JPH065642B2 - R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof - Google Patents

R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Info

Publication number
JPH065642B2
JPH065642B2 JP62273905A JP27390587A JPH065642B2 JP H065642 B2 JPH065642 B2 JP H065642B2 JP 62273905 A JP62273905 A JP 62273905A JP 27390587 A JP27390587 A JP 27390587A JP H065642 B2 JPH065642 B2 JP H065642B2
Authority
JP
Japan
Prior art keywords
permanent magnet
radial anisotropic
anisotropic permanent
inner diameter
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62273905A
Other languages
Japanese (ja)
Other versions
JPH01117003A (en
Inventor
元治 清水
伸之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62273905A priority Critical patent/JPH065642B2/en
Publication of JPH01117003A publication Critical patent/JPH01117003A/en
Publication of JPH065642B2 publication Critical patent/JPH065642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類・遷移金属・硼素(以下「R−TM−
B」と略記する。)系ラジアル異方性永久磁石及びその
製造方法に関し、特に円径真円度が良好で、かつ減磁曲
線の角形性Hkが良好なものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to rare earth / transition metal / boron (hereinafter referred to as “R-TM-
It is abbreviated as "B". ) System radial anisotropic permanent magnet and a method for manufacturing the same, and more particularly to a magnetic anisotropy permanent magnet having good circularity and circularity and good squareness Hk of demagnetization curve.

〔従来の技術〕[Conventional technology]

ステッピングモータ,リニアアクチュエータ,磁気カプ
リング等においては、磁化の異方性方向が放射状をな
す、いわゆるラジアル異方性の円筒上永久磁石が多用さ
れている。従来の等方性永久磁石に比べて表面の磁束密
度が高くとることができるからである。従って、ラジア
ル異方性永久磁石は前述の電子機器に対する軽薄短小の
ニーズに応えうるものとして要求が大きい。
In stepping motors, linear actuators, magnetic couplings, etc., so-called radial anisotropic cylindrical permanent magnets whose magnetization anisotropic directions are radial are often used. This is because the magnetic flux density on the surface can be made higher than that of the conventional isotropic permanent magnet. Therefore, the radial anisotropic permanent magnet is greatly demanded as one that can meet the needs of the above-mentioned electronic devices that are light, thin, short and small.

ところで、従来のラジアル異方性永久磁石は、永久磁石
粉を磁場中で成形する方法で行なわれていた。この方法
は、希土類コバルト磁石においては周知であり、新素材
としてのR−TM−B系永久磁石においても、同様な原理
に基づくものの改良方法が提案されていた(特開昭61−
154118,特開昭61−284907号,特開昭62-117305号各号
公報参照)。
By the way, the conventional radial anisotropic permanent magnet has been manufactured by a method of molding permanent magnet powder in a magnetic field. This method is well known for rare earth cobalt magnets, and an improved method has been proposed for the R-TM-B system permanent magnet as a new material, which is based on the same principle (JP-A-61-161).
154118, JP-A-61-284907, JP-A-62-117305).

そして、ラジアル異方性永久磁石は前述の電子機器にお
ける回転子又は固定子として使用される際に、小型化に
よるギャップ寸法の減少傾向に伴ない、円筒内径の真円
度,円筒の真直度等の寸法精度の向上要求も強く、現状
でも真円度0.1mm以下,真直度0.05mm以下のもの
が求められていた。
When the radial anisotropic permanent magnet is used as a rotor or a stator in the above-mentioned electronic equipment, the circularity of the inner diameter of the cylinder, the straightness of the cylinder, etc. are accompanied by the tendency of the gap size to decrease due to miniaturization. There is also a strong demand for improvement in dimensional accuracy, and under the present circumstances, roundness of 0.1 mm or less and straightness of 0.05 mm or less were required.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来の磁場中成形法にのみよる限りでは、焼結
時の割れが発生しやすく、配向度を低くして焼結せざる
を得ないのが現状であった(特開昭62−117305号公
報)。ラジアル配向することにより磁気的な異方性のみ
ならず、機械的な異方性を持つために焼結時の収縮に不
均一が発生するからである。従って前出の公報では配向
度70〜98%に制限していた。事実、本発明者が追試
したところによると、大形のリング異方性永久磁石にお
いては配向度を70%程度まで下げないと焼結時の割れ
不良が激しかった。更に磁気特性、特に減磁曲線におけ
る角形性が悪く、その結果、(BH)maxもその材質の本来
のポテンシャルを充分に引き出せないのが現状であっ
た。
However, as far as the conventional magnetic field molding method is used, cracks are likely to occur during sintering, and it is the current situation that sintering must be performed with a low degree of orientation (JP-A-62-117305). Issue). This is because the radial orientation causes not only magnetic anisotropy but also mechanical anisotropy to cause non-uniformity in shrinkage during sintering. Therefore, in the above publication, the degree of orientation is limited to 70 to 98%. In fact, according to the additional test conducted by the present inventor, in the large-sized ring anisotropic permanent magnet, the cracking failure during sintering was severe unless the orientation degree was lowered to about 70%. In addition, the magnetic properties, particularly the squareness in the demagnetization curve, are poor, and as a result, (BH) max is not able to fully bring out the original potential of the material.

また、製品として組み込む場合の円筒内径の真円度確保
のために焼結後、内面研削工程が必要でありコストアッ
プ要因であった。円筒の真直度については焼結時のソリ
により歩留低下が問題であった。
In addition, an internal grinding step is required after sintering to secure the roundness of the inner diameter of the cylinder when incorporated as a product, which is a factor of cost increase. As for the straightness of the cylinder, there was a problem of yield reduction due to warpage during sintering.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明はR−TM−B系ラジアル異方性永久磁石
において、内径真円度が0.1mm以下、角形性Hkが10
KOe以上であることを特徴とするR−TM−B系ラジアル
異方性永久磁石及び拘束状態特に内径に円柱を挿入した
状態で焼結することを特徴とするR−TM−B系ラジアル
異方性永久磁石の製造方法である。
Therefore, the present invention provides an R-TM-B type radial anisotropic permanent magnet having an inner diameter circularity of 0.1 mm or less and a squareness Hk of 10 or less.
R-TM-B system radial anisotropic anisotropic magnet characterized by having a value of KOe or more and R-TM-B system radial anisotropically characterized by sintering in a constrained state, especially a cylinder inserted in the inner diameter Method for producing a magnetic permanent magnet.

本発明者は、拘束状態で成形体を焼結することによって
ラジアル異方性永久磁石の内径真円度が向上するととも
に減磁曲線の角形性が向上する効果が誘起されることを
見出したものである。
The present inventors have found that sintering a compact in a restrained state induces the effect of improving the circularity of the inner diameter of the radial anisotropic permanent magnet and improving the squareness of the demagnetization curve. Is.

本発明において、内径真円度は、内径の変形量(真円に
対する振れ幅の最大値)で定義する。また角形性Hkは、
永久磁石のヒステリシス曲線の第二象限(減磁曲線)の
曲線の角形の目安を表わすもので、磁束密度Bが残留磁
束密度Brの90%になる時の磁化力Hの値で定義する。
Hkの値が大きいほど角形性が良好であり(BH)maxも大き
い。本発明において拘束状態で焼結したR−TM−B系ラ
ジアル異方性永久磁石において、何故角形性Hkが向上す
るかは定かではないが、正方晶系の金属間化合物Nd2Fe
14BからなるR−TM−B系合金においてはR−Co系合金
(六方晶系)の場合と異なり、拘束により発生する応力
場、特にせん断応力の寄与が良好な磁気特性発現に効果
があるものと推測される。従って、拘束は円筒の内径面
に円柱を挿入することに本発明の効果は限られるもので
はない。
In the present invention, the circularity of the inner diameter is defined by the deformation amount of the inner diameter (the maximum value of the swing width with respect to the perfect circle). The squareness Hk is
This is a guideline for the square shape of the second quadrant (demagnetization curve) of the hysteresis curve of the permanent magnet, and is defined by the value of the magnetizing force H when the magnetic flux density B becomes 90% of the residual magnetic flux density Br.
The larger the value of Hk, the better the squareness and the larger (BH) max. In the present invention, it is not clear why the squareness Hk is improved in the R-TM-B type radial anisotropic permanent magnet sintered in a restrained state, but the tetragonal intermetallic compound Nd 2 Fe is used.
In the R-TM-B alloy consisting of 14 B, unlike the case of the R-Co alloy (hexagonal system), the stress field generated by the constraint, particularly the contribution of shear stress is effective in expressing good magnetic properties. It is supposed to be. Therefore, the effect of the present invention is not limited to the constraint that the cylinder is inserted into the inner diameter surface of the cylinder.

なお、本発明に用いる焼結は、粉末冶金学的な粒子と粒
子間の結合が発生する通常の焼結だけでなく、焼成とも
称される高温状態で塑性加工を付加するもの(特開昭60
-100402号公報参照)であってもよい。要するに拘束状
態で加熱する程度のものであればよい。
Incidentally, the sintering used in the present invention is not only ordinary sintering in which powder metallurgical particles and bonds between particles occur, but also one in which plastic working is added in a high temperature state also referred to as firing (Japanese Patent Application Laid-Open No. S60-12065). 60
-100402 publication)). In short, it suffices that it is heated in a restrained state.

また、本発明に用いる原料粉は、R−TM−B系鋳造合金
を粉砕したもの(例えば特開昭59−46008号公報参照)
であっても、超急冷によるもの(例えば特開昭59−64
739号公報参照)でもよく、あるいは超急冷によるもの
をホットプレス等で圧密化して塑性流れを起こさせて磁
気異方性を付与したもの(特開昭60−100402号公報参
照)を再粉砕したものでよい。
The raw material powder used in the present invention is obtained by crushing an R-TM-B-based casting alloy (see, for example, JP-A-59-46008).
However, even if it is by ultra-quenching (for example, JP-A-59-64)
No. 739), or a material obtained by super-quenching is consolidated by hot pressing or the like to cause a plastic flow and magnetic anisotropy is imparted (see Japanese Patent Laid-Open No. 60-100402). Anything is fine.

更に焼結時に何らかの応力付加を追加することによって
本発明による応力誘起異方性を強調することもできる。
It is also possible to emphasize the stress-induced anisotropy according to the invention by adding some additional stress during sintering.

以下、実施例に基づいて本発明を具体的に例示する。Hereinafter, the present invention will be specifically described based on Examples.

〔実施例〕〔Example〕

(実施例1) Nd0.9Dy0.1(FebalB0.08Nb0.015)5.7なる組成の磁石合金
をアーク溶解で作成し、水冷銅鋳型に鋳造し、スタンプ
ミルで35メッシュ通過の粗粉砕をして、次いでポール
ミルにより3時間微粉砕して平均粒径5μmとした。そ
の粉末を外径28.5×内径20.7×長さ25(mm)の金
型に充填し2230(G)の横磁場(成形方向に対して磁場印
加方向が垂直方向)成形した。成形機は25tonのメカプ
レスを用いた。成形圧力は0.7ton/cm2,磁場強度は10.7
00(Oe)である。
(Example 1) A magnet alloy having a composition of Nd 0.9 Dy 0.1 (FebalB 0.08 Nb 0.015 ) 5.7 was prepared by arc melting, cast in a water-cooled copper mold, coarsely crushed with a stamp mill to pass 35 mesh, and then pole-milled. Were pulverized for 3 hours to obtain an average particle size of 5 μm. The powder was filled in a mold having an outer diameter of 28.5 x an inner diameter of 20.7 x a length of 25 (mm), and was molded by a lateral magnetic field of 2230 (G) (the magnetic field applying direction was perpendicular to the molding direction). A 25 ton mechanical press was used as the molding machine. Molding pressure is 0.7ton / cm 2 , magnetic field strength is 10.7
It is 00 (Oe).

ここで、成形後に直径(d)17.78〜19.80(mm)の13種類
の円柱を挿入したものと、比較例として円柱を挿入しな
い中空のものと作成した。
Here, 13 types of cylinders having a diameter (d) of 17.78 to 19.80 (mm) were inserted after molding, and as a comparative example, hollow cylinders in which no cylinders were inserted were prepared.

得られた成形体を1050℃で2時間、前記円柱を挿入した
ままで焼結した。焼結体を900℃×2時間及び600
℃×1時間の二段熱処理を施した。
The obtained molded body was sintered at 1050 ° C. for 2 hours with the cylinder inserted. Sintered body at 900 ℃ for 2 hours and 600
A two-step heat treatment was performed at ℃ × 1 hour.

円柱を挿入しないで焼結したものの内径Dは17.6mmであ
り、挿入円柱直径dとの比d/Dと、得られた永久磁石の
磁気特性の関係を第1図に示す。ここで記号M//は異方
性方向に平行方向における磁気特性,記号M⊥は異方性
方向に垂直方向における磁気特性を示す。
The inner diameter D of the sintered product without inserting the cylinder was 17.6 mm, and the relationship between the ratio d / D of the diameter of the inserted cylinder d and the magnetic characteristics of the obtained permanent magnet is shown in FIG. Here, the symbol M // indicates the magnetic characteristic in the direction parallel to the anisotropic direction, and the symbol M⊥ indicates the magnetic characteristic in the direction perpendicular to the anisotropic direction.

第1図から直径d/Dが1.055〜1.125までの範囲で角形性H
kが10KOe以上になることがわかる。また(BH)maxも
17MGOe以上に向上しており、d/D=1.08ではHkが11.6K
Oe,(BH)maxが18.6MGOeと各々、従来の何ら拘束なしに
焼結した場合が7.8(KOe),16.6(MGOe)とHkで1.48倍,(B
H)maxで1.12倍と増大することは驚くべき効果である。
From Fig. 1, squareness H in the range of diameter d / D from 1.055 to 1.125
It can be seen that k becomes 10 K Oe or more. Also, (BH) max has improved to over 17MGOe and Hk is 11.6K at d / D = 1.08.
Oe and (BH) max are 18.6MGOe and 7.8 (KOe), 16.6 (MGOe) and 1.48 times in Hk, respectively, when sintered without any conventional constraint.
An increase of 1.12 times in (H) max is a surprising effect.

また内径真円度は第1表に示す通り、比較例が0.095(m
m)であるのに対して、0.06(mm)程度まで低減できた。な
おサンプル数は各直径比に対して10ケであり、その平
均値を示す。
Also, as shown in Table 1, the circularity of the inner diameter is 0.095 (m
m), but could be reduced to about 0.06 (mm). The number of samples is 10 for each diameter ratio, and the average value is shown.

第1表から、内径に円柱を挿入して拘束すると、角形性
Hk及び(BH)maxの好ましい範囲にすると若干内径真円度
は悪化する傾向はあるが、それでも従来の焼結法による
ものよりも優れていることがわかる。
From Table 1, when a cylinder is inserted into the inner diameter and restrained,
It can be seen that when the preferable ranges of Hk and (BH) max are set, the circularity of the inner diameter slightly deteriorates, but the circularity is still superior to that obtained by the conventional sintering method.

なお、本発明によって得られたものの配向度は約94%
であり、割れは見られなかった。
The orientation degree of the product obtained by the present invention is about 94%.
No cracks were found.

(実施例2) 実施例1と同様にして、配向度のみを変えた場合の角形
性Hkの値及び割れの有無を確認した。なお、この場合、
挿入する円柱の直径比は1.08に選んだ。この結果から本
発明においては配向度の高い状態で十分割れなく角形性
の良好(10KOe以上)なラジアル異方性永久磁石が得ら
れることがわかる。
(Example 2) In the same manner as in Example 1, the squareness Hk value and the presence or absence of cracks when only the degree of orientation was changed were confirmed. In this case,
The diameter ratio of the inserted cylinder was selected to be 1.08. From this result, it can be seen that in the present invention, a radial anisotropic permanent magnet having good squareness (10 KOe or more) can be obtained without sufficient cracking in a state of high orientation.

〔発明の効果〕 本発明によれば、従来予想しなかった角形性の向上効果
があり、高磁気エネルギ積を持ったラジアル異方性永久
磁石の量産が可能であり、しかも円筒の内径真円度も内
面研削することなしに良好なものが得られる。
[Advantages of the Invention] According to the present invention, it is possible to mass-produce radial anisotropic permanent magnets having a high magnetic energy product, which has an unexpected effect of improving squareness, and it is possible to produce a circular cylinder with a perfect inner diameter. A good product can be obtained without grinding the inner surface.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるラジアル異方性永久
磁石の円筒内径Dに対する挿入円柱直径dの比、d/Dに
対する角形性Hk及び最大磁気エネルギ積(BH)maxの関係
を示す図である。
FIG. 1 is a diagram showing the relationship between the ratio of the inserted cylinder diameter d to the cylinder inner diameter D of the radial anisotropic permanent magnet in one embodiment of the present invention, the squareness Hk to d / D, and the maximum magnetic energy product (BH) max. Is.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】組成が希土類(R),遷移金属(TM),硼素(B)
からなる円筒形状をしたラジアル異方性永久磁石におい
て、内径真円度が0.085mm以下、角形性Hkが10K
Oe以上であることを特徴とするR−TM−B系ラジアル異
方性永久磁石。
1. A composition of rare earth (R), transition metal (TM), boron (B)
In a cylindrical radial anisotropic permanent magnet consisting of, the inner diameter roundness is 0.085 mm or less, and the squareness Hk is 10K.
An R-TM-B system radial anisotropic permanent magnet characterized by being Oe or more.
【請求項2】拘束状態で焼結することを特徴とするR−
TM−B系ラジアル異方性永久磁石の製造方法。
2. R-characterized by sintering in a restrained state
Method for manufacturing TM-B type radial anisotropic permanent magnet.
【請求項3】前記拘束を内径に円柱を挿入した状態で行
なうことを特徴とする特許請求の範囲第2項に記載のR
−TM−B系ラジアル異方性永久磁石の製造方法。
3. The R according to claim 2, wherein the restraint is performed with a cylinder inserted in the inner diameter.
A method for manufacturing a TM-B type radial anisotropic permanent magnet.
【請求項4】前記円柱直径dと前記円筒形状の内径Dと
の比d/Dが1.01〜1.125であることを特徴とす
る特許請求の範囲第3項に記載のR−TM−B系ラジアル
異方性永久磁石の製造方法。
4. The R-TM according to claim 3, wherein a ratio d / D of the cylindrical diameter d and the cylindrical inner diameter D is 1.01 to 1.125. -A method for producing a B-based radial anisotropic permanent magnet.
JP62273905A 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof Expired - Lifetime JPH065642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273905A JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273905A JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01117003A JPH01117003A (en) 1989-05-09
JPH065642B2 true JPH065642B2 (en) 1994-01-19

Family

ID=17534207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273905A Expired - Lifetime JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH065642B2 (en)

Also Published As

Publication number Publication date
JPH01117003A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
CN1881754B (en) Motor
EP1995854B1 (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
EP1308970B1 (en) Radial anisotropic sintered magnet production method
JP6419812B2 (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
JP6419813B2 (en) Anisotropic composite sintered magnet containing manganese bismuth and its atmospheric pressure sintering method
JP2007180368A (en) Method for manufacturing magnetic circuit part
EP2226814B1 (en) Rare-earth iron-based magnet with self-recoverability
JP2004296874A (en) Hybrid rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP4320710B2 (en) Polar anisotropic ring magnet and molding die
JPH065642B2 (en) R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof
JP2004296875A (en) Process for producing flexible hybrid rare earth bonded magnet, magnet and motor
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2746111B2 (en) Alloy for permanent magnet
JPH0777178B2 (en) Method for manufacturing R-TM-B type radial anisotropic magnet
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
KR970009409B1 (en) Permanent magnet material processing method
JPH027403A (en) Magnetic-anisotropy magnet and its manufacture
JPS63286515A (en) Manufacture of permanent magnet
JP4622767B2 (en) Manufacturing method of radial magnetic anisotropic multipole magnet
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14