JPH01312370A - Coolant separator - Google Patents

Coolant separator

Info

Publication number
JPH01312370A
JPH01312370A JP14513588A JP14513588A JPH01312370A JP H01312370 A JPH01312370 A JP H01312370A JP 14513588 A JP14513588 A JP 14513588A JP 14513588 A JP14513588 A JP 14513588A JP H01312370 A JPH01312370 A JP H01312370A
Authority
JP
Japan
Prior art keywords
separator
outlet pipe
air
refrigerant
pressure space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14513588A
Other languages
Japanese (ja)
Inventor
Shinji Watanabe
伸二 渡辺
Koji Murozono
宏治 室園
Kuniyasu Uchiyama
内山 邦泰
Akira Fujitaka
章 藤高
Akira Nakazawa
中沢 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14513588A priority Critical patent/JPH01312370A/en
Publication of JPH01312370A publication Critical patent/JPH01312370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To simplify a device, provide a small-sized device and a high speed separation by a method wherein the device is provided with a main body of separator having a function film for dividing it into a high pressure space and a low pressure space within it, an inlet pipe connected to the high pressure space of the main body of the separator and for flowing mixture gas, a passing outlet pipe connected to the low pressure air space for letting out mainly coolant and an outlet pipe connected to the high pressure space for letting out other coolants. CONSTITUTION:Mixture gas of air and coolant (R-22) is supplied from an inlet pipe 105 of a separator 101, R-22 which can easily pass through a function film 103 passes through the function film 103 due to a difference in pressure between a high pressure space (a) and a low pressure space (b), the R-22 passes through a passing outlet pipe 107 and a pump 108, is cooled by a cooler 110 and stored in a storing unit 111. In turn, air (N2, O2) or the like which hardly passes through the function film 103 flows out from an outlet pipe 106 of the separator 101 by an air blowing fan 112. Therefore, R-22 is stored within the storing unit 111, the air is discharged to the surrounding atmosphere, only the coolant can be recovered. With this arrangement, as compared with a separating system of absorptive type, it is possible to simplify the device, make a small-sized device and provide a high-speed separation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷媒と空気の混合気体より冷媒のみを分離する
冷媒分離装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigerant separation device that separates only a refrigerant from a mixed gas of refrigerant and air.

従来の技術 混合物を分離する方法として、深冷分離方式、吸着方式
、膜力式等がしられている。
Conventional techniques Known methods for separating mixtures include cryogenic separation, adsorption, and membrane force methods.

また、冷媒の回収装置としては吸着式が一般的に用いら
れており、例えば大板技研工業「Fに−1001」など
がある。
Furthermore, as a refrigerant recovery device, an adsorption type is generally used, such as Ohita Giken Kogyo's "F ni-1001".

発明が解決しようとする課題 冷媒の分離装置としては、前記の吸着方式が一般的であ
るが、構造が複雑で装置も大型化するなどの課題を有し
ていた。
Problems to be Solved by the Invention Although the above-mentioned adsorption method is commonly used as a refrigerant separation device, it has problems such as a complicated structure and an increase in the size of the device.

本発明は上記課題に鑑み1.冷媒と空気の混合物を分離
する装置の簡素化、小型化、分離の高速化を図ることを
目的とする。
The present invention has been made in view of the above problems.1. The objective is to simplify, downsize, and speed up separation of a device that separates a mixture of refrigerant and air.

課題を解決するための手段 上記課題を解決するために本発明は内部に高圧側空間と
低圧側空間とに、仕切る機能膜を、有する分離器本体と
、前記分離器本体の高圧側空間に接続され単一冷媒、あ
るいは複数種類からなる混合冷媒と空気の混合気体を流
入させる入口配管と、前記分離器本体の低圧側空間に接
続され前記冷媒中の特定の冷媒を生に流出させる透過出
口配管と、前記分離器本体の高圧側空間に、接続され空
気その他冷媒を流出させる、出口配管とを有するもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention provides a separator body having a functional membrane therein that partitions into a high pressure side space and a low pressure side space, and a separator body connected to the high pressure side space of the separator body. an inlet pipe through which a single refrigerant or a mixture of a mixture of refrigerants and air flows in; and a permeation outlet pipe connected to the low-pressure side space of the separator body through which a specific refrigerant in the refrigerant flows out. and an outlet pipe that is connected to the high-pressure side space of the separator body and allows air and other refrigerant to flow out.

作   用 本発明は上記構成により、装置の簡素化、小型化、分離
の高速化を図ることができる。
Function The present invention can simplify and downsize the device and increase the speed of separation by the above-described configuration.

実施例 最初に、機能膜を用い、R−22、酸素、窒素を透過さ
せた場合の実験結果について説明する。
EXAMPLE First, the results of an experiment in which a functional membrane was used to allow R-22, oxygen, and nitrogen to permeate will be described.

第3図に、機能膜を用いた冷媒分離器(以下分離器とい
う)の一実施例を示す。
FIG. 3 shows an example of a refrigerant separator (hereinafter referred to as a separator) using a functional membrane.

同図において、分離器本体102を網状の保持具104
で高圧側空間畠、低圧側空間すに仕切り、保持具104
の高圧側に機能膜103を設置する。
In the same figure, the separator main body 102 is held in a mesh-like holder 104.
Partition between high pressure side space and low pressure side space, holding tool 104
A functional membrane 103 is installed on the high pressure side.

また、分離器本体102には、入口配管105、出口配
管106、透過出口配管107が設けられている。
Further, the separator main body 102 is provided with an inlet pipe 105, an outlet pipe 106, and a permeate outlet pipe 107.

以上のような構成の分離器において、出口配管106を
閉じ、機能膜にジメチルシリコーンの超薄膜を不織布に
転写した複合膜を用い、R−22、o2、N2それぞれ
の単一ガスを透過させた結果について説明する。。
In the separator configured as above, the outlet pipe 106 was closed, and a composite membrane in which an ultra-thin film of dimethyl silicone was transferred to a nonwoven fabric was used as the functional membrane, and single gases of R-22, O2, and N2 were permeated. Explain the results. .

第2図に、高圧側空間aの圧力と低圧側空間すの圧力の
差圧とそれぞれのガスの透過流量を示す。
FIG. 2 shows the differential pressure between the pressure in the high-pressure side space a and the pressure in the low-pressure side space a, and the permeation flow rate of each gas.

同図より明らかなように02、N2に比べR−22の透
過量がはるかに大きいことが明らかとなった。
As is clear from the figure, the amount of permeation of R-22 was much larger than that of 02 and N2.

従って空気は主に02、N2で構成され冷媒R−22と
空気とが分離できることがわかった。
Therefore, it was found that air is mainly composed of 02 and N2, and that the refrigerant R-22 and air can be separated.

以下前記機能膜を用いた冷媒分離装置の実施例について
1.第1図を参考に説明する。
The following is an example of a refrigerant separation device using the above-mentioned functional membrane.1. This will be explained with reference to FIG.

同図において第3図と同一部品は同一符号を付し説明を
省略する。分離器101の透過出口配管107はポンプ
108を介して貯留器111に接続されている。また、
ポンプ108と、貯留器111の接続管109は冷却器
110と熱交換的に接続されている。一方、出口配管1
06には送風ファン112が接続されている。
In this figure, parts that are the same as those in FIG. 3 are given the same reference numerals, and explanations thereof will be omitted. A permeate outlet pipe 107 of the separator 101 is connected to a reservoir 111 via a pump 108. Also,
The pump 108 and the connecting pipe 109 of the reservoir 111 are connected to the cooler 110 for heat exchange. On the other hand, outlet piping 1
A blower fan 112 is connected to 06.

以上のように構成された分離装置について、以下その動
作を説明する。
The operation of the separation device configured as described above will be explained below.

まず、空気とR−22の混合気体が分離器1o1の入口
配管105より供給され11機能膜103を透過しゃす
いR−22は高圧側空間aと低圧側空間すの圧力差によ
り機能膜103を透過し、透過出口配管1071、ポン
プ108を経て冷却器110により冷却され貯留器11
1に貯えられる。一方、機能膜103を比較的透過しに
くい空気(N2゜02)などは送風ファン112により
分離器101の出口配管106より流出する。したがっ
て、R−22は貯留器111に貯えられ、空気は大気へ
放出され、冷媒のみが回収できる。
First, a gas mixture of air and R-22 is supplied from the inlet pipe 105 of the separator 1o1 and permeates through the functional membrane 103.R-22 passes through the functional membrane 103 due to the pressure difference between the high pressure side space a and the low pressure side space The permeate passes through the permeate outlet pipe 1071 and the pump 108, and is cooled by the cooler 110 and stored in the reservoir 11.
It can be stored in 1. On the other hand, air (N2°02), which is relatively difficult to permeate through the functional membrane 103, flows out from the outlet pipe 106 of the separator 101 by the blower fan 112. Therefore, the R-22 is stored in the reservoir 111, the air is released to the atmosphere, and only the refrigerant can be recovered.

以上のように本実施例によれば、吸着式等の分離方式と
比較して、−装置の簡素化、小型化、分離の高速化を図
ることができる。
As described above, according to this embodiment, it is possible to simplify the apparatus, downsize it, and speed up the separation compared to a separation method such as an adsorption type.

前記実施例においては、分離器101の低圧側空間すの
圧力をポンプ108により大気圧より低くして差圧を得
たが、高圧側空間aを大気圧より高くして差圧を得るよ
うにしても同様の効果が得られる。
In the above embodiment, the pressure in the low-pressure side space a of the separator 101 was made lower than atmospheric pressure by the pump 108 to obtain a differential pressure, but the high-pressure side space a was made higher than atmospheric pressure to obtain a differential pressure. The same effect can be obtained.

発明の効果 以−Lのように本発明は、吸着方式の吸着材にくらべて
機能膜は収納性にすぐれるため、装置の小型化、簡素化
を図ることができる。また、吸着方式は吸着−離脱とい
う非連続的であるのに対し、膜分離方式は連続的処理が
できるため、分離の高速化をも図ることができる。
EFFECTS OF THE INVENTION As described in L, the functional membrane of the present invention has better storage properties than adsorption-type adsorbents, so it is possible to downsize and simplify the device. Furthermore, whereas the adsorption method is a discontinuous process of adsorption and desorption, the membrane separation method allows for continuous processing, so it is possible to speed up the separation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における冷媒分離装置の構成
図、第2図は機能膜を使用した分離器による実験結果を
示す特性図、第3図は同分離器の詳細断面図である。 101・・・・・分離器、103・・・・・・機能膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名10
/−ビニ分離愚 103−−一機朦喚 l万一人口配管 lθ6−−−出 口 酉己管 lθ7−透過出口配管 第1図 第2図 10/ ’−−−分詐五 103−一弓^能」戻 第3図
Fig. 1 is a block diagram of a refrigerant separation device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing experimental results using a separator using a functional membrane, and Fig. 3 is a detailed sectional view of the separator. . 101... Separator, 103... Functional membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person10
/-Vini Separation Gu103--Ichiki Shukan l103-Ichigo ^Noh'' Return Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)内部に高圧側空間と低圧側空間とに仕切る機能膜
を有する分離器本体と、前記分離器本体の高圧側空間に
接続され、単一冷媒、あるいは複数種類からなる混合冷
媒と空気との混合物を流入させる入口配管と、前記分離
器本体の低圧側空間に接続され前記冷媒中の特定の冷媒
を主に流出させる透過出口配管と、前記分離器本体の高
圧側空間に接続され空気その他冷媒を流出させる出口配
管とを有する冷媒の分離装置。
(1) A separator body that has a functional membrane inside that partitions into a high-pressure side space and a low-pressure side space, and a separator body that is connected to the high-pressure side space of the separator body and that is connected to a single refrigerant or a mixed refrigerant consisting of multiple types and air. a permeation outlet pipe that is connected to the low-pressure side space of the separator body and that mainly allows a specific refrigerant in the refrigerant to flow out, and a permeation outlet pipe that is connected to the high-pressure side space of the separator body that allows air, etc. A refrigerant separation device having an outlet pipe for discharging the refrigerant.
(2)機能膜の低圧側空間側に網状の保持具を設けた請
求項1に記載の冷媒の分離装置。(3)透過出口配管に
ポンプと貯留器とを接続し、前記ポンプと前記貯留器と
の間の配管を冷却する冷却器を設けた請求項1または請
求項2に記載の冷媒の分離装置。
(2) The refrigerant separation device according to claim 1, further comprising a net-like holder provided on the low-pressure space side of the functional membrane. (3) The refrigerant separation device according to claim 1 or 2, wherein a pump and a reservoir are connected to the permeation outlet piping, and a cooler is provided for cooling the piping between the pump and the reservoir.
JP14513588A 1988-06-13 1988-06-13 Coolant separator Pending JPH01312370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14513588A JPH01312370A (en) 1988-06-13 1988-06-13 Coolant separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14513588A JPH01312370A (en) 1988-06-13 1988-06-13 Coolant separator

Publications (1)

Publication Number Publication Date
JPH01312370A true JPH01312370A (en) 1989-12-18

Family

ID=15378218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14513588A Pending JPH01312370A (en) 1988-06-13 1988-06-13 Coolant separator

Country Status (1)

Country Link
JP (1) JPH01312370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964240A (en) * 2017-05-11 2017-07-21 曙光节能技术(北京)股份有限公司 Gas steam segregator for submerging liquid cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964240A (en) * 2017-05-11 2017-07-21 曙光节能技术(北京)股份有限公司 Gas steam segregator for submerging liquid cooling system

Similar Documents

Publication Publication Date Title
JP2664169B2 (en) Method for separating components of gaseous fluid
JPH0732483U (en) Device for producing dry high-purity nitrogen and / or dry high-purity oxygen from supply air
EP0213525B1 (en) Hybrid membrane/cryogenic process for hydrogen purification
EP1188471A2 (en) Low void adsorption system
CA2334628A1 (en) Microcomponent assembly for efficient contacting of fluid
JPH1087302A (en) Single step secondary high purity oxygen concentrator
JPS62503155A (en) Process for treating gaseous mixtures by adsorption
JPH02135115A (en) Cooled vessel
US20210364202A1 (en) Enhanced refrigeration purge system
KR910018063A (en) Pre-purification method of separation air
JPH01312370A (en) Coolant separator
WO1999004886A1 (en) Process for recovering sulfur hexafluoride
JP4276354B2 (en) Neon recovery method and apparatus
JP2960992B2 (en) Hydrogen isotope separation method
JPH0459016A (en) Refrigerant separator
JP2773858B2 (en) Method and apparatus for separating air
JP2002363114A (en) Apparatus for separating and recovering perfluoro compound gas
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPS61127609A (en) Purification device for helium
JPH01266831A (en) Device for purifying light gas
EP0016043A1 (en) Cryogenic apparatus and method of removing freezing impurities from a cryogenic fluid
JP2000015039A (en) Apparatus for recovering and regenerating sulfur hexafluoride gas
JPH0361198A (en) Air regenerating device for aircraft
JP3172886B2 (en) Helium gas purification apparatus and operating method thereof
JPH04180811A (en) Treatment of exhaust gas containing organic vapor