JPH01117003A - R-tm-b system radical an isotropic permanent magnet and its manufacture - Google Patents

R-tm-b system radical an isotropic permanent magnet and its manufacture

Info

Publication number
JPH01117003A
JPH01117003A JP62273905A JP27390587A JPH01117003A JP H01117003 A JPH01117003 A JP H01117003A JP 62273905 A JP62273905 A JP 62273905A JP 27390587 A JP27390587 A JP 27390587A JP H01117003 A JPH01117003 A JP H01117003A
Authority
JP
Japan
Prior art keywords
permanent magnet
inner diameter
quality
angular
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62273905A
Other languages
Japanese (ja)
Other versions
JPH065642B2 (en
Inventor
Motoharu Shimizu
元治 清水
Nobuyuki Hirai
伸之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62273905A priority Critical patent/JPH065642B2/en
Publication of JPH01117003A publication Critical patent/JPH01117003A/en
Publication of JPH065642B2 publication Critical patent/JPH065642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve angluar quality which is not expected in conventional arts, and enable the mass production of anisotropic permanent magnet, by setting inner diameter roundness and angluar quality at the respective specified values. CONSTITUTION:An isotropic permanent magnet of cylindrical shape whose composition is rare earth(R), transition metal(TM) and boron(B) is formed. On that occasion, the inner radius roundess is set equal to or less than 0.085mm, and the angular quality is set larger than or equal to 10kOe. The inner diameter roundness is defined by the deformation quantity of inner diameter (maximum value of deviation with respect to an ideal circle). The angular quality is defined by the value of magnetization force when magnetic flux density becomes 90% of the residual magnetic flux density. Thereby, improving the angular quality which is not expected in conventional arts, and enabling mass production of an isotropic permanent magnet.

Description

【発明の詳細な説明】 〔芦業上の利用分野〕 本発明は、希土類・遷移金属・硼素(以下「R−TM−
BJと略記する。)系ラジアル異方性永久磁石及びその
製造方法に関し、特に円径真円度が良好で、かつ減磁曲
線の角形性泳が良好なものに関する。
[Detailed description of the invention] [Field of application in the reed industry] The present invention is directed to rare earths, transition metals, boron (hereinafter referred to as “R-TM-
It is abbreviated as BJ. ) type radially anisotropic permanent magnet and its manufacturing method, and particularly relates to one having good circularity and good squareness of the demagnetization curve.

〔従来の技術〕[Conventional technology]

ステッピングモータ、リニアアクチュエータ。 Stepping motor, linear actuator.

磁気カッリング等においては、磁化の異方性方向が放射
状をなす、いわゆるラジアル異方性の円筒状永久磁石が
多用されている。従来の等方性永久磁石に比べて表向の
磁束密度が高くとることができるからである。従って、
ラジアル異方性永久磁石は前述の電子機儀に対する軽薄
短小のニーズに応えうるものとして要求が大きい。
In magnetic coupling and the like, cylindrical permanent magnets with so-called radial anisotropy, in which the anisotropic direction of magnetization is radial, are often used. This is because the surface magnetic flux density can be higher than that of conventional isotropic permanent magnets. Therefore,
Radial anisotropic permanent magnets are in high demand as they can meet the above-mentioned needs for light, thin, short and small electronic instruments.

ところで、従来のラジアル異方性永久磁石は、永久磁石
粉を磁場中で成形する方法で行なわれていた。この方法
は、希土類コバルト磁石においては周知であシ、新素材
としてのR−TM−B系永久磁石においても、同様な原
理に基づくものの改良方法が提案されていた(特開昭6
1−154118 。
By the way, conventional radially anisotropic permanent magnets have been produced by molding permanent magnet powder in a magnetic field. This method is well known for rare earth cobalt magnets, and an improved method based on the same principle was proposed for R-TM-B permanent magnets as a new material (Japanese Unexamined Patent Publication No. 6
1-154118.

特開昭61−284907号、特開昭62−11730
5号各号公報参照)。
JP-A-61-284907, JP-A-62-11730
(Refer to each bulletin No. 5).

そして、ラジアル異方性永久磁石は前述の電子機器にお
ける回転子又は固定子として使用される際に、小型化に
よるギャップ寸法の減少傾向に伴ない、円筒内径の真円
度1円筒の真直夏等の寸法精度の向上要求も強く、現状
でも真円*0.1tm以下、真直度0.05W以下のも
d/Dが求められていた。
When radial anisotropic permanent magnets are used as rotors or stators in the above-mentioned electronic equipment, due to the trend of decreasing gap dimensions due to miniaturization, the roundness of the inner diameter of the cylinder is 1. There is also a strong demand for improved dimensional accuracy, and even at present there is a demand for a perfect circle*0.1 tm or less and a straightness d/D of 0.05 W or less.

〔発明が解法しようとする問題点〕[Problem that the invention attempts to solve]

しかし、従来の磁場中成形法にのみよる限シでは、焼結
時の割れが発生しやすく、配向度を低くして焼結せざる
を得ないd/Dが現状であった(特開昭62−1173
05号公報)0ラジアル配向することによシ磁気的な異
方性のみならず、機械的な異方性も持つために焼結時の
収縮に不均一が発生するからである。従って前出の公報
では配向度70〜98チに制限していた。事実、本発明
者が追試したところによると、大形のリング異方性永久
磁石においては配向度を70%程度まで下けないと焼結
時の割れ不良が激しかった。更に磁気特性、特に減磁曲
線における角形性が悪く、その結果、(BH)maxも
その材質の本来のポテンシャルを充分に引き出せないd
/Dが現状であった。
However, in the limited molding method based only on the conventional magnetic field forming method, cracks tend to occur during sintering, and the current d/D method requires sintering with a low degree of orientation. 62-1173
This is because the radial orientation provides not only magnetic anisotropy but also mechanical anisotropy, which causes non-uniform shrinkage during sintering. Therefore, in the above-mentioned publication, the degree of orientation was limited to 70 to 98 degrees. In fact, according to additional tests conducted by the present inventor, cracking failure during sintering was severe in large ring anisotropic permanent magnets unless the degree of orientation was lowered to about 70%. Furthermore, the magnetic properties, especially the squareness of the demagnetization curve, are poor, and as a result, (BH)max cannot fully bring out the original potential of the material.
/D was the current situation.

また、製品として組み込む場合の円筒内径の真円度確保
のために焼結後、内面研削工程が必要でめ9コストアツ
プ要因であった。円筒の真直度については焼結時のソリ
により歩留低下が問題であった。
Furthermore, in order to ensure the roundness of the inner diameter of the cylinder when it is assembled into a product, an internal grinding process is required after sintering, which is a major factor in increasing costs. Concerning the straightness of the cylinder, there was a problem with warpage during sintering, which caused a decrease in yield.

〔問題点を暦法するだめの手段〕[Means to calendar problems]

そこで、本発明はR−TM−B系うジアル異方性永久磁
石において、内径真円度が0.1m以下、角形性Hkが
10kOe以上であることを特徴とするR−TM−B系
うジアル異方性永久磁石及び拘束状態、特に内径に円柱
を挿入した状態で焼結することを特徴とするR−TM−
B系うジアル異方性永久磁石の製造方法である。
Therefore, the present invention provides an R-TM-B radial anisotropic permanent magnet, which has an inner diameter roundness of 0.1 m or less and a squareness Hk of 10 kOe or more. R-TM-, which is characterized by a dial anisotropic permanent magnet and sintering in a restrained state, especially with a cylinder inserted in the inner diameter
This is a method for manufacturing a B-based radial anisotropic permanent magnet.

本発明者は、拘束状態で成形体を焼結することによって
ラジアル異方性永久磁石の内径真円度が向上するととも
に減磁曲線の角形性が向上する効果が誘起されることを
見出したものである。
The present inventor has discovered that by sintering a molded body in a restrained state, the inner diameter roundness of the radially anisotropic permanent magnet is improved and the squareness of the demagnetization curve is improved. It is.

本発明において、内径真円度は、内径の変形量(真円に
対する振れ幅の最大値)で定義する。また角形性Hkは
、永久磁石のヒステリシス曲線の第二象限(減磁曲線)
の曲線の角形の目安を表わすもので、磁束密度Bが残留
磁束密度Brの90%になる時の磁化力Hの値で定義す
る。泳の値が大きいはど角形性が良好で;h l) (
BH)maxも大きい。本発明において拘束状態で焼結
したR−TM−B糸うジアル異方性永久磁石において、
伺故角形性地が向上するかは定かではないが、正方晶系
の金属間化合物Nd 2 Fe 14 BからなるR−
TM−B系合金においてはR−Co系合金(六方晶系)
の場合と異なシ、拘束により発生する応力場、特にせん
断応力の寄与が良好な磁気特性発現に効果があるものと
推測される。従って、拘束は円筒の内径面に円柱を挿入
することに本発明の効果は限られるものではない0 なお、本発明に用いる焼結は、粉末冶金学的な粒子と粒
子間の結合が発生する通常の焼結だけでなく、焼成とも
称される高温状態で塑性加工を付加するもの(特開昭6
0−100402号公報参照)であってもよい。要する
に拘束状態で加熱する程度のものであれはよい。
In the present invention, the inner diameter roundness is defined by the amount of deformation of the inner diameter (the maximum value of the deviation with respect to a perfect circle). In addition, the squareness Hk is the second quadrant (demagnetization curve) of the hysteresis curve of the permanent magnet.
It is defined as the value of the magnetizing force H when the magnetic flux density B becomes 90% of the residual magnetic flux density Br. A large swim value indicates good squareness; h l) (
BH) max is also large. In the R-TM-B filamentary anisotropic permanent magnet sintered in a restrained state in the present invention,
Although it is not certain whether or not the squareness will be improved, R-
In TM-B alloy, R-Co alloy (hexagonal system)
It is assumed that the stress field generated by restraint, especially the contribution of shear stress, is effective in developing good magnetic properties, which is different from the case of . Therefore, the effect of the present invention is not limited to the constraint of inserting a cylinder into the inner diameter surface of the cylinder. Note that the sintering used in the present invention generates bonding between particles using powder metallurgy. In addition to normal sintering, plastic working is also performed under high temperature conditions, also known as sintering (Japanese Unexamined Patent Publication No. 6
0-100402). In short, it is fine as long as it can be heated while being restrained.

また、本発明に用いる原料粉は、R−TM−B系鋳造合
金を粉砕したもの(例えは特開昭59−46008号公
報参照)であっても、超急冷によるもの(例えば特開1
1859−64739号公報径照)でもよく、あるいは
超急冷によるものをホットプレス等で圧密化して塑性流
れを起こさせて磁気異方性全付与したもの(%開昭60
−100402号公報参照)を再粉砕したものでよい。
Further, the raw material powder used in the present invention may be one obtained by pulverizing an R-TM-B casting alloy (see, for example, JP-A No. 59-46008), or one obtained by ultra-quenching (for example, JP-A-59-46008).
1859-64739), or a material obtained by ultra-quenching and consolidated by hot pressing etc. to cause plastic flow and completely impart magnetic anisotropy (% Kaisho 60
-100402)) may be re-pulverized.

史に焼結時に何らかの応力付加を追加することによって
本発明による応力誘起異方性を強調することもできる。
The stress-induced anisotropy according to the present invention can also be emphasized by adding some stress during sintering.

以下、実施例に基づいて本発明を具体的に例示する。The present invention will be specifically illustrated below based on Examples.

〔実施例〕〔Example〕

(実施例1) Ndo、* Dyo、+ (FebILtBo、os 
Nbo、oss )5.7  なる組成の磁石合金をア
ーク溶解で作成し、水冷鋼@型に鋳造し、スタンプミル
で65メツシュ通過の粗粉砕をして、次いでボールミル
によシロ時間微粉砕して平均粒径5μmとした。その粉
末を外径28.5 X内径20.7X長さ25 (−)
の金型に充填し2230(G)の横磁場(成形方向に対
して磁場印加方向が垂直方向)成形した。成形後は25
tonのメカプレスを用いた。成形圧力は0.7 to
’7 、磁場強度は10.700(Oe)である。
(Example 1) Ndo, *Dyo, + (FebILtBo, os
Nbo, oss ) 5.7 A magnetic alloy with a composition of The average particle size was 5 μm. The powder is 28.5 in outer diameter x 20.7 in inner diameter x 25 in length (-)
The mixture was filled into a mold and molded in a transverse magnetic field of 2230 (G) (the direction of magnetic field application is perpendicular to the molding direction). 25 after molding
A ton mechanical press was used. Molding pressure is 0.7 to
'7, the magnetic field strength is 10.700 (Oe).

ここで、成形後に直径(d)17.78〜19.80k
)の16種類の円柱を挿入したものと、比較例として円
柱を挿入しない中空のものとを作成した。
Here, after molding, the diameter (d) is 17.78 to 19.80k.
) in which 16 types of cylinders were inserted, and as a comparative example, hollow ones without any cylinders were created.

得られた成形体を1050℃で2時間、前記円柱を挿入
した′1まで焼結した。焼結体を900℃×2時間及び
600℃×1時間の二段熱処理を施した0 円柱を挿入しないで焼結したものの内径りは17.6−
であシ、挿入円柱直径dとの比d/Dと、得られた永久
磁石の磁気特性の関係を第1図に示す。ここで記号M/
は異方性方向に平行方向における磁気特性、記号M工は
異方性方向に垂直方向における磁気特性を示す。
The obtained molded body was sintered at 1050° C. for 2 hours to a point '1' where the cylinder was inserted. The sintered body was subjected to two-step heat treatment at 900℃ x 2 hours and 600℃ x 1 hour.The inner diameter of the sintered body was 17.6-
The relationship between the ratio d/D to the inserted cylinder diameter d and the magnetic properties of the obtained permanent magnet is shown in FIG. Here symbol M/
The symbol M indicates the magnetic property in the direction parallel to the anisotropy direction, and the symbol M indicates the magnetic property in the direction perpendicular to the anisotropy direction.

第1図から直径d/Dが1.055〜1.125までの
範囲で角形性Hkが10kOe以上になることがわかる
。また(BH)maxも17MGOe以上に向上してお
シ、d/D = 1 、08ではHkが11.6kOe
 、 (BH)rrljLXが18.6MGOe と各
々、従来の何ら拘束なしに焼結した場合が7.8 (k
Oe ) 、 16.6 (MGOe )とHkで1.
48倍+ (B H)maxで1.12倍と増大するこ
とは篤くべき効果である。
It can be seen from FIG. 1 that the squareness Hk becomes 10 kOe or more when the diameter d/D ranges from 1.055 to 1.125. Also, (BH)max has improved to more than 17MGOe, and when d/D = 1, Hk is 11.6kOe in 08.
, (BH)rrljLX is 18.6MGOe, and the case of sintering without any conventional restraint is 7.8 (k
Oe), 16.6 (MGOe) and 1.
The increase of 48 times + (B H)max by 1.12 times is a significant effect.

また内径真円板は第1表に示す通り、比較例が0.09
5(、、)であるのに対して、0.06 (簡)程度ま
で低減できた。なおサンプル数は各直径比に対して10
ケでアシ、その平均値を示す0 .7 、 第  1   表 *直径比Q■=0とは、従来の中空状態で焼結する場合
を示す0 第1表から、内径に円柱を挿入して拘束すると、角形性
Hk及び(B H)maxの好ましい範囲にすると若干
内径真円度は悪化する傾向はあるが、それでも従来の焼
結法によるものよりも優れていることがわかる。
In addition, as shown in Table 1, the inner diameter of the circular plate is 0.09 in the comparative example.
5 (,,), but it was reduced to about 0.06 (simplified). The number of samples is 10 for each diameter ratio.
The average value is 0. 7, Table 1 * Diameter ratio Q = 0 indicates the case of sintering in the conventional hollow state 0 From Table 1, when a cylinder is inserted into the inner diameter and restrained, the squareness Hk and (B H) Although the inner diameter roundness tends to deteriorate slightly when max is set within the preferred range, it is still found to be superior to that obtained by the conventional sintering method.

なお、本発明によって得られたものの配向度は約94チ
であシ、割れは見られなかった。
The degree of orientation of the product obtained according to the present invention was approximately 94 degrees, and no cracks were observed.

(実施例2) 実施例1と同様にして、配向度のみを変えた場合の角形
性HkO値及び割れの有無を確認した0な、8 。
(Example 2) In the same manner as in Example 1, the squareness HkO value and the presence or absence of cracks were confirmed when only the degree of orientation was changed.

、お、この場合、挿入する円柱の直径比は1.08に選
んだ。この結果から本発明においては配向度の高い状態
で十分割れなく角形性の良好(10kOe以上)なラジ
アル異方性永久磁石が得られることがわかる。
In this case, the diameter ratio of the inserted cylinder was selected to be 1.08. This result shows that in the present invention, a radially anisotropic permanent magnet with a high degree of orientation, sufficiently free from cracking, and good squareness (10 kOe or more) can be obtained.

第2表 〔発明の効果〕 本発明によれは、従来予想しなかった角形性の向上効果
があシ、高磁気エネにギ積を持ったラジアル異方性永久
磁石の量産が可能でオシ、シかも円筒の内径真円度も内
面研削することなしに良好なもd/Dが得られる。
Table 2 [Effects of the Invention] According to the present invention, there is an effect of improving squareness that was not previously expected, and it is possible to mass-produce radially anisotropic permanent magnets with high magnetic energy and capacity. Furthermore, good d/D can be obtained without internally grinding the inner diameter of the cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (4)

【特許請求の範囲】[Claims] 1.組成が希土類(R),遷移金属(TM),硼素(B
)からなる円筒形状をしたラジアル異方性永久磁石にお
いて、内径真円度が0.085mm以下、角形性Hkが
10kOe以上であることを特徴とするR−TM−B系
ラジアル異方性永久磁石。
1. The composition is rare earth (R), transition metal (TM), boron (B)
), the R-TM-B radial anisotropic permanent magnet is characterized by having an inner diameter circularity of 0.085 mm or less and a squareness Hk of 10 kOe or more. .
2.拘束状態で焼結することを特徴とするR−TM−B
系ラジアル異方性永久磁石の製造方法。
2. R-TM-B characterized by sintering in a restrained state
A method for producing a permanent magnet with radial anisotropy.
3.前記拘束を内径に円柱を挿入した状態で行なうこと
を特徴とする特許請求の範囲第2項に記載のR−TM−
B系ラジアル異方性永久磁石の製造方法。
3. R-TM- according to claim 2, wherein the restraint is performed with a cylinder inserted into the inner diameter.
A method for manufacturing a B-based radial anisotropic permanent magnet.
4.前記円柱直径dと前記円筒形状の内径Dとの比d/
Dが1.01〜1.125であることを特徴とする特許
請求の範囲第6項に記載のR−TM−B系ラジアル異方
性永久磁石の製造方法。
4. The ratio d/ of the cylinder diameter d and the inner diameter D of the cylindrical shape
7. The method for manufacturing an R-TM-B radially anisotropic permanent magnet according to claim 6, wherein D is 1.01 to 1.125.
JP62273905A 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof Expired - Lifetime JPH065642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273905A JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273905A JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01117003A true JPH01117003A (en) 1989-05-09
JPH065642B2 JPH065642B2 (en) 1994-01-19

Family

ID=17534207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273905A Expired - Lifetime JPH065642B2 (en) 1987-10-29 1987-10-29 R-TM-B system radial anisotropic permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH065642B2 (en)

Also Published As

Publication number Publication date
JPH065642B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JPS59211549A (en) Adhered rare earth element-iron magnet
JP2007180368A (en) Method for manufacturing magnetic circuit part
WO2011125900A1 (en) Sintered magnet and method for manufacturing sintered magnet
JP2010199448A (en) Self-repair nature rare earth-iron system magnet
JP4735716B2 (en) Permanent magnet rotor and motor using the same
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
JPH01117003A (en) R-tm-b system radical an isotropic permanent magnet and its manufacture
JPS62196057A (en) Permanent magnet-type motor
JP2568615B2 (en) Method for manufacturing resin magnet structure
JPH0559572B2 (en)
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH0777178B2 (en) Method for manufacturing R-TM-B type radial anisotropic magnet
JP2005344142A (en) Method for producing radial anisotropic ring magnet
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit
JP2001185412A (en) Anisotropic bonded magnet
KR100446453B1 (en) FABRICATION METHOD OF ANISOTROPIC NdFeB PERMANENT MAGNET
KR970009409B1 (en) Permanent magnet material processing method
JPS59148302A (en) Manufacture of cylindrical permanent magnet
JPS6351991B2 (en)
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
CN115244636A (en) Compressed bond magnet, method for producing same, and magnetic field element
JPH027403A (en) Magnetic-anisotropy magnet and its manufacture
JP2001006913A (en) Rotor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 14