JPH01320304A - Rodless cylinder - Google Patents

Rodless cylinder

Info

Publication number
JPH01320304A
JPH01320304A JP15415388A JP15415388A JPH01320304A JP H01320304 A JPH01320304 A JP H01320304A JP 15415388 A JP15415388 A JP 15415388A JP 15415388 A JP15415388 A JP 15415388A JP H01320304 A JPH01320304 A JP H01320304A
Authority
JP
Japan
Prior art keywords
permanent magnet
rodless cylinder
basic components
casting
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15415388A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazawa
弘 宮沢
Koji Akioka
宏治 秋岡
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15415388A priority Critical patent/JPH01320304A/en
Publication of JPH01320304A publication Critical patent/JPH01320304A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/084Characterised by the construction of the motor unit the motor being of the rodless piston type, e.g. with cable, belt or chain
    • F15B15/086Characterised by the construction of the motor unit the motor being of the rodless piston type, e.g. with cable, belt or chain with magnetic coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Abstract

PURPOSE:To aim at the enhancement of work efficiency at the time of assembling, the reduction of cost and lengthening life by using a permanent magnet whose basic components are R (at least one kind of rare earth elements including Y)-M(at least one kind of transition metal elements)-X(at least one kind of IIIb group elements) and which is made by dissolving and casting the basic components and then processing a casting ingot in hot. CONSTITUTION:In a rodless cylinder, R-M-X is the basic components of the piston portion 2 of the rodless cylinder which performs the movement of an object using the magnetizing force of a permanent magnet, and the permanent magnet 3 used for an outside moving portion 1. The permanent magnet which is made by dissolving and casting the basic components and then processing a casting ingot in hot is used. Further, the permanent magnet is made to be aeolotropic in the radial direction or the axial direction. In this way, work efficiency at the time of assembling is enhanced, cost is reduced by the enhancement of yield and its life is lengthened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、永久磁石を利用したロッドレスシリンダーに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rodless cylinder using permanent magnets.

[従来技術] ロッドレスシリンダーは、通常のエアーシリンダーに比
べ取り付けのスペースが約半分になるためスペース効率
の向上、長いストロークが可能であるという特徴を持っ
ており、産業界で広く使用されている。
[Prior art] Rodless cylinders are widely used in industry because they require approximately half the installation space of regular air cylinders, improving space efficiency and allowing long strokes. .

ロッドレスシリンダーは、シリンダー空間部に圧縮空気
を送り込み、ピストン部の永久磁石を動かすことにより
、外部移動部の永久磁石との磁化力によって力を伝達し
、同じ動きをする構造となっている。  永久磁石は、
iい保磁力とエネルギー積を持つSm−Go系やR−F
e−B系の希土類永久磁石が使われていた。
The rodless cylinder has a structure in which compressed air is sent into the cylinder space to move the permanent magnet in the piston part, thereby transmitting force by the magnetization force with the permanent magnet in the external moving part, and making the same movement. Permanent magnets are
Sm-Go system and R-F with high coercive force and energy product
An e-B rare earth permanent magnet was used.

[発明が解決しようとする課題] しかし、前述のような従来技術では、できるだけ高性能
な永久磁石が要求されるため、焼結法で製造された永久
磁石が使用されていた。しかし、焼結法永久磁石は、ひ
び割れ、欠けや磁粉等が発生し易ために、組立時におい
て歩留まりや作業性の低下を起こしコストが増大すると
言う問題を抱えていた。
[Problems to be Solved by the Invention] However, in the prior art as described above, permanent magnets manufactured by a sintering method were used because permanent magnets with as high performance as possible were required. However, sintered permanent magnets are prone to cracking, chipping, magnetic powder, etc., resulting in lower yields and workability during assembly, resulting in increased costs.

また、組立後も磁粉によるシリンダーチューブと外部移
動部、またはピストン部と摩擦による摩耗や、永久磁石
とのクラッシュによる永久磁石の欠は等が発生し信頼性
、寿命の低下などの問題を有していた。
In addition, even after assembly, wear due to friction between the cylinder tube and external moving parts or piston parts due to magnetic particles, and permanent magnet chips due to crashes with the permanent magnets occur, resulting in problems such as reduced reliability and reduced service life. was.

そこで本発明は、以上のような欠点を解決するものであ
りその目的とするところは、ひび割れ、欠けや磁粉等の
発生のない永久磁石を用いることにより、組立時におけ
る歩留まりや作業性を向上させ安価で信頼性のあ゛る製
品を提供するところにある。
Therefore, the present invention is intended to solve the above-mentioned drawbacks, and its purpose is to improve yield and workability during assembly by using permanent magnets that do not generate cracks, chips, or magnetic particles. Our goal is to provide inexpensive and highly reliable products.

[課題を解決するための手段] 本発明のロッドレスシリンダーは、永久磁石の磁化力を
利用して物体の移動を行なうロッドレスシリンダーのピ
ストン部と外部移動部に使用する永久磁石に、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)、M
(ただし遷移金属元素のうち少なくとも1種)、及びX
(ただしIII b族元素のうち少なくとも1種)を基
本成分とし、溶解、鋳造し、次いで鋳造インゴットを熱
間加工により製造された永久磁石を用いたことを特徴と
する。
[Means for Solving the Problems] The rodless cylinder of the present invention has R( However, R is at least one rare earth element including Y), M
(However, at least one transition metal element), and
(However, at least one type of group IIIb element) is used as a basic component, and the permanent magnet is melted and cast, and then the cast ingot is hot worked.

さらに永久磁石はラジアル方向もしくはアキシャル方向
に異方化されたことを特徴とする。
Furthermore, the permanent magnet is characterized by being anisotropic in the radial or axial direction.

[実施例] 以下、本発明を実施例にもとすき詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail using examples.

[実施例−1コ 本発明の永久磁石合金の組成を第1表に示す。[Example-1 Table 1 shows the composition of the permanent magnet alloy of the present invention.

第1表の組成を溶解し鋳型に鋳込み冷却して鋳造インゴ
ットを得た0次に950°Cにおいて熱間圧延加工を行
ない、板厚方向に異方化された永久磁石原料を得た。永
久磁石原料を所定形状に切削を行ない、ついで1000
°Cで24時間の熱処理を行ない磁気的に硬化させ、第
1図に示すアキシャル方向に異方化された、ロッドレス
シリンダー用の永久磁石を得た。
The composition shown in Table 1 was melted, poured into a mold, and cooled to obtain a cast ingot. Hot rolling was carried out at 950° C. to obtain a permanent magnet raw material anisotropic in the thickness direction. Permanent magnet raw material is cut into a predetermined shape, and then 1000
The magnet was magnetically hardened by heat treatment at .degree. C. for 24 hours to obtain a permanent magnet for a rodless cylinder which was anisotropic in the axial direction as shown in FIG.

第2図は、本発明のアキシャル異方性永久磁石を用いた
ロッドレスシリンダーの一例を示す。1は外部移動部、
2はピストン部、3は外部移動部の永久磁石、4はピス
トン部の永久磁石、5はシリンダーチューブ、6は外部
移動部チューブ、7はシャフトである。
FIG. 2 shows an example of a rodless cylinder using the axial anisotropic permanent magnet of the present invention. 1 is an external moving part;
2 is a piston part, 3 is a permanent magnet of the external moving part, 4 is a permanent magnet of the piston part, 5 is a cylinder tube, 6 is an external moving part tube, and 7 is a shaft.

本発明の永久磁石を用いたロッドレスシリンダーと、従
来のNd−Fe−E系焼結永久磁石を用いたロッドレス
シリンダーについて、組立時及び動作時の割れや欠けの
発生率を求めた結果を第2表に示す。なお動作時の発生
率は、500時間駆動した後の値である。本発明の永久
磁石を用いたロッドレスシリンダーは、割れや欠けの発
生がほとんど無いのに対して、従来の永久磁石を使用し
たロッドレスシリンダーは、組立時及び動作時において
も割れや欠けが発生し易いく信頼性も低い。
The results of determining the incidence of cracking and chipping during assembly and operation for a rodless cylinder using the permanent magnet of the present invention and a rodless cylinder using a conventional Nd-Fe-E sintered permanent magnet. Shown in Table 2. Note that the occurrence rate during operation is the value after driving for 500 hours. The rodless cylinder using permanent magnets of the present invention has almost no cracking or chipping, whereas the conventional rodless cylinder using permanent magnets does have cracking or chipping during assembly and operation. It is easy to do and has low reliability.

また、組み立て時に割れや欠けが発生しないため組立作
業も大変効率が高く生産性に優れる。
Furthermore, since no cracks or chips occur during assembly, assembly work is highly efficient and highly productive.

表−2 これは永久磁石の特性の差であり、例えば組立時に、永
久磁石をチューブなどに触れた場合など本発明の永久磁
石ではなんら支障が無いのに対し、従来の永久磁石では
大きな欠けや割れが発生してしまう。また従来例の永久
磁石では、磁粉が発生し易いのに対しいて、磁粉の発生
の少ない本発明の永久磁石との差が動作時の欠けや割れ
の発生率の差になって現れている。
Table 2 This is a difference in the characteristics of permanent magnets. For example, when a permanent magnet touches a tube or the like during assembly, there is no problem with the permanent magnet of the present invention, whereas with conventional permanent magnets, there is no problem with large chips. Cracks will occur. Furthermore, while conventional permanent magnets tend to generate magnetic particles, the difference between the permanent magnet of the present invention and the permanent magnet of the present invention, which generates less magnetic particles, is manifested in the difference in the incidence of chipping and cracking during operation.

[実施例−2] 実施例−1と同様の永久磁石合金の組成を用い、溶解し
鋳型に鋳込み冷却して鋳造インゴットを得た。次に95
0℃において熱間押し出し加工を行ない、ラジアル方向
に異方化された永久磁石原料を得た。永久磁石原料を所
定形状に切断、切削を行ない、ついで1000℃で24
時間の熱処理を行ない磁気的に硬化させ、第3図に示す
ラジアル方向に異方化された、ロッドレスシリンダー用
の永久磁石を得た。
[Example 2] A permanent magnet alloy having the same composition as in Example 1 was melted, poured into a mold, and cooled to obtain a cast ingot. Next 95
Hot extrusion was performed at 0°C to obtain a permanent magnet raw material anisotropic in the radial direction. The permanent magnet raw material is cut into a predetermined shape, cut, and then heated at 1000°C for 24 hours.
A permanent magnet for a rodless cylinder, which was anisotropic in the radial direction as shown in FIG. 3, was obtained by magnetically hardening it by heat treatment for a period of time.

第4図は、本発明のラジアル異方性永久磁石を用いたロ
ッドレスシリンダーの一例であり、1は外部移動部、2
はピストン部、3は外部移動部の永久磁石、4はピスト
ン部の永久磁石、5はシリンダーチューブ、6は外部移
動部チューブ、7はシャフトである。
FIG. 4 shows an example of a rodless cylinder using the radially anisotropic permanent magnet of the present invention, in which 1 is an external moving part, 2
3 is a permanent magnet of the external moving part, 4 is a permanent magnet of the piston part, 5 is a cylinder tube, 6 is an external moving part tube, and 7 is a shaft.

得られた永久磁石を第4図に示すロッドレスシリンダー
に組み込み、実施例−1と同様の条件にて組立時及び動
作時の割れや欠けの発生率を求めた結果を第3表に示す
The obtained permanent magnet was assembled into a rodless cylinder shown in FIG. 4, and the occurrence rate of cracks and chips during assembly and operation was determined under the same conditions as in Example 1. Table 3 shows the results.

尚、焼結ラジアル異方性永久磁石は製造が不可能なため
比較は行わなかった0本実施例においても実施例−1と
同様の結果を得ることがでた。
Incidentally, since it is impossible to manufacture a sintered radial anisotropic permanent magnet, the same results as in Example-1 were obtained in this Example, which was not compared.

[発明の効果コ 以上述べてきたように本発明によれば、R−M−Xを基
本成分とし、溶解、鋳造し、次いで鋳造インゴットを熱
間加工により製造された永久磁石を用いたことにより、
組立時の作業能率の向上と、歩留まりの向上によるコス
トの低減や、動作時における信頼性の向上と、長寿命化
が図れるという効果を有する。またそればかりか、簡素
な製造工程により生産できることことから低価格である
という効果を有する。
[Effects of the Invention] As described above, according to the present invention, by using a permanent magnet that uses R-M-X as a basic component, melts and casts it, and then hot-works the cast ingot, ,
It has the effects of improving work efficiency during assembly, reducing costs due to improved yield, improving reliability during operation, and extending life. Moreover, since it can be produced through a simple manufacturing process, it has the effect of being low in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアキシャル異方性永久磁石を示す図、第2図は
アキシャル異方性永久磁石を用いたロッドレスシリンダ
ーの断面図1、第3図はラジアル異方性永久磁石を示す
図、第4図はラジアル異方性永久磁石を用いたロッドレ
スシリンダーの断面図である。 1・・・外部移動部 2・・・ピストン部 3・・・外部移動部の永久磁石 4・・・ピストン部の永久磁石 5・・・シリンダーチューブ 6・・・外部移動部チューブ 7・・・シャフト 以上 出願人 セイコーエプソン株式会経 代理人 弁理士 鈴木 喜三部 他1名第3図
Figure 1 is a diagram showing an axial anisotropic permanent magnet, Figure 2 is a cross-sectional view 1 of a rodless cylinder using an axial anisotropic permanent magnet, Figure 3 is a diagram showing a radial anisotropic permanent magnet, and Figure 3 is a diagram showing a radial anisotropic permanent magnet. Figure 4 is a sectional view of a rodless cylinder using radially anisotropic permanent magnets. 1... External moving part 2... Piston part 3... Permanent magnet of external moving part 4... Permanent magnet of piston part 5... Cylinder tube 6... External moving part tube 7... Shaft and above applicants Seiko Epson Co., Ltd. financial agent Patent attorney Kizobe Suzuki and 1 other person Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)永久磁石の磁化力を利用して物体の移動を行なう
ロッドレスシリンダーのピストン部と外部移動部に使用
する永久磁石に、R(ただしRはYを含む希土類元素の
うち少なくとも1種)、M(ただし遷移金属元素のうち
少なくとも1種)、及びX(ただしIIIb族元素のうち
少なくとも1種)を基本成分とし、溶解、鋳造し、次い
で鋳造インゴットを熱間加工により製造された永久磁石
を用いたことを特徴とするロッドレスシリンダー。
(1) Permanent magnets used in the piston and external moving parts of rodless cylinders that move objects using the magnetizing force of permanent magnets (R is at least one rare earth element including Y) , M (at least one transition metal element), and X (at least one group IIIb element) as basic components, melted and cast, and then produced by hot working the cast ingot A rodless cylinder characterized by using.
(2)前記永久磁石はラジアル方向もしくはアキシャル
方向に異方化されたことを特徴とする請求項1記載のロ
ッドレスシリンダー。
(2) The rodless cylinder according to claim 1, wherein the permanent magnet is anisotropic in a radial direction or an axial direction.
JP15415388A 1988-06-22 1988-06-22 Rodless cylinder Pending JPH01320304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15415388A JPH01320304A (en) 1988-06-22 1988-06-22 Rodless cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15415388A JPH01320304A (en) 1988-06-22 1988-06-22 Rodless cylinder

Publications (1)

Publication Number Publication Date
JPH01320304A true JPH01320304A (en) 1989-12-26

Family

ID=15578013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15415388A Pending JPH01320304A (en) 1988-06-22 1988-06-22 Rodless cylinder

Country Status (1)

Country Link
JP (1) JPH01320304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048953A1 (en) * 2004-11-02 2006-05-11 Howa Machinery, Ltd. Magnet type rodless cylinder
KR100832732B1 (en) * 2004-11-02 2008-05-27 호와 머시너리, 리미티드 Magnet type rod-less cylinder
WO2016177572A1 (en) * 2015-05-04 2016-11-10 M. Braun Inertgas-Systeme Gmbh Transfer valve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048953A1 (en) * 2004-11-02 2006-05-11 Howa Machinery, Ltd. Magnet type rodless cylinder
JP2006132589A (en) * 2004-11-02 2006-05-25 Koganei Corp Magnet type rodless cylinder
KR100832732B1 (en) * 2004-11-02 2008-05-27 호와 머시너리, 리미티드 Magnet type rod-less cylinder
KR100865637B1 (en) * 2004-11-02 2008-10-29 호와 머시너리, 리미티드 Magnet type rodless cylinder
US7644648B2 (en) 2004-11-02 2010-01-12 Howa Machinery, Ltd. Magnet type rodless cylinder
WO2016177572A1 (en) * 2015-05-04 2016-11-10 M. Braun Inertgas-Systeme Gmbh Transfer valve
CN107567558A (en) * 2015-05-04 2018-01-09 布劳恩惰性气体系统有限公司 Switching valve
JP2018515727A (en) * 2015-05-04 2018-06-14 エム. ブラウン イナートガース−ズュステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツングM. Braun Inertgas−Systeme GmbH Switching valve
CN107567558B (en) * 2015-05-04 2019-12-27 布劳恩惰性气体系统有限公司 Change-over valve

Similar Documents

Publication Publication Date Title
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JPH01320304A (en) Rodless cylinder
Brown et al. The dependence of magnetic properties and hot workability of rare earth-iron-boride magnets upon composition
JPH02308512A (en) R-fe-b permanent magnet having biased anisotropy and manufacture thereof
CN201160019Y (en) Heatproof high-energy magnetic structure
JPH05267046A (en) Radial anisotropic cylinder-shaped ferrite magnet and manufacture thereof
JPH01112716A (en) Manufacture of ring magnet with special inside-diameter configuration
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
CN115995336A (en) Reverse extrusion forming method suitable for neodymium-iron-boron permanent magnet ring
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
US4021273A (en) Hysteresis alloy
JPH06188120A (en) Circular arc-shaped magnet and manufacture thereof
JPH01107642A (en) Manufacture of clock rotor magnet
JPH07161523A (en) Rare earth permanent magnet and its production
JPH0364902A (en) Permanent magnet and manufacture thereof
JPS62264609A (en) Manufacture of cylindrical rare-earth magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0374618A (en) Rod-less cylinder
US4007065A (en) Hysteresis alloy
CN118448121A (en) High-temperature-resistant neodymium-iron-boron magnet and production process thereof
JP2563438B2 (en) Rare earth magnet manufacturing method
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JPS5854602A (en) Manufacture of intermetallic compound magnet
CN113733357A (en) Proportioning structure in recycled concrete processing process
JPS59148302A (en) Manufacture of cylindrical permanent magnet