JPH01320433A - Linear encoder - Google Patents

Linear encoder

Info

Publication number
JPH01320433A
JPH01320433A JP15414988A JP15414988A JPH01320433A JP H01320433 A JPH01320433 A JP H01320433A JP 15414988 A JP15414988 A JP 15414988A JP 15414988 A JP15414988 A JP 15414988A JP H01320433 A JPH01320433 A JP H01320433A
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
magnet
linear encoder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15414988A
Other languages
Japanese (ja)
Inventor
Michio Yanagisawa
通雄 柳澤
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Kenichi Endo
健一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15414988A priority Critical patent/JPH01320433A/en
Publication of JPH01320433A publication Critical patent/JPH01320433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve the detecting accuracy of the title encoder by using a plate-shaped permanent magnet which is composed principally of specific elements and multipolarly magnetized and magnetic sensors confronted by the magnet. CONSTITUTION:This linear encoder for measuring displacement is constituted of a multipolarly magnetized plate-shaped permanent magnet 101 and magnetic sensors 102 which detect the magnetic field of the magnet 101. The permanent magnet 101 is composed principally of R (at least one kind of rate earth elements including Y), M (at least one kind of transition metals), and X (at least one kind of IIIb group elements) which are used as the basic component alloy, melting and casting an alloy of fundamental components for improving the magnetic characteristics at need, condensing the magnetic phase of the magnet by removing the R-rich liquid phase which is a nonmagnetic substance from the principal components by heat-working the cast ingot so that the magnetic anisotropy and mechanical orientational property is applied. Therefore, the detecting accuracy of this linear encoder is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多極着磁を施した永久磁石を用いて、直線変
位の検出を行なう、リニアエンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a linear encoder that detects linear displacement using a multi-pole magnetized permanent magnet.

[従来の技術] 一般にリニアエンコーダの構造は、第1図に断面図を示
す本発明のリニアエンコーダと同様に、平板状の永久磁
石101の面に多極着磁を施し、複数個の磁気センサ(
ホール素子、MR素子等)102で磁界の変化を検出す
ることによって直線変位の測定を行なっている。
[Prior Art] Generally, the structure of a linear encoder is similar to the linear encoder of the present invention whose cross-sectional view is shown in FIG. (
The linear displacement is measured by detecting changes in the magnetic field with a Hall element, MR element, etc. 102.

従来リニアエンコーダには、永久磁石としてフェライト
磁石が用いられることが多かった。
Conventionally, ferrite magnets have often been used as permanent magnets in linear encoders.

[発明が解決しようとする課題] しかし、フェライト磁石を使用した従来のリニアエンコ
ーダは以下に記す欠点を有する(1)フェライト磁石は
、残留磁束密度Brが小さいため、検出に必要な磁界が
得られにくく、分解能、精度に大きな制約があった。
[Problems to be Solved by the Invention] However, conventional linear encoders using ferrite magnets have the following drawbacks: (1) Since ferrite magnets have a small residual magnetic flux density Br, the magnetic field necessary for detection cannot be obtained. There were major limitations in resolution and accuracy.

(2)焼結のフェライト磁石は割れ易く、リニアエンコ
ーダ組立時のハンドリングに注意を要した。
(2) Sintered ferrite magnets are easily broken, requiring careful handling when assembling the linear encoder.

また、リニアエンコーダ使用時にも取扱に注意しないと
磁石の破損が生じる可能性が有った。
Furthermore, when using a linear encoder, there is a possibility that the magnet may be damaged if care is not taken when handling it.

(3)樹脂結合型フェライト磁石、ゴムフェライト磁石
等の焼結磁石以外のフェライト磁石は、破損しにくいが
、磁気特性が焼結のフェライト磁石よりも劣り、温度変
化による特性変化、機械的変形等の問題点が多く、高精
度のリニアエンコーダには適用されていない。
(3) Ferrite magnets other than sintered magnets, such as resin-bonded ferrite magnets and rubber ferrite magnets, are less likely to break, but their magnetic properties are inferior to sintered ferrite magnets, resulting in changes in properties due to temperature changes, mechanical deformation, etc. There are many problems with this method, and it has not been applied to high-precision linear encoders.

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、リニアエンコーダにR−M−
X (Rは、Yを含む希土類元素のうち少なくとも1種
、Mは遷移金属のうち少なくとも1種、XはIII b
族元素のうち少なくとも1種)鋳造磁石を用いることに
よって、従来フェライト磁石を用いた場合に生じた問題
点を避け、高精度で壊れにくいリニアエンコーダを低価
格で提供するところにある。
Therefore, the present invention aims to solve these problems.
The purpose is to add R-M- to the linear encoder.
X (R is at least one rare earth element including Y, M is at least one transition metal, X is III b
By using a cast magnet (at least one of the group elements), the problems that conventionally occurred when using ferrite magnets are avoided, and a highly accurate and unbreakable linear encoder can be provided at a low price.

[課題を解決するための手段] 本発明のリニアエンコーダは、永久磁石に多極着磁を施
して、磁気センサによって前記永久磁石の磁界を検出し
、変位測定をするリニアエンコーダにおいて、 (a) R(ただしRはYを含む希土類元素のうち少な
くとも1種)、M(ただし遷移金属のうち少なくとも1
種)およびX(ただしIII b族元素のうち少なくと
も1種)を原料基本成分とし、必要に応じて、磁気特性
を向上させる処理として該基本成分とする合金を消解・
鋳造し、ついで鋳造インゴットを熱間加工し、前記基本
成分から非磁性物であるR−リッチ相の液相を排除する
ことにより磁性相を滴縮し、磁気異方性および機械的配
向性を付与した、多極着磁が施された平板状の永久磁石
。該永久磁石に対向して設置された磁気センサから構成
されることを特徴とする。
[Means for Solving the Problems] The linear encoder of the present invention is a linear encoder in which a permanent magnet is magnetized with multiple poles, a magnetic sensor detects the magnetic field of the permanent magnet, and a displacement is measured.(a) R (however, R is at least one kind of rare earth elements including Y), M (however, at least one kind of transition metals)
Species) and
casting, and then hot working the cast ingot to drop the magnetic phase by excluding the liquid phase of the non-magnetic R-rich phase from the basic components, thereby improving the magnetic anisotropy and mechanical orientation. A flat permanent magnet with multi-polar magnetization. It is characterized by comprising a magnetic sensor installed opposite to the permanent magnet.

[実施例] 第1表に、本発明に係るリニアエンコーダに使用した永
久磁石の合金組成を示す。
[Example] Table 1 shows the alloy composition of the permanent magnet used in the linear encoder according to the present invention.

第1表 第1表に示す2種類の組成で希土類金属(P、)、遷移
金属(F、)、ボロン(B)及び銅(C,)を秤1し、
誘導加熱炉で消解した後に鋳造して得た磁石の磁気特性
を第2表に示す、参考までに記すと、フェライト磁石で
は、一般に(B H) 、、=: 5程度が上限である
。また、アルニコ磁石では、iH、=22種が上限であ
る。
Table 1 Weigh rare earth metals (P,), transition metals (F,), boron (B) and copper (C,) in the two compositions shown in Table 1,
The magnetic properties of magnets obtained by casting after being melted in an induction heating furnace are shown in Table 2.For reference, the upper limit for ferrite magnets is generally about (B H) , =: 5. Further, for alnico magnets, the upper limit is iH=22 types.

上記の、R−M−Xu造磁石を磁気回路に用いたリニア
エンコーダは、磁石の優れた磁気特性によって、着磁ピ
ッチを非常に細かくしても十分な磁界が得られ、そのた
め従来のものに比べ、きわめて高分解能にすることが出
来る。尚、本R−M−X鋳造磁石は、鋳造後に適当な熱
間圧密処理、熱処理を施すことによって更に磁気特性の
向上が期待できるもので、第2図にその工程を示す。
The above-mentioned linear encoder that uses the RM-Xu magnet in its magnetic circuit can obtain a sufficient magnetic field even if the magnetization pitch is extremely fine due to the excellent magnetic properties of the magnet, and therefore it is better than the conventional one. In comparison, it is possible to achieve extremely high resolution. The present R-M-X cast magnet can be expected to further improve its magnetic properties by subjecting it to appropriate hot consolidation and heat treatment after casting, and the process is shown in FIG.

第2表 熱間加工の例として、ホットプレス加工の例を第3図に
、熱間圧延加工の例を第4図に示す、第3図において、
301は磁石合金、302は磁化容易方向、303はス
タンプ、304は基板を示す。
Table 2 As an example of hot working, an example of hot pressing is shown in FIG. 3, and an example of hot rolling is shown in FIG. 4. In FIG.
301 is a magnet alloy, 302 is an easy magnetization direction, 303 is a stamp, and 304 is a substrate.

本実施例においては1000℃でホットプレス加工を施
し、磁石の配向処理を行なった。加工時は、極力歪速度
が小さくなるようにスタンプ3の速度を調整した。その
結果、加工後の磁化容易方向は、加圧された方向に平行
となった。つぎに第4図のように熱間圧延を行なった。
In this example, hot pressing was performed at 1000° C. to orient the magnets. During processing, the speed of the stamp 3 was adjusted so that the strain rate was as low as possible. As a result, the direction of easy magnetization after processing was parallel to the direction in which pressure was applied. Next, hot rolling was performed as shown in FIG.

このときも歪速度が極力小さくなるようにロール401
の速度を調整した。その結果加工後の磁化容易方向は、
加圧された方向と平行になった。第5図(a)、(b)
At this time, the roll 401 is
Adjusted the speed. As a result, the easy magnetization direction after processing is
parallel to the direction of pressure. Figure 5 (a), (b)
.

(c)は熱間加工の作用の説明図で、501はPrFe
CuB相粒子、502はa−Fe相、503はR−リッ
チ相、504はR−リッチ液相である。第5図(a)は
鋳造インゴットの主相の状態を示したもので、図示する
ようにPrFeCuB相粒子内には、α−Fe相が少量
台まれている。そして前記のPrFeCuB相粒子間は
非磁性のR−リッチ相で埋められている。第5図(b)
は熱間加工時の状態を示したもので、R−リッチ相は溶
融してR−リッチ液相となり、外側へ排除される。また
α−Fe相は、拡散して消失する。
(c) is an explanatory diagram of the action of hot working, and 501 is PrFe.
In the CuB phase particles, 502 is an a-Fe phase, 503 is an R-rich phase, and 504 is an R-rich liquid phase. FIG. 5(a) shows the state of the main phase of the cast ingot, and as shown in the figure, a small amount of α-Fe phase is embedded within the PrFeCuB phase particles. The space between the PrFeCuB phase particles is filled with a nonmagnetic R-rich phase. Figure 5(b)
1 shows the state during hot working, where the R-rich phase melts to become an R-rich liquid phase and is expelled to the outside. Further, the α-Fe phase diffuses and disappears.

PrFeCuB相粒子は加工中微細化され、かつ結晶主
軸方向が一定方向に配向される。第5図(C)は磁石の
状態を示したもので、排除されたR−リッチ相の部分は
、切断され、微細なPrFeCuB相粒子が配向してい
る中央部を使用する。
The PrFeCuB phase particles are made finer during processing, and the principal axis of the crystal is oriented in a certain direction. FIG. 5(C) shows the state of the magnet, where the excluded R-rich phase part is cut off and the central part where fine PrFeCuB phase particles are oriented is used.

以上のように熱間加工を施すことによって磁気特性が向
上し、加工後の特性は、加工条件によって異なるが、加
工前に比べ、最大エネルギー積(BHmax)が約4倍
程度まで向上されることが確認できた。
As described above, hot processing improves magnetic properties, and although the properties after processing differ depending on the processing conditions, the maximum energy product (BHmax) can be improved to about 4 times compared to before processing. was confirmed.

第1図に本発明のリニアエンコーダの実施例を示す、磁
石101は、片面に多極着磁が施され、磁気センサ10
2が対向して配置されている。
FIG. 1 shows an embodiment of the linear encoder of the present invention. A magnet 101 is multi-pole magnetized on one side, and the magnetic sensor 10
2 are placed facing each other.

尚、実施例として示した磁石組成は、実験確認によって
好結果を得ることが出来た組成例の一部を示したもので
ある。希土類金属としてプラセオジム(P r)、遷移
金属として鉄(F、)を用いた場合を代表例として示し
た。具体的な組成例、性能等は省略するが、P、の一部
をディスプロシウム(Dll)で置換することによって
磁石の保磁力が大きくなることが確認できている。また
、P、に比べ低価格の希土類金属であるセリウム(C,
)、ネオジム(Na)でP、の一部を置換する事も可能
であっ遷移金属については、F、の一部をコバルト(C
It should be noted that the magnet compositions shown as examples are some of the composition examples for which good results were obtained through experimental confirmation. A typical example is shown in which praseodymium (Pr) is used as the rare earth metal and iron (F, ) is used as the transition metal. Although specific composition examples, performance, etc. are omitted, it has been confirmed that the coercive force of the magnet increases by replacing a portion of P with dysprosium (Dll). In addition, cerium (C,
), it is also possible to replace a part of P with neodymium (Na).For transition metals, part of F can be replaced with cobalt (C
.

)で置換することによって磁石の温度特性が著しく改善
され、かなりの高温での使用にも耐えることが確認出来
た。また、F、の一部をニッケル(N1)で置換するこ
とによって磁石の保磁力が大きくなった。
), the temperature characteristics of the magnet were significantly improved, and it was confirmed that it could withstand use at considerably high temperatures. Furthermore, by substituting a part of F with nickel (N1), the coercive force of the magnet was increased.

[発明の効果コ 以上述べたように本発明のリニアエンコーダは、従来の
ものに比べ多くの利点を有するものである。
[Effects of the Invention] As described above, the linear encoder of the present invention has many advantages over conventional ones.

本発明の技術的ポイントを要約すると、リニアエンコー
ダには、耐衝撃性の高い鋳造磁石が適しているが、従来
の鋳造磁石の代表であるアルニコ磁石は磁気特性的に各
種の問題点を持っていたためにリニアエンコーダへの適
用は実現していない。また従来知られていた希土類磁石
は、価格が高く、鋳造では、十分な磁気特性を引き出す
ことが出来なかった。そこで、R−M−XM造磁石を用
いることによって、機能と価格のバランス(コストパフ
ォーマンス)が良いリニアエンコーダを実現することが
可能となった。
To summarize the technical points of the present invention, cast magnets with high impact resistance are suitable for linear encoders, but alnico magnets, which are typical of conventional cast magnets, have various problems in terms of magnetic properties. Therefore, its application to linear encoders has not been realized. Furthermore, conventionally known rare earth magnets are expensive, and sufficient magnetic properties cannot be obtained by casting. Therefore, by using the RM-XM magnet, it has become possible to realize a linear encoder with a good balance between functionality and price (cost performance).

本発明のリニアエンコーダは、具体的には、以下に示す
点において極めて優れている。
Specifically, the linear encoder of the present invention is extremely excellent in the following points.

(1)磁石の磁気特性が優れているので、十分な磁界が
得られ検出精度が良い。
(1) Since the magnet has excellent magnetic properties, a sufficient magnetic field can be obtained and detection accuracy is good.

(2)鋳造磁石を用いているので低価格である。(2) Low cost because cast magnets are used.

(3)鋳造磁石を用いているため割れにくいので、リニ
アエンコーダ組み立て時及び使用時の磁石の破損が起こ
りにくい、リニアエンコーダは、使用時に衝撃が加わる
ことが予想される(工作機械、ロボット等)ため、機械
的強度の高い鋳造磁石を用いることは、きわめて効果的
である。
(3) Since cast magnets are used, they are less likely to break, so the magnets are less likely to be damaged when assembling and using linear encoders.Linear encoders are expected to be subjected to shocks during use (machine tools, robots, etc.) Therefore, it is extremely effective to use cast magnets with high mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のリニアエンコーダの断面図101 ・
・・ 磁石 102 ・・・ 磁気センサ 103 ・・・ ヨーク 第2図は磁石の製造工程図 第3図はホットプレス加工の説明図 第4図は熱間圧延加工の説明図 第5図は熱間加工の作用の説明図 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木 喜三部 他1名第1図 二)7′ 第3図 第4図
FIG. 1 is a cross-sectional view 101 of the linear encoder of the present invention.
... Magnet 102 ... Magnetic sensor 103 ... Yoke Fig. 2 is a diagram of the manufacturing process of the magnet Fig. 3 is an illustration of hot pressing processing Fig. 4 is an illustration of hot rolling processing Fig. 5 is an illustration of hot rolling processing Illustration of the action of processing Applicant Seiko Epson Co., Ltd. Agent Patent attorney Kizobe Suzuki and 1 other person Figure 1 2) 7' Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)永久磁石に多極着磁を施して、磁気センサによっ
て前記永久磁石の磁界を検出し、変位測定をするリニア
エンコーダにおいて、 R(ただしRはYを含む希土類元素のうち少なくとも1
種)、M(ただし遷移金属のうち少なくとも1種)およ
びX(ただしIIIb族元素のうち少なくとも1種)を
基本成分とし、多極着磁が施された平板状の永久磁石と
、該永久磁石に対向して設置された磁気センサから構成
されることを特徴とするリニアエンコーダ。
(1) In a linear encoder in which a permanent magnet is magnetized with multiple poles and a magnetic sensor detects the magnetic field of the permanent magnet to measure displacement, R (where R is at least one of rare earth elements including Y).
A flat permanent magnet which has basic components of M (species), M (at least one transition metal), and X (at least one group IIIb element) and is multipolarized, and the permanent magnet A linear encoder characterized by comprising a magnetic sensor installed facing the.
(2)前記永久磁石が、前記基本成分とする合金を消解
・鋳造し、ついで鋳造インゴットを熱間加工し、前記基
本成分から非磁性物であるR−リッチ相の液相を排除す
ることにより磁性相を濃縮し、磁気異方性および機械的
配向性を付与したことを特徴とする請求項1に記載のリ
ニアエンコーダ。
(2) The permanent magnet is produced by dissolving and casting the alloy as the basic component, and then hot working the cast ingot to eliminate the liquid phase of the R-rich phase, which is a non-magnetic substance, from the basic component. 2. The linear encoder according to claim 1, wherein the magnetic phase is concentrated to impart magnetic anisotropy and mechanical orientation.
JP15414988A 1988-06-22 1988-06-22 Linear encoder Pending JPH01320433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15414988A JPH01320433A (en) 1988-06-22 1988-06-22 Linear encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15414988A JPH01320433A (en) 1988-06-22 1988-06-22 Linear encoder

Publications (1)

Publication Number Publication Date
JPH01320433A true JPH01320433A (en) 1989-12-26

Family

ID=15577938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15414988A Pending JPH01320433A (en) 1988-06-22 1988-06-22 Linear encoder

Country Status (1)

Country Link
JP (1) JPH01320433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141183A (en) * 1989-11-01 1992-08-25 Electromotive Systems, Inc. Apparatus and method for determining one or more operating characteristics of a rail-mounted vehicle
DE102018133425A1 (en) * 2018-12-21 2020-06-25 Paul Vahle Gmbh & Co. Kg Deflection and stroke of the pantograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141183A (en) * 1989-11-01 1992-08-25 Electromotive Systems, Inc. Apparatus and method for determining one or more operating characteristics of a rail-mounted vehicle
DE102018133425A1 (en) * 2018-12-21 2020-06-25 Paul Vahle Gmbh & Co. Kg Deflection and stroke of the pantograph

Similar Documents

Publication Publication Date Title
CA1216623A (en) Bonded rare earth-iron magnets
US4902361A (en) Bonded rare earth-iron magnets
EP0895074A2 (en) Magnetostrictive torque sensor utilizing rare earth-iron-based composite materials
Pinkerton et al. Magnetostrictive SmFe 2/metal composites
CA1244322A (en) Hot pressed permanent magnet having high and low coercivity regions
CN107424695A (en) A kind of dual alloy nanocrystalline rare-earth permanent magnet and preparation method thereof
JPH06942B2 (en) Rare earth permanent magnet
CN101487106B (en) High magnetic striction iron based metallic glass magnetic material and preparation thereof
JP2970809B2 (en) Rare earth permanent magnet
Brown et al. The dependence of magnetic properties and hot workability of rare earth-iron-boride magnets upon composition
JPH01320433A (en) Linear encoder
Gould Permanent magnets
JPH07176418A (en) High-performance hot-pressed magnet
JP4645806B2 (en) Magnetic field forming method, radial anisotropic segment magnet manufacturing method, and magnetic field forming apparatus
JPH01321854A (en) Reciprocating driver
WO2024058040A1 (en) Magnetic encoder
Hu et al. Structure and magnetic properties of RTi1. 1Fe10. 9
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPS62252111A (en) Multipolarly magnetizing method for rare earth magnet
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
JPS589805B2 (en) KIDOLI COBALTO
Strnat A REVIEW OF RARE-EARTH PERMANENT MAGNETS, APPLICATIONS AND PROSPECTS
JPH053124B2 (en)
JPS62224915A (en) Manufacture of rare-earth magnet
JPH01108707A (en) Rare-earth magnet