JPH0361198A - Air regenerating device for aircraft - Google Patents

Air regenerating device for aircraft

Info

Publication number
JPH0361198A
JPH0361198A JP19737489A JP19737489A JPH0361198A JP H0361198 A JPH0361198 A JP H0361198A JP 19737489 A JP19737489 A JP 19737489A JP 19737489 A JP19737489 A JP 19737489A JP H0361198 A JPH0361198 A JP H0361198A
Authority
JP
Japan
Prior art keywords
air
pressure side
concentration
separator
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19737489A
Other languages
Japanese (ja)
Other versions
JP2737281B2 (en
Inventor
Munehiro Hayashi
林 宗浩
Hidefumi Saito
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19737489A priority Critical patent/JP2737281B2/en
Publication of JPH0361198A publication Critical patent/JPH0361198A/en
Application granted granted Critical
Publication of JP2737281B2 publication Critical patent/JP2737281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of consumption of O2 cylinders by separating the circulating air inside an aircraft into a high CO2 concentration air and a low CO2 concentration air, and by introducing ram air into the high CO2 concentration air, so that the high CO2 concentration air can be discharged by the ram air to the outside of the aircraft. CONSTITUTION:The air inside a cabin 1 is sent to a separator 4 through a circulating passage 2 via a filter 3. In the separator 4, only CO2 is permeated by a separation membrane 4a having a larger CO2 permeability and a lower O2 permeability to separate a high O2 concentration air from a high CO2 concentration air. And, by introducing ram air B into the low-pressure side 4L having a high CO2 concentration through an outside-air introducing passage 6, the high CO2 concentration air is discharged by the ram air B to the outside of the aircraft through a discharge passage 5. On the other hand, the high O2 concentration air on the high-pressure side is supplied with O2 from a cylinder 7 in the circulating passage 2, and then is returned to the cabin 1. By this constitution, the amount of consumption of O2 cylinders can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、搭乗者が吐出す呼吸空気を再生して再度搭乗
者に供給するための航空機用空気再生装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air regeneration device for an aircraft for regenerating breathing air exhaled by a passenger and supplying the same to the passenger again.

[従来の技術] 高度に伴って人気の02分圧は低下する。このため、航
空機搭乗者に継続して呼吸に必要な02を供給するため
には、しかるべき手段が必要になる。しかして、一般に
小型高性能航空機ではエンジン抽気を02濃縮する濃縮
部を設け、民間航空機でも02ボンベを搭載する等の設
備を搭載している。
[Prior Art] The popular 02 partial pressure decreases with altitude. Therefore, in order to continuously supply the air passengers with the 02 necessary for breathing, appropriate means are required. Generally, small high-performance aircraft are equipped with a concentrator for condensing engine bleed air with 02 gas, and even commercial aircraft are equipped with equipment such as 02 cylinders.

しかし、これらの設備は何れも、11jら搭乗者に02
を供給することのみを目的とし、搭乗者が吐出す空気に
対しては何等の措置を講するものでもない。このため、
搭乗者が吐出した空気はその中に残存する多量の02も
ろとも無造作に廃棄され、結果的に02濃縮部や02ボ
ンベで必要以」二の02を供給しなければならないとい
う不都合があった。
However, all of these facilities do not allow passengers such as 11j to
The purpose is only to supply air, and no measures are taken against the air exhaled by passengers. For this reason,
The air exhaled by the passengers was carelessly discarded along with the large amount of 02 remaining in it, resulting in the inconvenience of having to supply more than necessary 02 from the 02 enrichment section or 02 cylinder.

そこで、これらの不都合を解決すべく、本発明者等は先
頃、次のような構成からなる空気再生装置を提案した。
Therefore, in order to solve these inconveniences, the present inventors recently proposed an air regeneration device having the following configuration.

すなわち、このものは第3図に示すように、キャビンb
等に対し機内空気を循環させる循環系路101と、この
循環系路101に介設され、内設した分離膜102aに
よって少なくとも02に比してより多量のCO2を高圧
側102oから低圧倒102Lに選択分離する機能を発
揮する分離器102と、この分離器102の低圧側10
2□、に接続され分離したCO2濃度の高い空気を機外
に放出する排気系路103とを具備してなり、前記分離
器]02の高圧倒102Hから流出した02濃度の高い
空気を循環系路101を通じて再度機内に供給し得るよ
うにしている。このように構成すると、残77する02
を選択的に抽獲して再利用することかできるので、濃縮
部や02ボンベの負担を軽減でき、結果的に装置全体の
小形軽量化に資するものとなる。
That is, as shown in FIG.
A circulation system path 101 that circulates cabin air to the air, etc., and a separation membrane 102a installed in the circulation system path 101 and installed internally, transfer a larger amount of CO2 from the high pressure side 102o to the low overwhelming 102L at least compared to 02. A separator 102 that performs a selective separation function and a low pressure side 10 of this separator 102.
2□, and an exhaust system line 103 that discharges the separated air with a high concentration of CO2 to the outside of the machine, and the air with a high concentration of 02 flowing out from the high overflow 102H of the separator] 02 is connected to a circulation system. The fuel can be supplied to the cabin again through the route 101. With this configuration, the remaining 77 02
Since it can be selectively extracted and reused, the burden on the concentration section and the 02 cylinder can be reduced, and as a result, the entire device can be made smaller and lighter.

なお、分離膜102aの性能は、一般に被分離ガスの透
過ff1Qをもって表され、そのガスの透過係数をP、
膜面積をS、膜厚さをρ、高圧側のガス分圧をPIN、
低圧側のガス分圧をP。UTとしてQ=PS (PIN
  POUT ) /D    −(1)で与えられる
ことが知られている。この式が明かすように、透過量Q
を増大させるためには分離膜102aに作用する差圧(
P IN  P 0LIT )を大きくとることが必要
で、このために、図示構成では高圧側102 +□をコ
ンプレッサ104で加圧し、低斤側102Iを真空ポン
プ]05で吸引する(1i成になっている。
The performance of the separation membrane 102a is generally expressed as the permeation ff1Q of the gas to be separated, and the permeation coefficient of the gas is P,
The membrane area is S, the membrane thickness is ρ, the gas partial pressure on the high pressure side is PIN,
The gas partial pressure on the low pressure side is P. Q=PS (PIN
It is known that it is given by POUT ) /D - (1). As this formula reveals, the amount of transmission Q
In order to increase the differential pressure (
It is necessary to increase P IN P 0LIT ), and for this purpose, in the illustrated configuration, the high pressure side 102 There is.

[発明が解決しようとする課題] しかし、以上の構成を実際に適用すると、運転開始後、
時間が経つにつれてCO2の除虫効率か低下する不具合
を来たす。本発明者かその原因について検討したところ
、分離膜102aを透過した大量のCO2か分離器10
2内の低圧側102、に溜まり、次第に分離膜]02a
の低圧側102LのCO2濃度が高まることになり、P
OU’l・が増大して差圧が低減していることが明らか
になった。また、これに付随する不具合として、低圧側
102 、、を真空排気するために該低圧側102 t
における02分圧が低下し、その結果高圧側1021、
の有用な02が必要以上に分離膜102aを透過してし
まう点を始め、分離膜102aに人きな差圧が作用する
ことにより該分離膜102aの破損を招き晃くなる点、
コンプレッサ104や真空ポンプ105を装備すること
により装置が大川りになる点等が挙げられる。
[Problem to be solved by the invention] However, when the above configuration is actually applied, after the start of operation,
This causes a problem in which the insect removal efficiency of CO2 decreases over time. When the present inventor investigated the cause of this problem, it was discovered that a large amount of CO2 that had passed through the separation membrane 102a or the separator 10
[02a] 02a
The CO2 concentration on the low pressure side 102L of
It became clear that OU'l. increased and the differential pressure decreased. In addition, as a problem accompanying this, in order to evacuate the low pressure side 102 , , the low pressure side 102 t
02 partial pressure decreases, resulting in high pressure side 1021,
The useful 02 of 02 permeates through the separation membrane 102a more than necessary, and the separation membrane 102a is damaged due to the excessive pressure difference acting on the separation membrane 102a.
For example, the installation of the compressor 104 and the vacuum pump 105 requires a large amount of equipment.

本発明は、以−1−のような問題点に着目してなされた
ものであって、簡単な構造により、これらを有効に解決
することを目的としている。
The present invention has been made with attention to the following problems, and it is an object of the present invention to effectively solve these problems with a simple structure.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、次のような手
段を講じたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention takes the following measures.

すなわち、本発明の航空機用空気再生装置は、機内空気
を循環させる循環系路と、この循環系路に介設され少な
くとも02に比してより多量のCO2を高圧側から低圧
側に選択分離する機能を有した分離器と、この分離器の
低圧側に接続され分離したCO2濃度の1%い空気を機
外に放出する排気系路とを具備してなり、前記分離器の
高圧側から流出した02濃度の高い空気を循環系路を通
じて再度機内に供給し得るように構成されたものにおい
て、前記分離器の低圧側に、機外の自然空気流を導入す
るための外気導入系路を接続したことを特徴としている
That is, the aircraft air regeneration device of the present invention includes a circulation system path that circulates cabin air, and a system that is interposed in this circulation path and selectively separates a larger amount of CO2 from the high pressure side to the low pressure side at least compared to 02. It is equipped with a separator having a function and an exhaust line connected to the low pressure side of the separator and discharging the separated air with a CO2 concentration of 1% to the outside of the machine, and the air is discharged from the high pressure side of the separator. In a device configured to be able to supply air with a high concentration of 02 into the aircraft again through a circulation system line, an outside air introduction line for introducing natural air flow from outside the machine is connected to the low pressure side of the separator. It is characterized by what it did.

[作用] 分離器の高圧側にはC02,02、N2を主成分とする
機内空気が導入され、低圧側には02、N2を主成分と
し、CO2のほとんど含まない機外の自然空気流が導入
される。具体的には、N2 ニア8%、02:21%に
対し、CO□ :0.03%程度である。そして、機内
空気が与圧されているのに対し、機外空気は相対的に低
圧であるから、この状態で分離膜に差圧が作用する。こ
れにより、高圧側から低圧側に主としてCO2が透過し
、低圧側に移ったCO2は滞留することなく自然空気流
にのって排気系路から機外に放出される。一方、CO2
を除去されて高圧側から流出した02濃度の高い空気は
再び機内に供給されて呼吸用空気として利用される。
[Function] In-flight air whose main components are CO2, 02, and N2 is introduced into the high-pressure side of the separator, and natural air flow from outside the aircraft whose main components are 02 and N2 and contains almost no CO2 is introduced into the low-pressure side. be introduced. Specifically, while N2: 8%, 02:21%, CO□: about 0.03%. Since the air inside the aircraft is pressurized, the air outside the aircraft is at a relatively low pressure, so a pressure difference acts on the separation membrane in this state. As a result, CO2 mainly permeates from the high-pressure side to the low-pressure side, and the CO2 that has moved to the low-pressure side is released from the exhaust system outside the machine along with the natural air flow without being retained. On the other hand, CO2
The air with a high concentration of 02, which has been removed and flows out from the high-pressure side, is again supplied into the cabin and used as breathing air.

しかして、この構成では運転開始から時間が経過しても
分離膜の低圧側におけるCO2濃度が上昇するようなこ
とはな(なる。このため、CO2分圧に関し、高圧側と
の間に常に所要の差圧を確保し、透過を促迅させること
ができる。しかも、このために低圧側を真空排気するこ
とは一切必要なくなる。
With this configuration, the CO2 concentration on the low-pressure side of the separation membrane will not increase even after time has passed since the start of operation. Therefore, regarding the CO2 partial pressure, there is always a It is possible to secure a differential pressure of 100% and accelerate permeation. Moreover, for this purpose, there is no need to evacuate the low pressure side at all.

また、低圧側を真空排気しない場合には、低圧側におけ
る02分圧が増大することになる。このため、02分圧
に関し、逆に高圧側との間の差圧か低減され、その結果
、循環系路内の02に対する透過抑止作用が働くことに
なる。
Furthermore, if the low pressure side is not evacuated, the 02 partial pressure on the low pressure side will increase. For this reason, regarding the 02 partial pressure, the differential pressure between the high pressure side and the high pressure side is reduced, and as a result, a permeation inhibiting effect on the 02 in the circulation system works.

[実施例] 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2.

この空気再生装置は、例えは民間航空機に適用されるも
ので、搭乗者aを収容するキャビン1の空気Aを図示し
ないブロア等によって吸い込み、これを循環させて再度
キャビン1に供給すべく循環系路2を配設している。そ
して、この循環系路2に、フィルタ3と、分離器4とを
介設している。
This air regeneration device is applied to, for example, a commercial aircraft, and a circulation system is used to suck in air A from a cabin 1 accommodating a passenger A using a blower, etc. (not shown), circulate it, and supply it to the cabin 1 again. Route 2 is installed. A filter 3 and a separator 4 are interposed in this circulation path 2.

フィルタ3は、微少な塵や埃(タバコの煙等)を除虫で
きる濾過機能を備えたものが用いられる。
The filter 3 used has a filtration function that can remove microscopic dust and dirt (such as cigarette smoke).

分離器4は、模式的には図示のようにチューブ状の分離
膜4aを備えたもので、実際にはそれらの分離膜4aが
多数束ねられた構造をなしている。
The separator 4 is schematically provided with a tube-shaped separation membrane 4a as shown in the figure, and actually has a structure in which a large number of separation membranes 4a are bundled together.

この分離膜4aの素材には少なくとも02に対する透過
係数か小さくCO2に対する透過係数が大きいもの、例
えばポリジメチルシロキサンが用いられる。ポリジメチ
ルシロキサンの透過係数は、ab知ラうテイルトコロ、
02 : CO2=1  +5゜3である。この分離膜
4aの膜内が循環系路2と接続され、高圧側4Hとなる
。また、この分離膜4の膜外は、低圧側40.として排
気系路5に接続されている。排気系路5は他端を機外に
開放されている。
The material used for the separation membrane 4a is at least one that has a low permeability coefficient for CO2 and a high permeability coefficient for CO2, such as polydimethylsiloxane. The permeability coefficient of polydimethylsiloxane is as follows:
02: CO2=1 +5°3. The inside of this separation membrane 4a is connected to the circulation system path 2 and becomes a high pressure side 4H. Further, the outside of the separation membrane 4 has a low pressure side 40. It is connected to the exhaust system line 5 as a. The other end of the exhaust system path 5 is open to the outside of the machine.

このように構成されるものにおいて、本実施例では前記
分離器4の低圧側41.に機外の自然空気流(ラムエア
)Bを導入するための外気導入系路6を接続している。
In this embodiment, in this embodiment, the low pressure side 41. An outside air introduction line 6 for introducing a natural air flow (ram air) B from outside the machine is connected to the outside air introduction line 6.

この外気導入系路6は導入端を機外に開口し、ラムエア
Bの流速が極端に損なわれないようにして低圧側4Lに
導き得るようになっている。また、排気系路5にあって
も同様で、低圧側4□7に導入されたラムエアBを、そ
の流速をなるべく損なわないようにして機外に放出し得
るように設けている。
The outside air introduction line 6 has an introduction end opened outside the machine so that the ram air B can be introduced to the low pressure side 4L without significantly reducing the flow velocity. Similarly, the exhaust system path 5 is provided so that the ram air B introduced into the low pressure side 4□7 can be discharged to the outside of the machine while keeping its flow velocity as low as possible.

なお、循環系路2の帰還連山には、ミキシングバルブ等
を介して02ボンベ7が接続してあり、分離器4で一収
された02に新たに所要量の02を加えて、これをキャ
ビン1に移送できるようにしている。
In addition, the 02 cylinder 7 is connected to the return mountain of the circulation system path 2 via a mixing valve, etc., and a new required amount of 02 is added to the 02 collected by the separator 4, and this is sent to the cabin. It is possible to transfer to 1.

しかして、図示再生装置を運転しつつ飛行が行われると
、搭乗者aの呼吸によって次第にキャビン1内のCO2
濃度が一ヒ昇し、その空気Aが断続的にフィルタ3で浄
化された後、分離器4の高圧側4Hに導入される。その
成分はCO2、N2.02が主体をなす。一方、分離器
4の低圧側4LにはN2.02を主体とするラムエアB
が流通し、このラムエアBは滞ることなく排気系路5を
通じて機外に吹き抜けている。ラムニアB中のCO2濃
度は殆ど無きに等しい(350ppm程度)。また、機
内空気AがLi、圧されているのに対し、ラムエアBは
相対的に低圧にあり、これらを、導入することで分離膜
4aにはある程度の差圧が作用することになる。これに
より、高圧側41.から低圧側40、に既述した(1)
式に従ってCO2が透過し、低圧側4□7に移ったCO
2は滞留することなくラムエアBとの混合流Cとなって
排気系路5から機外に放出される。一方、高圧側411
から流出した02濃度の高い空気りは、途中02ボンベ
7から新たに供給される02と合流し、新鮮空気Eとな
って再びキャビン1内に移送され、搭乗者aの呼吸用空
気として利用される。
However, when a flight is performed while operating the graphic reproduction device, the CO2 in the cabin 1 gradually increases due to the breathing of the passenger a.
After the concentration rises, the air A is intermittently purified by the filter 3 and then introduced into the high pressure side 4H of the separator 4. The main components are CO2 and N2.02. On the other hand, on the low pressure side 4L of the separator 4, ram air B containing mainly N2.02 is supplied.
is in circulation, and this ram air B is blown out of the machine through the exhaust system path 5 without any stagnation. The CO2 concentration in Lamnia B is almost zero (about 350 ppm). Furthermore, while the cabin air A is pressurized to Li, the ram air B is at a relatively low pressure, and by introducing these, a certain degree of differential pressure will act on the separation membrane 4a. As a result, the high pressure side 41. From the low pressure side 40, as already mentioned (1)
According to the formula, CO2 permeates and moves to the low pressure side 4□7
2 becomes a mixed flow C with ram air B and is discharged from the exhaust system passage 5 to the outside of the machine. On the other hand, the high pressure side 411
The air with a high concentration of 02 flowing out from the 02 cylinder 7 joins with the 02 newly supplied from the 02 cylinder 7 on the way, becomes fresh air E, and is transferred back into the cabin 1, where it is used as breathing air for the passenger a. Ru.

しかして、このような構成によると、運転開始から時間
が経過しても分離器4の低圧側4LにCO2が滞留する
ようなことがなく、C02分圧に関し、常に高圧側41
1との間に所要の差圧を確保しておくことができる。こ
のため、分離膜4aては終始安定した透過(mQを生じ
、その結果02ボンベ7からの02供給量が低減されて
ボンベ搭載量を少なくすることができる。
According to such a configuration, CO2 does not remain on the low pressure side 4L of the separator 4 even after time has passed since the start of operation, and the partial pressure of CO2 is always maintained on the high pressure side 41.
It is possible to secure the required differential pressure between 1 and 1. Therefore, the separation membrane 4a produces stable permeation (mQ) from beginning to end, and as a result, the amount of 02 supplied from the 02 cylinder 7 is reduced, and the amount loaded in the cylinder can be reduced.

また、02分圧に着1」すると、分離器4の低圧側4 
+−にラムニアB中の02が導入されるため、逆に高圧
側41(との差圧が低減することになる。
Also, when the partial pressure reaches 02, the low pressure side 4 of the separator 4
Since 02 in the lumnia B is introduced into the +- side, the pressure difference between the high-pressure side 41 (and the high-pressure side 41) decreases.

このため、(1)式によると循環系路2内の02が分離
膜4aを透過する比率が低減することになり、有用な0
2を廃棄せずより多量に再生利用し得るものとなる。
Therefore, according to equation (1), the ratio of 02 in the circulation system path 2 passing through the separation membrane 4a is reduced, and the useful 02 is transmitted through the separation membrane 4a.
2 can be recycled in larger quantities without having to be discarded.

ここに、第2図は第1図に示した構成にょる一実験結果
を示すものである。Sを膜面積[ril’]、Q2を透
過量[N27m1nl 、QAIRを低圧側4Lにおけ
るラムエアの導入量[N!:I/[[lin]、QBo
を乗員呼吸に必要な02を全てボンベから供給した場合
の乗員−人当りの02ボンベ消費量[N、ll) /m
1nlとし、横軸に比率QA□1./(QA□l++Q
2)をとり、縦軸にSまたはQBOをとっている(実線
はSに関し、破線はQBOに関する。また、機内空気A
を分離器4に導入する際にコンプレッサで圧縮すること
も試み、PRCはその場合の圧縮比を表している)。こ
れらの測定条件は、飛行高度40000 f t 。
Here, FIG. 2 shows the results of an experiment using the configuration shown in FIG. 1. S is the membrane area [ril'], Q2 is the permeation amount [N27ml1nl], and QAIR is the amount of ram air introduced on the low pressure side 4L [N! :I/[[lin], QBo
02 cylinder consumption per crew member when all the 02 necessary for crew breathing is supplied from cylinders [N, ll)/m
1nl, and the horizontal axis represents the ratio QA□1. /(QA□l++Q
2), and the vertical axis is S or QBO (the solid line relates to S and the broken line relates to QBO. Also, the cabin air A
An attempt was also made to compress it with a compressor when introducing it into the separator 4, and PRC represents the compression ratio in that case). These measurement conditions were a flight altitude of 40,000 ft.

キャビン供給ガス圧P+ =399 [mm11g] 
、02濃度58%、膜透過ガス圧P 2 = 141 
[mmHg](=ラムエア圧)、呼吸量−26,3[N
、12 /minコ、1 供給ガスのCO2濃度≦0.3%としている。
Cabin supply gas pressure P+ = 399 [mm11g]
, 02 concentration 58%, membrane permeation gas pressure P 2 = 141
[mmHg] (= ram air pressure), respiratory rate -26.3 [N
, 12/min, 1 The CO2 concentration of the supplied gas is ≦0.3%.

この実験結果が示すように、低圧側4.7に占めるラム
エア導入量Q A I Rの割合が増すほど(1に近づ
くほど)、膜面積Sが小さくても予め設定した所要の透
過ガス圧P2の下でCO2の所要量を除去することこと
ができるようになる。膜面積Sが一定であれば、ラムエ
ア導入量QAIRが増すほど機内空気Aをさほどコンプ
レスせずとも所要の透過ガス圧P2の下でCO2の所要
量を除去できるようになる。このため、本実雄側による
と、征来CO2の分離を促進するために備えていた真空
ポンプ等の排気手段が不要となり、その動力も与える必
要がなくなるだけでなく、真空排気を行う程の差圧を分
離膜4aに作用させる必要がなくなるため、膜の破損を
防いで寿命を増大させることができるものとなる。さら
には、膜面積Sを小さくして膜モジュールを小型軽量化
し、或いはコンプレッサを小型化若しくは除去できる等
、様々な点でメリットが得られるものとなる。
As shown by this experimental result, as the ratio of the ram air introduction amount Q A I R to the low pressure side 4.7 increases (as it approaches 1), even if the membrane area S is small, the preset required permeate gas pressure P2 It becomes possible to remove the required amount of CO2 under If the membrane area S is constant, as the ram air introduction amount QAIR increases, the required amount of CO2 can be removed under the required permeate gas pressure P2 without compressing the cabin air A so much. For this reason, according to Motoshio, the evacuation means such as vacuum pumps, which were previously provided to promote the separation of CO2, are no longer necessary, and there is no need to provide power for them, and the difference between vacuum evacuation and Since it is no longer necessary to apply pressure to the separation membrane 4a, damage to the membrane can be prevented and its life can be increased. Furthermore, advantages can be obtained in various respects, such as reducing the membrane area S to make the membrane module smaller and lighter, or reducing the size of the compressor or eliminating it.

また、このような特性は02ボンベ供給量につ2 いても同様で、同図山破線に示すようにラムエア導入f
fl Q A I Rが増すほど必要な02ボンベ供給
量が低減され、02ボンベ供給量が一定ならラムエア導
入量QAIRを増すことによってコンプレッサを不要に
することができる。
In addition, these characteristics are the same for the 02 cylinder supply amount, and as shown by the broken line in the top of the figure, the ram air introduction f
As fl Q A I R increases, the required 02 cylinder supply amount is reduced, and if the 02 cylinder supply amount is constant, the compressor can be made unnecessary by increasing the ram air introduction amount QAIR.

以上、本発明の一実施例について説明したが、各部の構
成は図示例に限定されない。例えば、分離膜の素利は0
2に対するCO2の分離比率が高いものであれば他のも
のを適宜使用することもできる。また、コンプレッサで
機内空気を圧縮した場合は帰還途上にある02濃度の高
い空気を降圧させる等、実用−ヒの変形は随所多様に行
われるものである。
Although one embodiment of the present invention has been described above, the configuration of each part is not limited to the illustrated example. For example, the basic value of a separation membrane is 0
Other materials can also be used as appropriate as long as they have a high separation ratio of CO2 to CO2. Further, when the cabin air is compressed by a compressor, the pressure of the air with high 02 concentration on the way back is lowered, and various other practical modifications can be made.

[発明の効果コ 本発明は、以上のように分離器の低圧側に機外の自然空
気流を導入するための外気導入系路を接続し、該分離器
において低圧側に透過したCO2を滞留させることなく
機外に放出するようにしているので、時間が経過しても
CO2濃度が上がって透過量が低下するということがな
くなり、長時間の使用にも支障を来たさないものとなる
。また、これによって低圧側の02分圧が高められるた
め、02は分離膜をより透過し難くなり、その結果、循
環系路内を流通する有用な02がCO2に随伴して廃棄
されることを有効に防止し得るものともなる。さらに、
所要の透過量を得るために分離器の低圧側を真空ポンプ
で吸引し、或いは高圧側を大きく昇圧すること等が殆ど
不必要になるので、周辺設備の小型簡略化と分離膜の延
命効果とが得られるものとなる。
[Effects of the Invention] As described above, the present invention connects the outside air introduction line for introducing natural airflow from outside the machine to the low pressure side of the separator, and retains CO2 that has permeated to the low pressure side in the separator. Since the CO2 concentration is released outside the machine without causing any damage, the CO2 concentration does not increase over time and the amount of permeation does not decrease, making it possible to use the product for long periods of time without any problems. . In addition, this increases the partial pressure of 02 on the low pressure side, making it more difficult for 02 to pass through the separation membrane, and as a result, useful 02 flowing through the circulation system is not discarded along with CO2. It can also be effectively prevented. moreover,
In order to obtain the required amount of permeation, it is almost unnecessary to use a vacuum pump to suck the low-pressure side of the separator or to greatly increase the pressure on the high-pressure side, which reduces the size and size of peripheral equipment and extends the life of the separation membrane. will be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示し、第1図
は概略的な構成説明図、第2図は実験結果を示すグラフ
である。また、第3図は従来例を示す第1図相当の構成
説明図である。
FIGS. 1 and 2 show an embodiment of the present invention, with FIG. 1 being a schematic diagram for explaining the configuration, and FIG. 2 being a graph showing experimental results. Further, FIG. 3 is an explanatory diagram of a configuration corresponding to FIG. 1 showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 機内空気を循環させる循環系路と、この循環系路に介設
され少なくともO_2に比してより多量のCO_2を高
圧側から低圧側に選択分離する機能を有した分離器と、
この分離器の低圧側に接続され分離したCO_2濃度の
高い空気を機外に放出する排気系路とを具備してなり、
前記分離器の高圧側から流出したO_2濃度の高い空気
を循環系路を通じて再度機内に供給し得るように構成さ
れたものにおいて、前記分離器の低圧側に、機外の自然
空気流を導入するための外気導入系路を接続したことを
特徴とする航空機用空気再生装置。
a circulation system path for circulating cabin air; a separator interposed in the circulation system path and having a function of selectively separating at least a larger amount of CO_2 than O_2 from the high pressure side to the low pressure side;
It is equipped with an exhaust system line connected to the low pressure side of the separator and discharging the separated air with a high concentration of CO_2 to the outside of the aircraft,
In a device configured such that air with high O_2 concentration flowing out from the high pressure side of the separator can be supplied into the machine again through the circulation system, a natural air flow from outside the machine is introduced into the low pressure side of the separator. An air regeneration device for an aircraft, characterized in that an outside air introduction system is connected to the air regeneration system.
JP19737489A 1989-07-29 1989-07-29 Air regeneration equipment for aircraft Expired - Fee Related JP2737281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19737489A JP2737281B2 (en) 1989-07-29 1989-07-29 Air regeneration equipment for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19737489A JP2737281B2 (en) 1989-07-29 1989-07-29 Air regeneration equipment for aircraft

Publications (2)

Publication Number Publication Date
JPH0361198A true JPH0361198A (en) 1991-03-15
JP2737281B2 JP2737281B2 (en) 1998-04-08

Family

ID=16373442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19737489A Expired - Fee Related JP2737281B2 (en) 1989-07-29 1989-07-29 Air regeneration equipment for aircraft

Country Status (1)

Country Link
JP (1) JP2737281B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691646A1 (en) * 1992-06-01 1993-12-03 Pall Corp Separation of components of fluid mixtures in an aircraft.
WO2004060538A1 (en) * 2003-01-07 2004-07-22 Blue Membranes Gmbh Method and device for reducing the carbon dioxide concentration in air
US9034408B2 (en) 2004-01-28 2015-05-19 Apio, Inc. Packaging
WO2018199164A1 (en) * 2017-04-27 2018-11-01 川崎重工業株式会社 Air purification system
JP2020124684A (en) * 2019-02-05 2020-08-20 川崎重工業株式会社 Air cleaning system
US11255345B2 (en) 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
JP2023052725A (en) * 2021-09-28 2023-04-12 川崎重工業株式会社 Air cleaning system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429663A (en) * 1992-06-01 1995-07-04 Pall Corporation Removal in aircraft of components from fluid mixtures
FR2691646A1 (en) * 1992-06-01 1993-12-03 Pall Corp Separation of components of fluid mixtures in an aircraft.
WO2004060538A1 (en) * 2003-01-07 2004-07-22 Blue Membranes Gmbh Method and device for reducing the carbon dioxide concentration in air
CN100379486C (en) * 2003-01-07 2008-04-09 布卢薄膜有限责任公司 Method and device for reducing the carbon dioxide concentration in air
US7601202B2 (en) 2003-01-07 2009-10-13 Blue Membranes Gmbh Method and device for reducing the carbon dioxide concentration in air
US9034408B2 (en) 2004-01-28 2015-05-19 Apio, Inc. Packaging
US11255345B2 (en) 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
WO2018199164A1 (en) * 2017-04-27 2018-11-01 川崎重工業株式会社 Air purification system
CN110494696A (en) * 2017-04-27 2019-11-22 川崎重工业株式会社 Air cleaning system
JP2018185115A (en) * 2017-04-27 2018-11-22 川崎重工業株式会社 Air cleaning system
US11413573B2 (en) 2017-04-27 2022-08-16 Kawasaki Jukogyo Kabushiki Kaisha Air purifying system
JP2020124684A (en) * 2019-02-05 2020-08-20 川崎重工業株式会社 Air cleaning system
JP2023052725A (en) * 2021-09-28 2023-04-12 川崎重工業株式会社 Air cleaning system

Also Published As

Publication number Publication date
JP2737281B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US6585192B2 (en) Vented compartment inerting system
RU2433067C2 (en) System for improving air quality in airliner pressurised cabin
US7172157B2 (en) Increasing the performance of aircraft on-board inert gas generating systems by turbocharging
US4508548A (en) Air oxygen and nitrogen concentration device
US7601202B2 (en) Method and device for reducing the carbon dioxide concentration in air
US7219510B2 (en) Cooling system for an on-board inert gas generating system
US7172156B1 (en) Increasing the performance of aircraft on-board inert gas generating systems by turbocharging
EP1375349A1 (en) Oxygen/inert gas generator
EP0974389A2 (en) Method and apparatus for recovering a gaseous component from a gas mixture
DE2524242A1 (en) VACUUM EXTRACTION SYSTEM FOR OXYGEN ENRICHMENT DEVICE WITH MEMBRANES
CA2527370A1 (en) On-board system for generating and supplying oxygen and nitrogen
EP3070000A2 (en) Engine proximate nitrogen generation system for an aircraft
US4222871A (en) Improvements in the separation of liquid mixtures by ultrafiltration
JPH0361198A (en) Air regenerating device for aircraft
JPH03101807A (en) Membrane type gas separator
US6132693A (en) Process and device for reducing pollutants, especially nitrogen oxides in combustion exhaust gases
US7442238B2 (en) Means for air fractionization
JP2737291B2 (en) Air release device
JP4345917B2 (en) Gas generation system and gas generation method
EP0400823A3 (en) Method of separating a mixed hydrogen/hydrogen selenide vapor stream
JP4243861B2 (en) Air conditioner for aircraft
JPH02179599A (en) Air conditioner for aircraft
EP0457895A1 (en) Device for continuously cleansing the exhaust gases of a vacuum installation.
JPH0328363B2 (en)
CN212818662U (en) Air separation system gas purification equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees