JPH01108707A - Rare-earth magnet - Google Patents

Rare-earth magnet

Info

Publication number
JPH01108707A
JPH01108707A JP62266113A JP26611387A JPH01108707A JP H01108707 A JPH01108707 A JP H01108707A JP 62266113 A JP62266113 A JP 62266113A JP 26611387 A JP26611387 A JP 26611387A JP H01108707 A JPH01108707 A JP H01108707A
Authority
JP
Japan
Prior art keywords
rare
melting point
powder
metal
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266113A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Mitsuru Sakurai
充 桜井
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62266113A priority Critical patent/JPH01108707A/en
Publication of JPH01108707A publication Critical patent/JPH01108707A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve oxidation-resistant properties of a permanent magnet and improve its practical performance by a method wherein a specific content of metal or alloy powder whose melting point is specified is added to rare-earth metal compound powder whose basic components are rare-earth element, iron and boron and the mixed powder is compressed and molded at a temperature not higher than the specified melting point. CONSTITUTION:The basic components of magnetic powder are rare-earth metal, iron and boron. Its particle size is not larger than 80mesh (177mum). Then metal or alloy powder whose melting point is not higher than 900 deg.C is prepared as binder. The recommended content of the binder is 10vol.%-50vol.%. If the content is lower than 10vol.%, although the magnetic performance is improved, the mechanical strength is degraded and the practical performance is degraded. Moreover, as the surface coating layers of the magnetic powder particles become thin, the degradation of rust-resistant properties becomes a problem. On the other hand, if the content is higher than 50vol.%, the magnetic performance is degraded and the characteristics of the permanent magnet can not be exhibited. Therefore, 50vol.% is the maximum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁石の基本組成がRs Fe、Bからなる、金
属結合法でつくられる、希土類磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rare earth magnet whose basic composition is RsFe, B, which is produced by a metal bonding method.

〔従来の技術〕[Conventional technology]

RFell系化合物の磁石化の試みは、1981年J、
J、Croat、0bservationof、   
large  room−temPeratura  
Coecivity  in  malt  5pun
  Nd、4・ Fe、8  APPI。
An attempt to magnetize RFell-based compounds was made in 1981 by J.
J, Croat, 0bservationof,
large room-temPeratura
Coecity in malt 5pun
Nd, 4. Fe, 8 APPI.

Phys、  Leter+ Vo139.No、4P
357〜358が初めてである。その後盛んに研究開発
が行われ実用的な性能が得られるようになった0例えば −希土類−鉄一ボロ/系超急冷薄 帯粉末とを機物樹脂結合材からなる樹脂結合型磁石につ
%sでは知られていた。
Phys, Letter+ Vo139. No, 4P
357-358 is my first time. After that, active research and development was carried out, and practical performance was obtained. It was known in s.

(発明が解決しようとする問題点〕 しかしながら従来の樹脂結合型希土類、鉄、ボロン磁石
は、耐熱性、耐食性等、実用性を阻害する問題が多くあ
った0例えば鉄を基本組成にするため、空気中で錆易い
欠点があった。またパインダーが育機物樹脂のため空気
中の水分を吸湿し易いため、錆の発生、寸法変化が大き
いなど実用レベルでの問題が大きい0本発明はこのよう
な問題点を解決するもので、その目的とするところは永
久磁石の耐酸化性を改善し、実用性能を高めることにあ
る。
(Problems to be solved by the invention) However, conventional resin-bonded rare earth, iron, and boron magnets have many problems that impede their practicality, such as heat resistance and corrosion resistance.For example, because the basic composition is iron, The present invention has the disadvantage that it easily rusts in the air.Also, since the binder is made of a growing resin, it easily absorbs moisture in the air, which causes serious problems on a practical level such as rust formation and large dimensional changes. The purpose is to improve the oxidation resistance of permanent magnets and improve their practical performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の磁石粉末は、希土類金属、鉄、ポロンを基本組
成としたものである。希土類金属は、Ndt Y% P
r%Sm1Gds DY% Ceの1種又は2N以上F
eを主体にCo5Niでその一部を置換しさらに、B、
Cs 5iSP% Slなどの1種又は2種以上からな
るR* Pet a B希土類余興間化合物を使用する
。その粉末粒度は80メツシュ(177μm)以下であ
る。
The magnetic powder of the present invention has a basic composition of rare earth metals, iron, and poron. Rare earth metals are Ndt Y% P
r%Sm1Gds DY% Ce type 1 or 2N or more F
e is mainly replaced with Co5Ni, and further, B,
An R*Pet a B rare earth entertainment compound consisting of one or more types such as Cs 5iSP% Sl is used. Its powder particle size is less than 80 mesh (177 μm).

次にバインダーとして融点が900℃以下の金属、合金
粉末を用意する。単体金属粉末として、Cu1Af、2
1% Cd% 81% Sb% Pb%  1nsBi
がある0合金としては、Pb−8n八へダ合金、Ag−
Cu−Ni5 Ag−Cu−Zn5ロウ接合金などを用
いる。またこれら金属合金粉末は、粒度は50μm以下
が好ましい、これら結合材の量は10容量(Voj2)
%〜50Vo、Q%が好ましい5lOVoρ%以下では
、磁気性能は高められるものの機械的強度は低(なって
しまうため実用性を阻害する。また磁石粉末表面コーテ
ィング層が薄くなるので、耐錆性が低下し問題となる。
Next, a metal or alloy powder having a melting point of 900° C. or less is prepared as a binder. As a single metal powder, Cu1Af,2
1% Cd% 81% Sb% Pb% 1nsBi
0 alloys include Pb-8n Hachiheda alloy, Ag-
Cu-Ni5 Ag-Cu-Zn5 solder metal or the like is used. In addition, the particle size of these metal alloy powders is preferably 50 μm or less, and the amount of these binders is 10 volumes (Voj2)
% to 50Vo, Q% is preferably 5lOVoρ% or less, although the magnetic performance is improved, the mechanical strength is low (which impedes practical use. Also, since the magnet powder surface coating layer becomes thin, the rust resistance decreases. This decreases and becomes a problem.

一方50Voβ%を超えると、磁気性能が低くなり特徴
を発揮できなくなってしまうのでこれまでとした。
On the other hand, if it exceeds 50 Voβ%, the magnetic performance will be low and the characteristics will not be exhibited, so this is what has been described above.

〔実施例〕〔Example〕

実施例−1 化学組成が、Nd30.1%、Co4.8%、B1.0
%、Fe’A部からなる急冷薄帯粉末を用意した。次に
金属結合材Pb−50%Sn合金粉末を準備した。粉末
粒度は10〜303mであった。
Example-1 Chemical composition: Nd30.1%, Co4.8%, B1.0
A quenched ribbon powder consisting of %, Fe'A part was prepared. Next, a metal binder Pb-50%Sn alloy powder was prepared. Powder particle size was 10-303 m.

磁石粉末とバインダー粉末は、予めボールミル中で混合
された。ここで試料は、パインダーツ量を10%、20
%、30%、40%、50%にっいて用意した。続いて
混合粉末は第1図に示す、成形型に装入し加圧成形した
。試料3は、NdFeB粉末とバインダーのP b/S
 n合金粉末である。1の上パンチ、2の下パンチは、
耐熱超硬合金でつられ、油圧プレスラム1と固定テーブ
ル6の間にセットされ加圧される。5は、ダイス(外型
)で1.2、と同様の材料で形成されている。
Magnet powder and binder powder were mixed in advance in a ball mill. Here, the sample contains pine darts of 10% and 20%.
%, 30%, 40%, and 50%. Subsequently, the mixed powder was charged into a mold shown in FIG. 1 and molded under pressure. Sample 3 is Pb/S of NdFeB powder and binder.
n alloy powder. The upper punch of 1 and the lower punch of 2 are
It is suspended from heat-resistant cemented carbide, set between a hydraulic press ram 1 and a fixed table 6, and pressurized. 5 is a die (outer mold) made of the same material as 1.2.

7の耐火レンガ構造による炉体は、9のヒーターで約2
00℃に加熱、8の温度センサーで制御されている。こ
こで成形圧力は、約1ton/cm黛、加熱i度は、2
00±1℃、雰囲気は大気中で圧縮成形を行った。試料
の寸法形状は、φ13X12tmm1円柱状である。磁
気特性を第2図に示す、バインダーの量が、10%で(
BH)max9.5MGOe級の高性能磁石が得られ、
同様に20%で7MGOe級の、メタルバインド型磁石
を得られた。実用性を考えれば、40%〜10%の、バ
インダー量範囲が好ましいものといえる。
The furnace body with a firebrick structure of 7 has a heating capacity of about 2 with a heater of 9.
Heated to 00℃, controlled by 8 temperature sensors. Here, the molding pressure was approximately 1 ton/cm, and the heating degree was 2
Compression molding was performed at 00±1° C. in the air. The dimensions and shape of the sample are φ13×12 tmm 1 cylindrical. The magnetic properties are shown in Figure 2, when the amount of binder is 10% (
BH) A high performance magnet of max 9.5 MGOe class was obtained,
Similarly, with 20%, a metal-bound magnet of 7MGOe class was obtained. Considering practicality, it can be said that a binder amount range of 40% to 10% is preferable.

実施例−2 磁石粉末は、Nds e Fes s Coa nl 
wt%よりなる、超急冷薄帯粉末を用意した。粒度は、
平均で13μmで分布は、3〜50μmであった。前記
粉末を第1表に示す組成のメタルバインダーを使用した
。なお比較例は、バインターにエポキシ樹脂を使用した
。試料形状は、φIOX71mm     ’ 第  1  表 円柱状である。成形温度は、200”0〜920℃でそ
れぞれ使用したバインダーの材質に依存する。すなわち
材料組成の違いが触点の差としてあられれる。従って、
触点以下の成形温度が好ましい0次に得られた試料の緒
特性を第2表に示す。
Example-2 Magnet powder is Ndse Fes Coanl
An ultra-quenched ribbon powder consisting of wt% was prepared. The particle size is
The distribution was 3-50 μm with an average of 13 μm. A metal binder having the composition shown in Table 1 was used as the powder. In the comparative example, an epoxy resin was used as the binder. The sample shape is φIOX 71 mm 'Table 1 cylindrical. The molding temperature varies from 200" to 920°C and depends on the material of the binder used. In other words, the difference in material composition can be seen as a difference in the contact point. Therefore,
Table 2 shows the properties of the samples obtained at order 0, where the molding temperature is preferably below the touch point.

第  2  表 磁気性能は、等方性磁石としては大変高い性能が得られ
た。また、曲げ強度も育機物樹脂バインダーに比べ2倍
〜3倍の高強度化を達成した。
Table 2 Regarding the magnetic performance, very high performance was obtained for an isotropic magnet. In addition, the bending strength was two to three times higher than that of the resin binder.

次に不可逆減磁は、磁気性能測定試料と同一のものを3
0KOeでパルス着磁した。各着磁サンプルは、予めフ
ラックス測定し基準値とした。統いて120℃に加熱し
た恒温槽中に1000時間投入し、不可逆減磁量を調べ
た。比較例に比べ約172と大変熱安定性を高められた
。この理由は磁石粉末粒子の結合力が高いことに基因し
たものといえる。
Next, irreversible demagnetization is performed using the same sample as the magnetic performance measurement sample.
Pulse magnetization was performed at 0KOe. The flux of each magnetized sample was measured in advance and used as a reference value. The specimens were placed in a constant temperature bath heated to 120° C. for 1000 hours, and the amount of irreversible demagnetization was examined. Thermal stability was significantly increased to about 172 compared to the comparative example. The reason for this can be said to be that the magnetic powder particles have a high bonding force.

(発明の効果〕 以上述べたように本発明によれば基本組成が希土類、鉄
、ボロンの希土類金属化合物粉末に融点が900℃以下
の金属又は合金粉末を10〜5゜wt%添加し、前記融
点以下の温度で圧縮成形して永久磁石を製造する。この
ため従来に比べ機械的強度が大幅に向上し、割れや欠け
が発生しにくくなるので、機械加工し易(なる。また、
磁石としての熱安定性にすぐれる利点もある。以上の特
徴・利点を考えれば、水晶腕杆用モータロータ磁石、ク
ロック用ロータ磁石、OA、FA用PM型ステップモー
タ、D/Cモータの高性能化、品質の安定化などに多大
の効果を育するものである。
(Effects of the Invention) As described above, according to the present invention, 10 to 5 wt% of a metal or alloy powder having a melting point of 900°C or less is added to a rare earth metal compound powder whose basic composition is rare earth, iron, and boron, and the Permanent magnets are manufactured by compression molding at a temperature below the melting point.As a result, the mechanical strength is greatly improved compared to conventional magnets, and cracking and chipping are less likely to occur, making machining easier.
Another advantage is that it has excellent thermal stability as a magnet. Considering the above features and advantages, it will have a great effect on improving the performance and stabilizing quality of motor rotor magnets for crystal arm rods, rotor magnets for clocks, PM type step motors for OA and FA, D/C motors, etc. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の希土類磁石製造のための成形法の主要
断面図。 第2図は本発明のメタルバインダー量と磁気特性の関係
を示す図。 1・・・油圧プレスラム 2・・・上パンチ 3・・・磁石 4・・・下バンチ 5・・・グイ 6・・・油圧プレステーブル 7・・・炉 8・・・熱電対 9・・・ヒーター 以  上 P b/sn3紛木の捧卯−4(wt幻第2図
FIG. 1 is a main cross-sectional view of the molding method for manufacturing rare earth magnets of the present invention. FIG. 2 is a diagram showing the relationship between the amount of metal binder and magnetic properties of the present invention. 1... Hydraulic press ram 2... Upper punch 3... Magnet 4... Lower bunch 5... Gui 6... Hydraulic press table 7... Furnace 8... Thermocouple 9... More than a heater

Claims (2)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属(R)、鉄(Fe)、ボロ
ン(B)からなり超急冷法でつくられた粉末粒径が80
メッシュ以下の磁石粉末を重量比50%〜90%残部は
、結合材で融点が900℃以下の金属又は合金から構成
され次に融点以下の温度で加熱成形しでつくられたこと
を特徴とする希土類磁石。
(1) The basic composition is rare earth metal (R), iron (Fe), and boron (B), and the powder particle size made by ultra-quenching method is 80.
It is characterized in that it is made of magnet powder of mesh size or less, the balance of which is a binder of 50% to 90% by weight, of a metal or alloy with a melting point of 900°C or less, and then heated and formed at a temperature below the melting point. Rare earth magnet.
(2)前記鉄の一部をコバルト(Co)など鉄以外の遷
移金属で置換した特許請求の範囲第1項記載の希土類磁
石。
(2) The rare earth magnet according to claim 1, wherein a part of the iron is replaced with a transition metal other than iron, such as cobalt (Co).
JP62266113A 1987-10-21 1987-10-21 Rare-earth magnet Pending JPH01108707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266113A JPH01108707A (en) 1987-10-21 1987-10-21 Rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266113A JPH01108707A (en) 1987-10-21 1987-10-21 Rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH01108707A true JPH01108707A (en) 1989-04-26

Family

ID=17426503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266113A Pending JPH01108707A (en) 1987-10-21 1987-10-21 Rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH01108707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it
JP4719568B2 (en) * 2005-12-22 2011-07-06 日立オートモティブシステムズ株式会社 Powder magnet and rotating machine using the same

Similar Documents

Publication Publication Date Title
US3424578A (en) Method of producing permanent magnets of rare earth metals containing co,or mixtures of co,fe and mn
KR101378089B1 (en) R-t-b sintered magnet
CN100501883C (en) High strong toughness iron-base rear earth permanent magnet and its preparation method
JPH03503115A (en) Manufacturing method of permanent magnet rotor
CN106537525B (en) The complex sintered magnet of anisotropy comprising MnBi and the normal pressure-sintered technique for being used to prepare it
JP2000508476A (en) Low loss easy-saturated adhesive magnet
CN107424695B (en) Double-alloy nanocrystalline rare earth permanent magnet and preparation method thereof
US3540945A (en) Permanent magnets
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
EA014583B1 (en) Composition for manufacturing caked permanent magnet, caked permanent magnet and method for producing thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2011003662A (en) Permanent magnet and method of manufacturing the same
JPH01108707A (en) Rare-earth magnet
Falk A current review of Lodex permanent magnet technology
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH056323B2 (en)
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JPH07176418A (en) High-performance hot-pressed magnet
JPH07122414A (en) Rare earth permanent magnet and manufacture thereof
CN108015268A (en) The bonded permanent magnet that a kind of R-B-Ti-Fe alloy powders and preparation method thereof are prepared with the alloy powder
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2002175909A (en) Bonded magnetic having superior thermal stability, and its manufacturing method