圧力検出素子による
測定値から非共沸混合冷媒の循環混合比を求め、
この循環混合比から求められる蒸発器出口におけ
る冷媒の最適の温度および圧力に、上記蒸発器出
口における温度検出素子および圧力検出素子によ
る測定値が一致するよう、上記減圧装置の開度を
制御器で定め、その出力で減圧装置の開度を制御
するようにしたことを特徴とする冷凍装置。 2 圧縮機、凝縮器、減圧装置および蒸発器を冷
媒配管により順次接続してなる冷凍回路におい
て、冷媒として非共沸混合冷媒を使用すると共
に、上記蒸発器の入口、中央および出口部に冷媒
配管内の冷媒の温度を検出する各温度検出素子を
設け、これら各温度検出素子によつて得られた温
度測定値から上記蒸発器の入口と中央とでの温度
差と、中央と出口とでの温度差の差が常に一定に
なるよう、減圧装置の開度を制御器で定め、その
出力で減圧装置の開度を制御するようにしたこと
を特徴とする冷凍装置。
[Scope of Claims] 1. A refrigeration circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected by refrigerant piping, in which a non-azeotropic mixed refrigerant is used as a refrigerant, and the above-mentioned condenser and pressure reducing device are used. A liquid reservoir is provided between the refrigerant pipes, and this liquid reservoir is equipped with a temperature detection element and a pressure detection element for detecting the temperature and pressure of the refrigerant inside, and also at the evaporator outlet. A temperature detection element and a pressure detection element are provided to detect the temperature and pressure detection elements, and the values measured by the temperature and pressure detection elements are used to determine the non-azeotropic mixture from the measurement values by the temperature detection element and pressure detection element in the liquid reservoir. Find the refrigerant circulation mixing ratio,
The controller controls the opening degree of the pressure reducing device so that the values measured by the temperature detection element and pressure detection element at the evaporator outlet match the optimal temperature and pressure of the refrigerant at the evaporator outlet determined from this circulation mixing ratio. A refrigeration system characterized in that the opening degree of a pressure reducing device is controlled using the determined output. 2. In a refrigeration circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected by refrigerant piping, a non-azeotropic mixed refrigerant is used as the refrigerant, and refrigerant piping is provided at the inlet, center, and outlet of the evaporator. Each temperature detection element is provided to detect the temperature of the refrigerant in the evaporator, and the temperature difference between the inlet and center of the evaporator and the temperature difference between the center and outlet are determined from the temperature measurement values obtained by these temperature detection elements. A refrigeration system characterized in that the opening degree of the pressure reducing device is determined by a controller so that the difference in temperature is always constant, and the opening degree of the pressure reducing device is controlled by the output of the controller.
JP29014585A 1985-12-23 1985-12-23 Refrigerator Granted JPS62153653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29014585A JPS62153653A (en) 1985-12-23 1985-12-23 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29014585A JPS62153653A (en) 1985-12-23 1985-12-23 Refrigerator

Publications (2)

Publication Number Publication Date
JPS62153653A JPS62153653A (en) 1987-07-08
JPH0524417B2 true JPH0524417B2 (en) 1993-04-07

Family

ID=17752359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29014585A Granted JPS62153653A (en) 1985-12-23 1985-12-23 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62153653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
JP2022157188A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646874B2 (en) * 1991-03-12 1997-08-27 三菱電機株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
JP2022157188A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device

Also Published As

Publication number Publication date
JPS62153653A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
JPH0524417B2 (en)
JPH0875280A (en) Freezing and air conditioning device with non-azeotropic mixture refrigerant
JPH07198235A (en) Air conditioner
JP3178178B2 (en) Refrigeration cycle saturated steam temperature detection circuit
JP3188989B2 (en) Air conditioner
JP2504997Y2 (en) Air conditioner
JPS63290354A (en) Heat pump type air conditioner
JPH04214153A (en) Refrigerating cycle device
JPS6196376A (en) Flow controller for refrigerant of air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP2625556B2 (en) Operation control device for air conditioner
JPH0579894B2 (en)
JPH0327252Y2 (en)
JPH1019407A (en) Refrigerant circuit
JPH0723794B2 (en) Air conditioner
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPH0633910B2 (en) Heat pump refrigeration system
KR100301847B1 (en) device for controlling flow rate of refrigerant in air conditioner and method for controlling the same
JPH085184A (en) Multi-room type air conditioner
JPH0718935Y2 (en) Operation control device for air conditioner with radiant panel
JPS61250452A (en) Flow controller for refrigerant
JPS5995349A (en) Controller for electric type expansion valve
JPH07120083A (en) Controller for refrigerating cycle
JPH0566503B2 (en)
JPH01256769A (en) Multi-room air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term