JPH04290518A - Gas separating method - Google Patents
Gas separating methodInfo
- Publication number
- JPH04290518A JPH04290518A JP3076988A JP7698891A JPH04290518A JP H04290518 A JPH04290518 A JP H04290518A JP 3076988 A JP3076988 A JP 3076988A JP 7698891 A JP7698891 A JP 7698891A JP H04290518 A JPH04290518 A JP H04290518A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pressure
- condensable
- condensable gas
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 7
- 239000007789 gas Substances 0.000 claims abstract description 127
- 239000012528 membrane Substances 0.000 claims abstract description 53
- 239000012466 permeate Substances 0.000 claims abstract description 36
- 238000000926 separation method Methods 0.000 claims abstract description 33
- 230000005494 condensation Effects 0.000 claims abstract description 20
- 238000009833 condensation Methods 0.000 claims abstract description 20
- 239000011261 inert gas Substances 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Drying Of Gases (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はガス分離膜を使用したガ
ス分離方法に関し、凝縮性ガス、例えば、水蒸気または
ヘキサン,トルエン等の有機溶剤蒸気を含有した空気、
窒素ガス等の不活性ガスから、その凝縮性ガスを分離す
る場合に使用するものである。[Field of Industrial Application] The present invention relates to a gas separation method using a gas separation membrane.
It is used to separate condensable gas from inert gas such as nitrogen gas.
【0002】0002
【従来の技術】ガス分離膜の選択透過性を利用してガス
を分離する場合、分離すべきガスの膜表面に対する溶解
性と、溶解したガスの膜内での拡散性とによって透過速
度が定まり、膜間の差圧を大きくするほど透過速度を大
きくなし得る。[Prior Art] When gases are separated using the permselectivity of a gas separation membrane, the permeation rate is determined by the solubility of the gas to be separated on the membrane surface and the diffusivity of the dissolved gas within the membrane. The permeation rate can be increased by increasing the pressure difference between the membranes.
【0003】而して、従来、ガス分離膜モジュ−ルの操
作には、ガス供給側を加圧し、透過側を常圧とする加圧
−常圧系、ガス供給側を常圧とし、透過側を減圧する常
圧−減圧系が使用されており、透過側を減圧する場合、
ガス供給方法の如何によってはその供給手段に起因して
供給側が僅かに加圧される場合もあるが、これも実質上
、常圧−加圧系に属する。Conventionally, gas separation membrane modules have been operated using either a pressurized-atmospheric system in which the gas supply side is pressurized and the permeate side is at normal pressure, or a pressurized-atmospheric system in which the gas supply side is at normal pressure and the permeate side is at normal pressure. A normal pressure-reduced pressure system is used to reduce the pressure on the permeate side, and when reducing the pressure on the permeate side,
Depending on the gas supply method, the supply side may be slightly pressurized due to the supply means, but this also essentially belongs to the normal pressure-pressure system.
【0004】0004
【発明が解決しようとする課題】しかしながら、常圧−
減圧系では、分離しようとするガスが凝縮性の高いガス
である場合、例えば、水蒸気やヘキサン,トルエン等の
有機溶剤蒸気である場合、モジュ−ルの透過側でのガス
中の高濃度凝縮性ガスが、その透過側減圧下で過飽和と
なって凝縮し易い。[Problem to be solved by the invention] However, normal pressure -
In a reduced pressure system, when the gas to be separated is a highly condensable gas, for example, water vapor or organic solvent vapor such as hexane or toluene, the high concentration and condensability of the gas on the permeate side of the module The gas becomes supersaturated under reduced pressure on the permeate side and tends to condense.
【0005】また、加圧−常圧系においても、供給ガス
中の凝縮性ガスがその濃度如何によっては、その供給側
加圧力下で過飽和となって凝縮することがある。Furthermore, even in a pressurized-atmospheric pressure system, depending on the concentration of the condensable gas in the supply gas, it may become supersaturated and condense under the supply side pressurizing pressure.
【0006】かかる凝縮液の生成は、膜モジュ−ルの分
離性能や機械部品に悪影響をおよぼし、特に、分離性能
の低下については、上記溶解・拡散速度の単なる低下に
とどまらず、膜の凝縮液との接触による膜性能自体の低
下によるものも懸念され、深刻な問題である。[0006] The generation of such condensate adversely affects the separation performance of the membrane module and mechanical parts, and in particular, the deterioration of separation performance is not limited to a mere decrease in the dissolution/diffusion rate, but is also caused by the condensate of the membrane. There is also concern that the membrane performance itself may deteriorate due to contact with the membrane, which is a serious problem.
【0007】従来、水蒸気分離膜の場合、透過側に蓄積
する凝縮水を微量の乾燥空気等を連続的に流して除去す
る方法や供給側により濃度の低いガスを半回分的に流し
て一時的に透過側の凝縮水を除去する方法等が提案され
ている。Conventionally, in the case of water vapor separation membranes, the condensed water that accumulates on the permeate side has been removed by continuously flowing a small amount of dry air, or temporarily by flowing a low-concentration gas semi-batch on the supply side. A method for removing condensed water on the permeate side has been proposed.
【0008】しかしながら、これらの方法では、凝縮液
の発生を防止し得るものではなく、凝縮を不可避とし、
発生した凝縮液を除去するものであるから、一時的にし
ろ、凝縮液の膜への接触が避けられないから、上記膜性
能の低下を完全には排除し難い。[0008] However, these methods cannot prevent the generation of condensate, but make condensation unavoidable.
Since the generated condensate is removed, it is unavoidable that the condensate comes into contact with the membrane, even if only temporarily, so it is difficult to completely eliminate the aforementioned deterioration in membrane performance.
【0009】更に、水蒸気分離の場合の透過側への乾燥
空気によるパ−ジのように、たとえ、透過側の凝縮現象
を完全に防止し得たとしても、透過側パ−ジに要するエ
ネルギ−の損失を免れ得ず、分離膜装置の所要動力の上
昇が避けられない。Furthermore, even if the condensation phenomenon on the permeate side can be completely prevented, such as when purging the permeate side with dry air in the case of water vapor separation, the energy required for the permeate side purge is loss is unavoidable, and an increase in the power required for the separation membrane device is unavoidable.
【0010】本発明の目的は、凝縮性ガスを含有する不
活性ガスから凝縮性ガスを効率よく、凝縮を充分に防止
して分離できる方法を提供することにある。An object of the present invention is to provide a method that can efficiently separate condensable gas from an inert gas containing condensable gas while sufficiently preventing condensation.
【0011】[0011]
【課題を解決するための手段】本発明のガス分離方法は
、凝縮性ガスを含有する空気若しくは窒素ガス等の不活
性ガスを、大気圧以上で、上記不活性ガスでの凝縮性ガ
スに対する凝縮圧力以下に加圧してガス分離膜モジュ−
ルに供給し、該モジュ−ルの透過側を透過ガスでの凝縮
性ガスに対する凝縮圧力以下に減圧して凝縮性ガスを選
択的に透過させることを特徴とする構成である。[Means for Solving the Problems] The gas separation method of the present invention is to condense air containing a condensable gas or an inert gas such as nitrogen gas at a pressure higher than atmospheric pressure to the condensable gas using the inert gas. The gas separation membrane module is pressurized below the pressure.
This configuration is characterized in that the permeate side of the module is depressurized below the condensation pressure of the condensable gas in the permeate gas to selectively permeate the condensable gas.
【0012】0012
【作用】ガス分離膜モジュ−ルのガス供給側を加圧して
いても、その加圧力を供給ガスでの凝縮性ガスの凝縮圧
力以下に制限しているから、ガス供給側での凝縮性ガス
の凝縮を防止でき、透過側では、透過ガスでの凝縮性ガ
スの凝縮圧力以下に減圧してあるから、ガス透過側での
凝縮性ガスの凝縮も防止できる。更に、凝縮性ガスの分
離が溶解・拡散機構によって行われる以上、供給側加圧
−透過側減圧系に基づく大なる膜間差圧のために、透過
速度を高くできる。[Operation] Even if the gas supply side of the gas separation membrane module is pressurized, the pressure is limited to less than the condensation pressure of the condensable gas in the supply gas, so the condensable gas on the gas supply side Since the pressure on the permeate side is reduced below the condensation pressure of the condensable gas in the permeate gas, condensation of the condensable gas on the gas permeate side can also be prevented. Furthermore, since the condensable gas is separated by a dissolution/diffusion mechanism, the permeation rate can be increased due to the large transmembrane pressure difference based on the supply side pressurization/permeation side depressurization system.
【0013】[0013]
【実施例】以下、本発明の実施例を図面により説明する
。図1は本発明の実施例において使用するガス分離膜装
置を示している。図1において、Sはガス供給源である
。1は圧縮機である。2はガスク−ラ−であり、圧縮機
1のために昇温したガスを冷却して分離性能の低下を防
止している(膜のガス透過速度は、通常、温度が高くな
るとそれだけ低下する)。3はドレィントラップである
。4は分離膜モジュ−ルであり、スパィラル型、中空糸
膜型、管状型、プレ−ト型等何れの形式をも使用できる
。5は膜モジュ−ル4の透過側に設けた真空ポンプ、6
はコンデンサ−である。[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 shows a gas separation membrane device used in an embodiment of the present invention. In FIG. 1, S is a gas supply source. 1 is a compressor. 2 is a gas cooler, which cools the gas heated by the compressor 1 to prevent the separation performance from deteriorating (the gas permeation rate of the membrane usually decreases as the temperature increases). . 3 is a drain trap. 4 is a separation membrane module, which can be of any type such as a spiral type, hollow fiber membrane type, tubular type, or plate type. 5 is a vacuum pump installed on the permeate side of the membrane module 4;
is a capacitor.
【0014】本発明によって処理するガスは、水蒸気や
ヘキサン,トルエン等の有機溶剤蒸気を含有した空気、
窒素ガス等の不活性ガスである。The gas to be treated according to the present invention is air containing water vapor or organic solvent vapor such as hexane or toluene;
Inert gas such as nitrogen gas.
【0015】上記圧縮機1の圧縮圧力は、上記不活性ガ
ス中の凝縮性ガスの濃度−蒸気圧特性から定まる凝縮圧
力以下に設定する。The compression pressure of the compressor 1 is set below the condensation pressure determined from the concentration-vapor pressure characteristic of the condensable gas in the inert gas.
【0016】本発明により不活性ガスから凝縮ガスを分
離するには、ガス供給源Sからの不活性ガスを圧縮機1
によって、その不活性ガス中の凝縮性ガスの凝縮圧力以
下に加圧し、次いでガスク−ラ−2で前記圧縮に伴う昇
温に応じて冷却を行い、この冷却した不活性ガスを膜モ
ジュ−ル4に供給する。この供給中、凝縮性ガスの濃度
変動、ガスク−ラ−2の性能変動により、万一、凝縮性
ガスが過飽和状態になって凝縮しても、この凝縮液はド
レィントラップ3でトラップでき、膜モジュ−ル4に気
体のみを供給できる。To separate condensed gas from inert gas according to the invention, inert gas from gas source S is passed through compressor 1.
The inert gas is pressurized below the condensation pressure of the condensable gas in the inert gas, and then cooled in the gas cooler 2 according to the temperature rise accompanying the compression, and the cooled inert gas is transferred to the membrane module. Supply to 4. During this supply, even if the condensable gas becomes supersaturated and condenses due to fluctuations in the concentration of the condensable gas and fluctuations in the performance of the gas cooler 2, this condensate can be trapped in the drain trap 3 and the membrane module - Only gas can be supplied to the tube 4.
【0017】膜モジュ−ル4に達したガスにおいては、
膜に接触しつつモジュ−ル4内を流動し、その間、凝縮
性ガスに対する膜の選択透過性のために凝縮性ガスが膜
を透過し、透過側ガスにおいて凝縮性ガスが濃縮されて
いき、非透過ガスがモジュ−ル4の非透過ガス出口から
排出されていく。In the gas that has reached the membrane module 4,
The condensable gas flows through the module 4 in contact with the membrane, and during this time, the condensable gas permeates through the membrane due to the selective permselectivity of the membrane for condensable gas, and the condensable gas is concentrated in the permeate side gas. The non-permeable gas is exhausted from the non-permeable gas outlet of the module 4.
【0018】透過ガスの凝縮性ガス濃度は、ステ−ヂカ
ット(透過ガス流量/供給ガス流量)や透過速度によっ
て定まり、透過側圧力は真空ポンプ5によってこの透過
ガスでの凝縮ガスに対する凝縮圧力以下に設定してある
。従って、膜モジュ−ル4の透過側でも凝縮性ガスの凝
縮を防止できる。この凝縮性ガスはコンデンサ−6にお
いて凝縮され、その凝縮液が除去されたガスが大気に放
出されていく。The condensable gas concentration of the permeate gas is determined by the stage cut (permeate gas flow rate/supply gas flow rate) and permeation rate, and the pressure on the permeate side is lowered by the vacuum pump 5 to below the condensation pressure for the condensed gas in the permeate gas. It has been set. Therefore, condensation of condensable gas can also be prevented on the permeate side of the membrane module 4. This condensable gas is condensed in the condenser 6, and the gas from which the condensate has been removed is released into the atmosphere.
【0019】上記において、モジュ−ル4の透過側の過
度の減圧は、真空ポンプ5の運転エネルギ−の浪費とな
るので、取り扱う凝縮性ガスの種類や膜性能に適した圧
力、すなわち、濃縮されて濃度の上昇した透過ガスの凝
縮圧力以下で、かつ、エネルギ−的に適切な真空度に設
定することが必要である。In the above, excessive depressurization on the permeate side of the module 4 wastes the operating energy of the vacuum pump 5, so the pressure is adjusted to be suitable for the type of condensable gas to be handled and the membrane performance, that is, for the condensed gas. It is necessary to set the degree of vacuum to be below the condensation pressure of the permeated gas whose concentration has increased, and to an energy-appropriate degree of vacuum.
【0020】図2は本発明の別実施例に使用するガス分
離膜装置を示している。図2において、Sはガス供給源
を、1は圧縮機を、2はガスク−ラ−を、3はドレィン
トラップを、4は分離膜モジュ−ルを、5は真空ポンプ
をそれぞれ示しており、真空ポンプ5の出口側をリタ−
ン配管7により圧縮機1の入口側に連通してある。FIG. 2 shows a gas separation membrane device used in another embodiment of the present invention. In Figure 2, S represents a gas supply source, 1 represents a compressor, 2 represents a gas cooler, 3 represents a drain trap, 4 represents a separation membrane module, and 5 represents a vacuum pump. Reset the outlet side of pump 5.
It is connected to the inlet side of the compressor 1 through a piping 7.
【0021】本発明の別実施例においては、透過ガスを
ガス供給源側に戻し、圧縮機1による圧縮、並びにガス
ク−ラ−2による冷却により凝縮性ガスを凝縮させてお
り、上記実施例をクロ−ドシステム化した方法に相当す
る。In another embodiment of the present invention, the permeate gas is returned to the gas supply source, and the condensable gas is condensed by compression by the compressor 1 and cooling by the gas cooler 2. This corresponds to a method using a cloud system.
【0022】この別実施例においては、ガス供給源側S
からのガスに凝縮性ガス濃度の高い透過ガスが合流され
て圧縮機1に導入されるので、その導入ガスの凝縮性ガ
ス濃度は通常、上記実施例の場合に比べて高くなる。In this other embodiment, the gas supply source side S
Since the permeate gas having a high condensable gas concentration is combined with the gas from the compressor 1 and introduced into the compressor 1, the condensable gas concentration of the introduced gas is usually higher than that in the above embodiment.
【0023】本発明において、ガス分離膜には、凝縮性
ガスを空気又は窒素ガス等の不活性ガスから選択分離で
きるものであれば、制限なく使用でき、例えば、凝縮性
ガスが水蒸気の場合は、メチルペンテン樹脂系を、また
凝縮性ガスがヘキサン,トルエンの場合、シリコ−ンゴ
ム系を使用できる。In the present invention, the gas separation membrane can be used without any restriction as long as it can selectively separate a condensable gas from air or an inert gas such as nitrogen gas. For example, when the condensable gas is water vapor, , methylpentene resin type, and when the condensable gas is hexane or toluene, silicone rubber type can be used.
【0024】本発明によれば、不活性ガス中の凝縮性ガ
スを凝縮させることなくガス分離膜で分離できるので膜
の凝縮液への接触による分離性能の低下を排除でき、し
かも膜間差圧を大きくできるので、凝縮性ガスを高い透
過速度で膜分離できる。このことは次ぎの実施例と比較
例との対比からも確認できる。According to the present invention, the condensable gas in the inert gas can be separated by the gas separation membrane without being condensed, thereby eliminating deterioration in separation performance due to contact of the membrane with the condensate. can be increased, so condensable gases can be separated through the membrane at a high permeation rate. This can also be confirmed by comparing the following examples and comparative examples.
【0025】実施例1
供給ガスには、水蒸気濃度1voL%,温度20℃の空
気を使用し、ガス分離装置には図1に示すものを使用し
た。ガス分離膜モジュ−ル4には、有効膜面積21m2
メチルペンテン樹脂系膜のスパィラル型を使用し、ステ
−ヂカットは0.07である。供給側加圧力を2.03
atm,透過側減圧力を0.05atmにして水蒸気を
分離したところ、水蒸気透過速度は26.4Nm3/m
2hr atm(ただしatmは膜間差圧)であった。Example 1 Air with a water vapor concentration of 1 vol% and a temperature of 20° C. was used as the supply gas, and the gas separation device shown in FIG. 1 was used. Gas separation membrane module 4 has an effective membrane area of 21 m2.
A spiral type methylpentene resin membrane was used, and the stage cut was 0.07. Supply side pressure is 2.03
Atm, when water vapor was separated by setting the permeation side reduced pressure to 0.05 atm, the water vapor permeation rate was 26.4 Nm3/m
The temperature was 2 hours atm (where atm is the transmembrane pressure).
【0026】比較例1
上記の水蒸気含有空気をブロワ−で実施例1で使用した
膜モジュ−ルに送風し(圧力1.23atm)、モジュ
−ルの透過側を真空ポンプによって0.05atmに減
圧したところ、水蒸気透過速度は15.1Nm3/m2
hr atmであり、実施例1に比べて相当に低いもの
であった。Comparative Example 1 The above water vapor-containing air was blown onto the membrane module used in Example 1 using a blower (pressure: 1.23 atm), and the pressure on the permeate side of the module was reduced to 0.05 atm using a vacuum pump. As a result, the water vapor transmission rate was 15.1Nm3/m2
hr atm, which was considerably lower than that in Example 1.
【0027】比較例2
上記の水蒸気含有空気を加圧ポンプにより圧力3.03
atmで膜モジュ−ルに圧送し、モジュ−ルの透過側を
実質上常圧(1.03atm)に保持したところ、水蒸
気透過速度は13.5Nm3/m2hr atmであり
、実施例1に比べて相当に低いものであった。Comparative Example 2 The above water vapor-containing air was pumped to a pressure of 3.03
When the water vapor was fed under pressure to the membrane module using ATM and the permeation side of the module was maintained at substantially normal pressure (1.03 atm), the water vapor transmission rate was 13.5 Nm3/m2hr atm, which was higher than in Example 1. It was quite low.
【0028】実施例2
供給ガスには、ヘキサン蒸気濃度1voL%,温度15
℃の空気を使用し、ガス分離装置には図1に示すものを
使用した。ガス分離膜モジュ−ル4には、有効膜面積2
1m2シリコ−ンゴム系膜のスパィラル型を使用し、ス
テ−ヂカットは0.2である。供給側加圧力を2.03
atm,透過側減圧力を0.11atmにしてヘキサン
蒸気を分離したところ、ヘキサン蒸気透過速度は8.6
Nm3/m2hr atm(ただしatmは膜間差圧)
であった。Example 2 The supplied gas had a hexane vapor concentration of 1 vol% and a temperature of 15%.
℃ air was used, and the gas separation device shown in FIG. 1 was used. The gas separation membrane module 4 has an effective membrane area of 2
A spiral type with a 1 m2 silicone rubber membrane was used, and the stage cut was 0.2. Supply side pressure is 2.03
When hexane vapor was separated by setting the permeation side reduced pressure to 0.11 atm, the hexane vapor transmission rate was 8.6.
Nm3/m2hr atm (however, atm is transmembrane pressure)
Met.
【0029】比較例3
上記のヘキサン蒸気含有空気をブロワ−で実施例2で使
用した膜モジュ−ルに送風し(圧力1.05atm)、
モジュ−ルの透過側を真空ポンプによって0.11at
mに減圧したところ、ヘキサン蒸気透過速度は5.3N
m3/m2hr atmであり、実施例2に比べて相当
に低いものであった。Comparative Example 3 The above hexane vapor-containing air was blown onto the membrane module used in Example 2 using a blower (pressure: 1.05 atm).
The permeate side of the module is heated to 0.11at by a vacuum pump.
When the pressure was reduced to m, the hexane vapor transmission rate was 5.3N.
m3/m2hr atm, which was considerably lower than that in Example 2.
【0030】比較例4
上記のヘキサン蒸気含有空気を加圧ポンプにより圧力3
.03atmで膜モジュ−ルに圧送し、モジュ−ルの透
過側を実質上常圧(1.03atm)に保持したところ
、ヘキサン蒸気透過速度は6.0Nm3/m2hr a
tmであり、実施例2に比べて相当に低いものであった
。Comparative Example 4 The above hexane vapor-containing air was pumped to a pressure of 3
.. When the hexane vapor permeation rate was 6.0 Nm3/m2hr a, the hexane vapor permeation rate was 6.0 Nm3/m2hr a.
tm, which was considerably lower than that of Example 2.
【0031】[0031]
【発明の効果】本発明のガス分離方法は上述した通りの
構成であり、ガス分離膜モジュ−ルのガス供給側加圧力
を供給ガスの凝縮性ガスの凝縮圧力以下に制限し、透過
側を透過ガスの凝縮性ガスの凝縮圧力以下に減圧してい
るから、凝縮性ガスの凝縮を防止し得、膜の凝縮液との
接触を完全に排除でき、膜の分離性能をよく保持できる
。また、ガス供給側加圧−透過側減圧の操作系を使用し
ているから、膜間差圧を高くでき、当加速度を大きくで
きる。従って、本発明によれば、水蒸気、トルエン,ヘ
キサン等の有機溶剤蒸気を含有する空気、窒素ガス等の
工場排出ガスから水蒸気、トルエン,ヘキサン等を効率
よく分離することができる。[Effects of the Invention] The gas separation method of the present invention has the configuration as described above, and the pressure on the gas supply side of the gas separation membrane module is limited to the condensation pressure of the condensable gas of the supply gas, and the permeation side is Since the pressure of the permeate gas is reduced below the condensation pressure of the condensable gas, condensation of the condensable gas can be prevented, contact of the membrane with the condensate can be completely eliminated, and the separation performance of the membrane can be well maintained. Furthermore, since an operating system of pressurizing the gas supply side and depressurizing the permeate side is used, the transmembrane pressure difference can be increased and the acceleration can be increased. Therefore, according to the present invention, water vapor, toluene, hexane, etc. can be efficiently separated from air containing organic solvent vapors such as water vapor, toluene, hexane, etc., and from factory exhaust gas such as nitrogen gas.
【図1】本発明において使用するガス分離膜装置の一例
を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a gas separation membrane device used in the present invention.
【図2】本発明において使用するガス分離膜装置の別例
を示す説明図である。FIG. 2 is an explanatory diagram showing another example of the gas separation membrane device used in the present invention.
1 圧縮機 4 ガス分離膜モジュ−ル 5 真空ポンプ 1 Compressor 4 Gas separation membrane module 5 Vacuum pump
Claims (1)
ス等の不活性ガスを、大気圧以上で、上記不活性ガスで
の凝縮性ガスに対する凝縮圧力以下に加圧してガス分離
膜モジュ−ルに供給し、該モジュ−ルの透過側を透過ガ
スでの凝縮性ガスに対する凝縮圧力以下に減圧して凝縮
性ガスを選択的に透過させることを特徴とするガス分離
方法。Claim 1: A gas separation membrane module is produced by pressurizing an inert gas such as air or nitrogen gas containing a condensable gas above atmospheric pressure to below the condensation pressure of the condensable gas with the inert gas. A gas separation method characterized in that the permeate side of the module is depressurized below the condensation pressure of the condensable gas in the permeate gas to selectively permeate the condensable gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3076988A JP3032595B2 (en) | 1991-03-16 | 1991-03-16 | Gas separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3076988A JP3032595B2 (en) | 1991-03-16 | 1991-03-16 | Gas separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04290518A true JPH04290518A (en) | 1992-10-15 |
JP3032595B2 JP3032595B2 (en) | 2000-04-17 |
Family
ID=13621162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3076988A Expired - Lifetime JP3032595B2 (en) | 1991-03-16 | 1991-03-16 | Gas separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3032595B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772740B2 (en) | 2002-04-17 | 2004-08-10 | Toyota Jidosha Kabushiki Kaisha | Evaporative fuel treating device and method |
US6786207B2 (en) | 2002-04-17 | 2004-09-07 | Toyota Jidosha Kabushiki Kaisha | Evaporative fuel emission control system |
JPWO2013057956A1 (en) * | 2011-10-19 | 2015-04-02 | 富士電機株式会社 | MIXED AIR REMOVING DEVICE AND POWER GENERATION DEVICE HAVING THE SAME |
JP2020073803A (en) * | 2012-09-28 | 2020-05-14 | 旭化成株式会社 | Operation method of internal combustion engine and air supply device |
-
1991
- 1991-03-16 JP JP3076988A patent/JP3032595B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772740B2 (en) | 2002-04-17 | 2004-08-10 | Toyota Jidosha Kabushiki Kaisha | Evaporative fuel treating device and method |
US6786207B2 (en) | 2002-04-17 | 2004-09-07 | Toyota Jidosha Kabushiki Kaisha | Evaporative fuel emission control system |
JPWO2013057956A1 (en) * | 2011-10-19 | 2015-04-02 | 富士電機株式会社 | MIXED AIR REMOVING DEVICE AND POWER GENERATION DEVICE HAVING THE SAME |
JP2020073803A (en) * | 2012-09-28 | 2020-05-14 | 旭化成株式会社 | Operation method of internal combustion engine and air supply device |
Also Published As
Publication number | Publication date |
---|---|
JP3032595B2 (en) | 2000-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2442636C2 (en) | Carbon dioxide separation system | |
US6221131B1 (en) | Multi-stage process for the separation/recovery of gases | |
WO2016017491A1 (en) | System and method for organic solvent purification | |
JPH05192530A (en) | Improved gas film separating method | |
JP6636111B2 (en) | Organic solvent purification system and method | |
JP2016030232A (en) | Organic solvent refining system and method | |
JPH04290518A (en) | Gas separating method | |
JP4904543B2 (en) | Organic vapor recovery system and organic vapor recovery method | |
JPH04180811A (en) | Treatment of exhaust gas containing organic vapor | |
JP3291369B2 (en) | Treatment method of exhaust gas containing organic vapor | |
Mencarini Jr et al. | Separation of tetrahydrofuran from aqueous mixtures by pervaporation | |
JP3727552B2 (en) | Perfluoro compound gas separation and recovery equipment | |
JP3951569B2 (en) | Operation method of gas separation membrane | |
JPH0761413B2 (en) | Condensable organic vapor recovery method | |
WO1998032521A1 (en) | Recovery of perfluorinated compounds and hydrofluorocarbon gases using molecular sieve membranes | |
JPH05226A (en) | Dehydration and concentration of aqueous solution of organic matter | |
JP2938194B2 (en) | Organic component vapor mixed gas treatment method | |
JPH05123530A (en) | Recovery of hydrophilic organic vapor | |
JPH0667449B2 (en) | Gas dehumidification method | |
JPH04131118A (en) | Continuous treatment of gas containing organic solvent vapor | |
JPH0386210A (en) | Treatment of gaseous mixture containing organic solvent | |
JPH05293328A (en) | Treatment of air containing combustible organic vapor | |
JP3031725B2 (en) | Operating method of pervaporation membrane device | |
JPH0739717A (en) | Organic solvent recovering apparatus | |
JP7407351B2 (en) | Carbon dioxide separation and recovery equipment |