JPH04180811A - Treatment of exhaust gas containing organic vapor - Google Patents

Treatment of exhaust gas containing organic vapor

Info

Publication number
JPH04180811A
JPH04180811A JP30644190A JP30644190A JPH04180811A JP H04180811 A JPH04180811 A JP H04180811A JP 30644190 A JP30644190 A JP 30644190A JP 30644190 A JP30644190 A JP 30644190A JP H04180811 A JPH04180811 A JP H04180811A
Authority
JP
Japan
Prior art keywords
gas
organic vapor
vapor
cooler
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30644190A
Other languages
Japanese (ja)
Other versions
JP2898741B2 (en
Inventor
Katsumi Ishii
勝視 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP30644190A priority Critical patent/JP2898741B2/en
Publication of JPH04180811A publication Critical patent/JPH04180811A/en
Application granted granted Critical
Publication of JP2898741B2 publication Critical patent/JP2898741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the transmission speed of organic vapor to recover the organic vapor efficiently and exhaust the organic vapor in gas at low concentration by condensing a transmission gas obtained by concentrating the organic vapor a gas separation film module by compression/cooling technique, and thereby recovering the organic vapor. CONSTITUTION:Transmisson gas in a gas separation film module which is returned from a return pipe 6 is allowed to join an exhaust gas from an exhaust gas source 1, then the confluent gas is pressurized by a compressor 4 and the compressed gas is conducted to a cooler 5. Then, an organic vapor which exceeds the saturated vapor pressure of the organic vapor at a cooler temperature is condensed and the condensed vapor is recovered. At the outlet of the cooler 5, an organic vapor equal to a saturated vapor pressure at the cooler temperature is present. This gas is conducted to the gas separation film module 2 by the fluid energy of the gas, and the organic vapor in a feed gas transmits through the film at a faster transmission speed than air under a specific differential pressure between films obtained by the control of a pressure adjustment valve 32. The faster transmission speed is caused by the selective transmissibility of the film. Thus, the organic vapor concentration of the transmission gas is thicker than the organic vapor at the outlet of the cooler 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機蒸気を含有する排ガスを、有機蒸気を回収
しつつ有機蒸気を低濃度にして大気中に放出する場合に
使用する有機蒸気含有排ガスの処理方法に関するもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an organic vapor-containing waste gas that is used when exhaust gas containing organic vapor is released into the atmosphere at a low concentration while recovering the organic vapor. The present invention relates to a method for treating exhaust gas.

(従来の技術) 化学工場等においては、空気或いは窒素ガス等の不活性
ガス雰囲気中で有機溶剤等の揮発性有機物質を大量に使
用することがあり、この場合、有機蒸気を含有した空気
、窒素ガス等が排ガスとして大量に放出される。従って
、経済上並びに環境衛生の観点から排ガス中の有機蒸気
を回収する必要がある。
(Prior Art) In chemical factories, etc., volatile organic substances such as organic solvents are sometimes used in large quantities in an atmosphere of air or an inert gas such as nitrogen gas, and in this case, air containing organic vapor, Large amounts of nitrogen gas etc. are released as exhaust gas. Therefore, it is necessary to recover the organic vapors in the exhaust gas from the viewpoint of economy and environmental hygiene.

有機蒸気を回収する基本的な方法として凝縮法が知られ
ており、最近、第3図に示すように、この凝縮法とガス
膜分離との組合せによって有機蒸気の回収効率を向上す
ることが提案されている(公開特許公報昭61−423
19号公報)。
The condensation method is known as a basic method for recovering organic vapors, and recently it has been proposed to improve the recovery efficiency of organic vapors by combining this condensation method with gas membrane separation, as shown in Figure 3. (Unpublished Patent Publication 1986-423)
Publication No. 19).

第3図において、1′は有機蒸気を含有する排ガスの発
生源である。2′は有機蒸気に対して選択透過性を有す
るガス分離膜モジュールであり、21′は透過側を、2
2′は非透過側をそれぞれ示し、非透過ガスをリターン
管6′により排ガス供給側にリターンさせている。4′
は透過ガスを加圧する圧縮器、5′は冷却器である。
In FIG. 3, 1' is a source of exhaust gas containing organic vapor. 2' is a gas separation membrane module having selective permselectivity for organic vapor; 21' is the permeation side;
Reference numeral 2' indicates a non-permeable side, and the non-permeable gas is returned to the exhaust gas supply side through a return pipe 6'. 4′
5' is a compressor that pressurizes the permeated gas, and 5' is a cooler.

第3図において、排ガス発生源1′からの有機蒸気含有
排ガスが送風機7′によりガス分離膜モジュール2′に
所定の圧力で送入され、ガス分離膜モジュール2′の有
機蒸気に対する選択透過性のために有機蒸気が空気より
も大なる透過速度で膜を透過し、従って、透過側におい
ては、有機蒸気の濃度が高くなる。この透過ガスか圧縮
機4′による加圧のうえ冷却器5′に導入され、冷却温
度における有機蒸気の飽和蒸気圧を越える有機蒸気が凝
縮により回収され、回収後のガスが大気中に放出される
。他方、ガス分離膜モジュールの非透過側において、有
機蒸気含有ガスが膜面に接触して流動する間、上記有機
蒸気の透過によって希釈された非透過ガスが排ガス供給
側にリターン管6′によりリターンされ、このリターン
ガスが排ガス源1′からの排ガスと合流してガス分離膜
モジュール2′に送られていく。
In FIG. 3, organic vapor-containing exhaust gas from an exhaust gas generation source 1' is sent to a gas separation membrane module 2' at a predetermined pressure by a blower 7', and the permselectivity for organic vapors of the gas separation membrane module 2' is increased. Therefore, organic vapors permeate through the membrane at a higher permeation rate than air, and therefore the concentration of organic vapors is higher on the permeate side. This permeated gas is pressurized by the compressor 4' and then introduced into the cooler 5', where the organic vapor exceeding the saturated vapor pressure of the organic vapor at the cooling temperature is recovered by condensation, and the recovered gas is released into the atmosphere. Ru. On the other hand, on the non-permeate side of the gas separation membrane module, while the organic vapor-containing gas flows in contact with the membrane surface, the non-permeate gas diluted by the permeation of the organic vapor is returned to the exhaust gas supply side via the return pipe 6'. This return gas is combined with the exhaust gas from the exhaust gas source 1' and sent to the gas separation membrane module 2'.

(解決しようとする課題) 上記の排ガス処理において、冷却器出口での排出ガスは
高速であり、相当のエネルギーを有しているが、上記の
排ガス処理方法においては、この排出ガスのエネルギー
を何ら利用することなく、大気中に放出しており、不経
済である。即ち、上し得ると共にガス分離膜モジュール
の膜間差圧の増加に使用でき、有機蒸気の透過速度を増
大できる。
(Problem to be solved) In the above exhaust gas treatment, the exhaust gas at the outlet of the cooler is at high speed and has considerable energy, but in the above exhaust gas treatment method, the energy of this exhaust gas is not used at all. It is uneconomical because it is released into the atmosphere without being used. That is, it can be used to increase the transmembrane pressure difference of the gas separation membrane module, and the permeation rate of organic vapor can be increased.

(実施例の説明) 以下、図面により本発明の詳細な説明する。(Explanation of Examples) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明において使用する排ガス処理装置の一例
を示している。
FIG. 1 shows an example of an exhaust gas treatment device used in the present invention.

第1図において、1は有機蒸気含有ガスの発生源、即ち
排ガス源である。2はガス膜分離膜モジュールであり、
膜には有機蒸気に対して選択透過性を有するものを使用
している。21はガス分離膜モジュール2のガス供給側
を、22は非透過ガス出口を、23は透過ガス出口をそ
れぞれ示している。
In FIG. 1, numeral 1 indicates a source of organic vapor-containing gas, that is, an exhaust gas source. 2 is a gas membrane separation membrane module;
The membrane used has selective permeability to organic vapors. Reference numeral 21 indicates the gas supply side of the gas separation membrane module 2, 22 indicates a non-permeable gas outlet, and 23 indicates a permeable gas outlet.

31は非透過ガス排出管、32は該非透過ガス排出管3
1中に設けた圧力調整バルブである。4はガス分離膜モ
ジュール2のガス供給側に設けた圧縮機である。5は圧
縮機4とガス分離膜モジュール2との間に設けた冷却器
、51は冷却器で発生した凝縮液の回収管である。6は
ガス分離膜モジュール2の透過ガス出口23から圧縮機
4の入口に至るリタし得ると共にガス分離膜モジュール
の膜間差圧の増加に使用でき、有機蒸気の透過速度を増
大できる。
31 is a non-permeable gas discharge pipe, 32 is the non-permeable gas discharge pipe 3
This is a pressure regulating valve installed in 1. 4 is a compressor provided on the gas supply side of the gas separation membrane module 2. 5 is a cooler provided between the compressor 4 and the gas separation membrane module 2, and 51 is a recovery pipe for the condensate generated in the cooler. 6 can be returned from the permeate gas outlet 23 of the gas separation membrane module 2 to the inlet of the compressor 4, and can be used to increase the transmembrane pressure difference of the gas separation membrane module, thereby increasing the permeation rate of organic vapor.

(実施例の説明) 以下、図面により本発明の詳細な説明する。(Explanation of Examples) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明において使用する排ガス処理装置の一例
を示している。
FIG. 1 shows an example of an exhaust gas treatment device used in the present invention.

第1図において、1は有機蒸気含有ガスの発生源、即ち
排ガス源である。2はガス膜分離膜モジュールであり、
膜には有機蒸気に対して選択透過性を有するものを使用
している。21はガス分離膜モジュール2のガス供給側
を、22は非透過ガス出口を、23は透過ガス出口をそ
れぞれ示している。
In FIG. 1, numeral 1 indicates a source of organic vapor-containing gas, that is, an exhaust gas source. 2 is a gas membrane separation membrane module;
The membrane used has selective permeability to organic vapors. Reference numeral 21 indicates the gas supply side of the gas separation membrane module 2, 22 indicates a non-permeable gas outlet, and 23 indicates a permeable gas outlet.

31は非透過ガス排出管、32は該非透過ガス排出管3
1中に設けた圧力調整バルブである。4はガス分離膜モ
ジュール2のガス供給側に設けた圧縮機である。5は圧
縮機4とガス分離膜モジュール2との間に設けた冷却器
、51は冷却器で発生した凝縮液の回収管である。6は
ガス分離膜モジュール2の透過ガス出口23から圧縮機
4の入口に至るリターン管である。
31 is a non-permeable gas discharge pipe, 32 is the non-permeable gas discharge pipe 3
This is a pressure regulating valve installed in 1. 4 is a compressor provided on the gas supply side of the gas separation membrane module 2. 5 is a cooler provided between the compressor 4 and the gas separation membrane module 2, and 51 is a recovery pipe for the condensate generated in the cooler. 6 is a return pipe extending from the permeate gas outlet 23 of the gas separation membrane module 2 to the inlet of the compressor 4.

本発明は有機蒸気含有排ガス(例えば、ヘキサン蒸気含
有空気)を、有機蒸気を回収しつつ大気中に放出する場
合に使用する。
The present invention is used when exhaust gas containing organic vapor (for example, air containing hexane vapor) is discharged into the atmosphere while recovering the organic vapor.

本発明により排ガスを処理するには、排ガス源1からの
排ガスに、リターン管6によりリターンされてくるガス
分離膜モジュール2の透過ガスを合流させ、この合流ガ
スを圧縮機4により加圧して冷却器5に導き、冷却器温
度における有機蒸気の飽和蒸気圧を越える有機蒸気を凝
縮させて回収する。冷却器5の出口では、冷却器温度に
おける飽和蒸気正分の有機蒸気を含有している。このガ
スを該ガスの流動エネルギーによりガス分離膜モジュー
ル2に導入し、圧力調整バルブ32の操作による所定の
膜間差圧下、供給ガス中の有機蒸気が膜の選択透過性の
ために空気よりも大なる透過速度で膜を透過し、透過ガ
スの有機蒸気濃度が冷却器5の出口での有機蒸気よりも
濃縮される。この透過ガスはリターン管6により圧縮機
4の入口側にリターンされる。
To treat exhaust gas according to the present invention, the exhaust gas from the exhaust gas source 1 is combined with the permeate gas from the gas separation membrane module 2 that is returned through the return pipe 6, and the combined gas is compressed and cooled by the compressor 4. The organic vapor exceeding the saturated vapor pressure of the organic vapor at the cooler temperature is condensed and recovered. At the outlet of the cooler 5 it contains organic vapor equal to the saturated vapor at the cooler temperature. This gas is introduced into the gas separation membrane module 2 by the flow energy of the gas, and under a predetermined transmembrane differential pressure by operating the pressure regulating valve 32, the organic vapor in the supplied gas is more concentrated than air due to the permselectivity of the membrane. It permeates through the membrane at a large permeation rate, and the organic vapor concentration in the permeate gas is more concentrated than that at the outlet of the cooler 5. This permeate gas is returned to the inlet side of the compressor 4 through a return pipe 6.

上記において、ガス分離膜モジュール2内に入ったガス
は、膜面に接触しつつ流動し、この間、有機蒸気が空気
よりも多量に膜を透過するので、ガス分離膜モジュール
2の非透過ガス出口22での有機蒸気濃度を低濃度にで
きる。このガス分離膜モジュール2の非透過ガス出口2
2での有機蒸気濃度は、当該ガス分離膜モジュール2の
膜間差圧、従って圧縮機4の加圧力やステージカット(
透過ガス量のモジュールへの供給ガス量に対する比)に
よって制御できる。
In the above, the gas that has entered the gas separation membrane module 2 flows while contacting the membrane surface, and during this time, organic vapor permeates through the membrane in a larger amount than air, so the non-permeable gas outlet of the gas separation membrane module 2 The organic vapor concentration at 22 can be reduced to a low concentration. Non-permeable gas outlet 2 of this gas separation membrane module 2
The organic vapor concentration at step 2 is determined by the transmembrane pressure of the gas separation membrane module 2, the pressurizing force of the compressor 4, and the stage cut (
It can be controlled by the ratio of the amount of permeated gas to the amount of gas supplied to the module.

上記の有機蒸気に対して選択透過性を有する膜、即ち、
空気よりも有機蒸気のガス透過速度が大きな膜としては
、ポリイミド、ポリスルホン、セルロースナイトレート
又はセルロースアセテート等の多孔質支持膜とシリコー
ン樹脂、ポリアクリロニトリル・ブタジェン等の半透膜
との複合膜等を使用できる。膜モジュールの構造として
は、スパイラル膜型、中空糸膜型、管状膜型或いはプレ
ート型等を使用できる。
A membrane having selective permselectivity for the above organic vapor, i.e.
Examples of membranes that have a higher gas permeation rate for organic vapor than air include composite membranes consisting of a porous support membrane made of polyimide, polysulfone, cellulose nitrate, or cellulose acetate, and a semipermeable membrane made of silicone resin, polyacrylonitrile/butadiene, etc. Can be used. As the structure of the membrane module, a spiral membrane type, a hollow fiber membrane type, a tubular membrane type, a plate type, etc. can be used.

本発明の有機蒸気含有排ガスの処理方法によれば、有機
蒸気含有排ガスから有機蒸気を効率よく回収し得ると共
に大気中に放出するガス中の有機蒸気濃度を低濃度にし
て排気処理できる。このことは吹ぎの試験結果からも確
認できる。
According to the method for treating organic vapor-containing exhaust gas of the present invention, organic vapor can be efficiently recovered from the organic vapor-containing exhaust gas, and the organic vapor concentration in the gas released into the atmosphere can be reduced to a low concentration for exhaust treatment. This can also be confirmed from the blowing test results.

(試験結果) 第1図において、ガス分離膜モジュール2には、膜がポ
リイミド多孔質支持膜とシリコーン樹脂半透膜との複合
膜であり、膜面積が14m2であるスパイラル型膜モジ
ュールを使用し、圧縮機4の加圧カニ 5kg/cm2
・G、ステージカット:0゜6、透過ガス圧カニOkg
/cm2・G、温度=25℃で運転した。ヘキサン蒸気
濃度:20VOL%のヘキサン含有空気を流量39Nr
n’/hで供給した。
(Test results) In Figure 1, the gas separation membrane module 2 uses a spiral-type membrane module in which the membrane is a composite membrane of a polyimide porous support membrane and a silicone resin semipermeable membrane, and the membrane area is 14 m2. , Pressure crab of compressor 4 5kg/cm2
・G, stage cut: 0°6, permeation gas pressure crab Okg
/cm2·G, temperature = 25°C. Hexane vapor concentration: 20VOL% hexane-containing air at a flow rate of 39Nr
It was supplied at n'/h.

大気に放出するガス分離膜モジュール2の比透過ガスの
ヘキサン濃度は0.4VOL%であり、流量は31Nm
’/hであった。凝縮によるヘキサン回収率は98%で
あった。
The hexane concentration of the specific permeation gas of the gas separation membrane module 2 released into the atmosphere is 0.4 VOL%, and the flow rate is 31 Nm.
'/h. The hexane recovery rate by condensation was 98%.

上記の実施例においては、ガス分離膜モジュール2に、
有機蒸気に対し選択透過性を有するものを使用し、透過
側の濃縮ガスを圧縮機4の入口側にリターンさせると共
に非透過ガスを大気中に放出しているが、有機蒸気含有
ガスのベースガス(空気、窒素等の不活性ガス)に対し
選択透過性を有するガス分離膜モジュールを使用し、第
2図に示すように、ガス分離膜モジュール2の非透過側
の有機蒸気濃縮ガスをリターン管6により圧縮機4の入
口側にリターンさせると共に透過側の有機蒸気希釈ガス
を大気中に放出することもできる。
In the above embodiment, the gas separation membrane module 2 includes:
The base gas of the organic vapor-containing gas is used to return the concentrated gas on the permeate side to the inlet side of the compressor 4 and release the non-permeable gas into the atmosphere. A gas separation membrane module that has selective permeability to (inert gases such as air and nitrogen) is used, and as shown in Figure 2, the organic vapor concentrated gas on the non-permeation side of the gas separation membrane module 2 is passed through a return tube. 6 allows the organic vapor dilution gas on the permeate side to be returned to the inlet side of the compressor 4 and discharged into the atmosphere.

第2図において、21はガス分離膜モジュール2のガス
供給口を、22は非透過ガス出口を、23は透過ガス出
口を、32は圧力調整弁を、5は冷却器を、51は凝縮
液回収管をそれぞれ示している。
In Fig. 2, 21 is the gas supply port of the gas separation membrane module 2, 22 is the non-permeate gas outlet, 23 is the permeate gas outlet, 32 is the pressure regulating valve, 5 is the cooler, and 51 is the condensate liquid. Each recovery tube is shown.

(発明の効果) 本発明の有機蒸気含有排ガスの処理方法は上述した通り
の構成であり、ガス分離膜モジュールにより有機蒸気を
濃縮した透過ガスを圧縮冷却により凝縮して有機蒸気を
回収するのみならず、この回収後のガスの圧力でガス分
離膜モジュールの膜間差圧を高くできるから、ガス分離
膜モジュールの透過・分離速度を増大できる。従って、
それだけ有機蒸気の処理速度を速くでき、これに伴い有
機蒸気の回収速度を増大できると共に大気中に放出する
ガスの有機蒸気濃度を低濃度にできる。
(Effects of the Invention) The method for treating organic vapor-containing exhaust gas of the present invention has the configuration as described above. First, since the pressure of the recovered gas can increase the intermembrane pressure difference of the gas separation membrane module, the permeation/separation rate of the gas separation membrane module can be increased. Therefore,
The processing speed of organic vapor can be increased accordingly, and the recovery speed of organic vapor can accordingly be increased, and the concentration of organic vapor in the gas released into the atmosphere can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、並びに第2図はそれぞれ本発明において使用す
る異なる有機蒸気含有排ガスの処理装置を示す説明図、
第3図は従来例を示す説明図である。 1・・・排ガス源、2・・・ガス分離膜モジュール、4
・・・圧縮機、5・・・冷却器、6・・・リターン管。
FIG. 1 and FIG. 2 are explanatory diagrams showing different organic vapor-containing exhaust gas treatment apparatuses used in the present invention, respectively;
FIG. 3 is an explanatory diagram showing a conventional example. 1... Exhaust gas source, 2... Gas separation membrane module, 4
... Compressor, 5... Cooler, 6... Return pipe.

Claims (1)

【特許請求の範囲】[Claims] 有機蒸気を含有した排ガスを圧縮機により加圧して冷却
器に導き、該冷却器において有機蒸気を凝縮回収し、有
機蒸気回収後の低濃度ガスをガス分離膜モジュールに導
いて分離処理し、有機蒸気濃縮ガスを圧縮機の入口側に
戻すと共に有機蒸気希釈ガスを大気に放出することを特
徴とする有機蒸気含有排ガスの処理方法。
The exhaust gas containing organic vapor is pressurized by a compressor and guided to a cooler, where the organic vapor is condensed and recovered.The low-concentration gas after recovering the organic vapor is guided to a gas separation membrane module for separation treatment. A method for treating exhaust gas containing organic vapor, characterized by returning vapor concentrated gas to the inlet side of a compressor and releasing organic vapor diluted gas to the atmosphere.
JP30644190A 1990-11-13 1990-11-13 Treatment method of exhaust gas containing organic vapor Expired - Fee Related JP2898741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30644190A JP2898741B2 (en) 1990-11-13 1990-11-13 Treatment method of exhaust gas containing organic vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30644190A JP2898741B2 (en) 1990-11-13 1990-11-13 Treatment method of exhaust gas containing organic vapor

Publications (2)

Publication Number Publication Date
JPH04180811A true JPH04180811A (en) 1992-06-29
JP2898741B2 JP2898741B2 (en) 1999-06-02

Family

ID=17957045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30644190A Expired - Fee Related JP2898741B2 (en) 1990-11-13 1990-11-13 Treatment method of exhaust gas containing organic vapor

Country Status (1)

Country Link
JP (1) JP2898741B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709733A (en) * 1995-05-29 1998-01-20 Nitto Denko Corporation Gas separation method
US5772734A (en) * 1997-01-24 1998-06-30 Membrane Technology And Research, Inc. Membrane hybrid process for treating low-organic-concentration gas streams
US5948984A (en) * 1997-06-02 1999-09-07 Hedberg; Carl Vance Structural integrity recovery system
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2008173545A (en) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology System for recovering organic vapor and method for recovering vapor
JP2009040910A (en) * 2007-08-09 2009-02-26 Hitachi Cable Ltd Liquefying recovery method for chemical agent, and liquefying recovery device for chemical agent
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709733A (en) * 1995-05-29 1998-01-20 Nitto Denko Corporation Gas separation method
US5772734A (en) * 1997-01-24 1998-06-30 Membrane Technology And Research, Inc. Membrane hybrid process for treating low-organic-concentration gas streams
US5948984A (en) * 1997-06-02 1999-09-07 Hedberg; Carl Vance Structural integrity recovery system
JP2005213087A (en) * 2004-01-29 2005-08-11 Nippon Oil Corp Method for producing high purity hydrogen
JP2008173545A (en) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology System for recovering organic vapor and method for recovering vapor
JP2009040910A (en) * 2007-08-09 2009-02-26 Hitachi Cable Ltd Liquefying recovery method for chemical agent, and liquefying recovery device for chemical agent
JP4737162B2 (en) * 2007-08-09 2011-07-27 日立電線株式会社 Drug liquefaction recovery method and drug liquefaction recovery device
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same

Also Published As

Publication number Publication date
JP2898741B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0701857A1 (en) Membrane dehydration of vaporous feeds by countercurrent condensable sweep
JPH05192530A (en) Improved gas film separating method
JPH067628A (en) Method and device for film separation and drying at two stage
JPH08198606A (en) Method and apparatus for membrane separation of gas
JP2007330965A (en) Method for separating component of supply flow of multicomponent
JPH04227815A (en) Improved membrane nitrdgen method and its system
Poddar et al. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
JPS63248418A (en) Separation of gaseous mixture
JP2005270814A (en) Method and apparatus for gas separation
JP3727552B2 (en) Perfluoro compound gas separation and recovery equipment
JPH0761412B2 (en) Ultrapure water production system
JPS63258601A (en) Concentration of aqueous organic solution
JPH11267644A (en) Water treating apparatus
JP2023540907A (en) Membrane process for hydrogen recovery from sulfur recovery tail gas stream of sulfur recovery unit and process for environmentally friendly sales gas
JP2832371B2 (en) Organic solvent vapor recovery method
JPH0667449B2 (en) Gas dehumidification method
JPH03245812A (en) Separation of gas
JPS63305917A (en) Production of ultrapure water and equipment thereof and method for using ultrapure water
JPH05226A (en) Dehydration and concentration of aqueous solution of organic matter
JPH04131118A (en) Continuous treatment of gas containing organic solvent vapor
JPH0549841A (en) Recovering method of condensable organic vapor
JPH04290518A (en) Gas separating method
JPH04284814A (en) Gas separation device
JPS62193626A (en) Method for separating gaseous condensable component from gaseous mixture containing gaseous condensable component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees