JPH0549841A - Recovering method of condensable organic vapor - Google Patents

Recovering method of condensable organic vapor

Info

Publication number
JPH0549841A
JPH0549841A JP21295591A JP21295591A JPH0549841A JP H0549841 A JPH0549841 A JP H0549841A JP 21295591 A JP21295591 A JP 21295591A JP 21295591 A JP21295591 A JP 21295591A JP H0549841 A JPH0549841 A JP H0549841A
Authority
JP
Japan
Prior art keywords
gas
membrane module
separation membrane
stage separation
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21295591A
Other languages
Japanese (ja)
Other versions
JPH0761413B2 (en
Inventor
Kenichi Inoue
賢一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3212955A priority Critical patent/JPH0761413B2/en
Publication of JPH0549841A publication Critical patent/JPH0549841A/en
Publication of JPH0761413B2 publication Critical patent/JPH0761413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain an org. vapor with a small area of a membrane and low electric power by recovering the org. vapor from air, nitrogen, etc., containing a low concentration of the condensable org. vapor by using a separation membrane module and a condenser. CONSTITUTION:At first, a low concentration org. vapor containing a condensable vapor in inactive gas, such as air or nitrogen, etc., is introduced into a first stage separation membrane module 1 selectively permeable for the org. vapor. A part of unpasseble gas is exhausted and residual gas is flown into a permeated side in the first stage separation membrane module 1. Then, the gas exhausted through an outlet 16 is diluted by a purge, and the diluted gas is introduced to a second stage separation membrane module 6. Thereafter, the org. vapor is selectively permeated through the second stage separation membrane module 6 at reduced pressure to become a high concentration org. vapor-containing gas. The gas is introduced to a condenser 10, in which the org. vapor is liquiclified to be recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気中または窒素ガス等
の不活性ガス中に低濃度で含まれている凝縮性有機蒸気
を分離膜モジュ−ルと凝縮器とを使用して回収する方法
に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for recovering a condensable organic vapor contained in air or an inert gas such as nitrogen gas at a low concentration by using a separation membrane module and a condenser. It is about.

【0002】[0002]

【従来の技術】化学装置を操作する工場、例えば化学コ
ンビナ−ト,印刷工場,テ−プ工場,塗装工場等におい
ては、凝縮性有機蒸気を含有する空気又は窒素ガス等の
不活性ガスが排ガスとして多量に発生する。
2. Description of the Related Art In factories that operate chemical equipment, such as chemical combinatorial machines, printing factories, tape factories and paint factories, air containing condensable organic vapor or an inert gas such as nitrogen gas is exhaust gas. Occurs in large quantities.

【0003】かかる排ガスをそのまま大気中に放出する
ことは環境衛生上並びに経済上問題が有り、その排ガス
を有機蒸気を回収のうえ、放出することが行われてい
る。かかる有機蒸気の回収には、旧来、冷却凝縮法,吸
収法,吸着法が用いられてきたが、近来においては省エ
ネルギ−,設備の小型化のために、上記有機蒸気含有ガ
スを膜分離モジュ−ルにより濃縮し、この濃縮有機蒸気
含有ガスを凝縮器に導き有機蒸気を液相化して分離する
ことが提案されている。
It is problematic in terms of environmental hygiene and economy to discharge the exhaust gas as it is into the atmosphere, and the exhaust gas is discharged after recovering the organic vapor. The cooling condensation method, the absorption method, and the adsorption method have been conventionally used for the recovery of such organic vapor, but recently, in order to save energy and downsize equipment, the organic vapor-containing gas is subjected to a membrane separation module. It has been proposed that the gas is condensed with a solvent, the condensed organic vapor-containing gas is introduced into a condenser, and the organic vapor is liquefied and separated.

【0004】[0004]

【発明が解決しようとする課題】上記の有機蒸気含有ガ
スにおいては、爆発下限界以下の濃度で管理する必要が
あるが、作業条件の如何によってはその爆発下限界濃度
の1/3乃至1/2といった厳格な条件で管理しなけれ
ばならないことがある。この爆発下限界濃度は有機蒸気
の種類によって異なるが、通常2VoL%以下(1atm,2
0℃において)であり、この1/3〜1/2といった濃
度では濃度1VoL%以下の極低濃度有機蒸気含有ガスと
なる。
In the above organic vapor-containing gas, it is necessary to control the concentration below the lower explosion limit, but depending on the working conditions, 1/3 to 1/1 of the lower explosion limit concentration. It may be necessary to manage under strict conditions such as 2. The lower limit concentration of this explosion differs depending on the type of organic vapor, but it is usually 2 VoL% or less (1 atm, 2
(At 0 ° C.), and at a concentration of 1/3 to 1/2, an extremely low concentration organic vapor-containing gas having a concentration of 1 VoL% or less is obtained.

【0005】而るに、透過膜の透過分離においては、透
過分離すべき分子が膜に溶解し、この溶解した分子が膜
内を濃度勾配を駆動力として膜の分子鎖間隙を拡散して
いくから、上記のような極低濃度有機蒸気に対しては分
離効率の低下が避けられない。
Therefore, in the permeation separation of the permeable membrane, the molecules to be permeated and separated are dissolved in the membrane, and the dissolved molecules diffuse in the intermolecular gaps of the membrane using the concentration gradient as a driving force in the membrane. Therefore, the reduction of the separation efficiency is unavoidable for the extremely low concentration organic vapor as described above.

【0006】現に、本発明者の実験結果によれば、0.
5VoL%のn−ヘキサン上記含有ガスをヘキサン回収率
70%で回収する場合、上記の膜分離法で必要な電力が
活性炭吸着法で必要な電力の2倍近くにも達した。
Actually, according to the experimental result of the present inventor,
When the above-mentioned gas containing 5 VoL% of n-hexane was recovered at a hexane recovery rate of 70%, the electric power required by the membrane separation method reached almost twice that required by the activated carbon adsorption method.

【0007】本発明の目的は有機蒸気含有ガスから有機
蒸気を分離膜モジュ−ルと凝縮器とを使用して低電力
量、小膜面積で回収できる凝縮性有機蒸気の回収方法を
提供することにある。
An object of the present invention is to provide a method for recovering a condensable organic vapor which can recover an organic vapor from a gas containing an organic vapor by using a separation membrane module and a condenser with a low electric energy and a small membrane area. It is in.

【0008】[0008]

【課題を解決するための手段】本発明の凝縮性有機蒸気
の回収方法は、空気中又は不活性ガス中に凝縮性蒸気を
含む低濃度有機蒸気含有ガスを有機蒸気に対して選択透
過性を有する第1段目分離膜モジュ−ルに導き、非透過
ガスの一部を放出し残部を上記第1段目分離膜モジュ−
ル内の透過側に流入させ、同第1段目分離膜モジュ−ル
の透過側出口からのガスを有機蒸気に対して選択透過性
を有する第2段目分離膜モジュ−ルに導き、該第2段目
分離膜モジュ−ルの非透過ガスを上記第1段目分離膜モ
ジュ−ルのガス供給側に戻すと共に同第2段目分離膜モ
ジュ−ルの透過側ガスを凝縮器に導き凝縮性有機蒸気を
液相化して回収することを特徴とする構成である。
A method of recovering a condensable organic vapor according to the present invention has a method of selectively permeating an organic vapor containing a low-concentration organic vapor-containing gas containing a condensable vapor in air or an inert gas. It is led to the first-stage separation membrane module which has a part of the non-permeated gas and the rest is the above-mentioned first-stage separation membrane module.
Of the gas from the permeate side outlet of the first-stage separation membrane module to the second-stage separation membrane module having selective permeability for organic vapor, The non-permeate gas of the second-stage separation membrane module is returned to the gas supply side of the first-stage separation membrane module, and the permeate-side gas of the second-stage separation membrane module is guided to the condenser. The constitution is characterized in that the condensable organic vapor is liquefied and recovered.

【0009】[0009]

【作用】第1段目分離膜モジュ−ルの非透過側ガスが同
モジュ−ル内の透過側に流入される結果、同モジュ−ル
内の透過側をパ−ジでき、同モジュ−ルの分離効率を高
めることができる。また第1段目分離膜モジュ−ルの透
過側出口からのガスを第2段目分離膜モジュ−ルで濃縮
して、高濃度で凝縮器に導入しているから、比較的低い
温度で凝縮でき、不凝縮ベントガスの蒸気飽和濃度を低
くできて高効率の回収を行い得る。
The gas on the non-permeate side of the first-stage separation membrane module flows into the permeate side of the module, so that the permeate side of the module can be purged. It is possible to enhance the separation efficiency of. Moreover, since the gas from the permeate side outlet of the first stage separation membrane module is concentrated in the second stage separation membrane module and introduced into the condenser at a high concentration, it is condensed at a relatively low temperature. Therefore, the saturated vapor concentration of the non-condensed vent gas can be lowered, and highly efficient recovery can be performed.

【0010】[0010]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は本発明において使用する有機蒸気回収装置を
示している。図1において、1は分離回収する有機蒸気
に対して選択透過性を有する第1段目分離膜モジュ−
ル、2は処理ガス供給配管、3は第1段目分離膜モジュ
−ル1に処理ガスを導入する送風機又は圧縮機である。
4は前処理フィルタ−、5はガスク−ラ−である。11
は第1段目分離膜モジュ−ルの非透過側ガス流出配管で
ある。12は非透過側流出ガスの一部を第1段目分離膜
モジュ−ル1内の透過側に流入させるための分路配管で
あり、ガス導入口14と向い合う位置の透過側ガス流入
口15に連通してある。13は放出管である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an organic vapor recovery device used in the present invention. In FIG. 1, reference numeral 1 is a first-stage separation membrane module having a selective permeability for an organic vapor to be separated and recovered.
Reference numeral 2 is a processing gas supply pipe, and 3 is a blower or a compressor for introducing the processing gas into the first-stage separation membrane module 1.
Reference numeral 4 is a pretreatment filter, and 5 is a gas cooler. 11
Is a non-permeate side gas outflow pipe of the first stage separation membrane module. Reference numeral 12 is a shunt pipe for allowing a part of the non-permeate side outflow gas to flow into the permeate side in the first stage separation membrane module 1, and the permeate side gas inlet at a position facing the gas introduction port 14. It communicates with 15. Reference numeral 13 is a discharge tube.

【0011】6は有機蒸気に対して選択透過性を有する
第2段目分離膜モジュ−ルであり、上記第1段目分離膜
モジュ−ル1の透過側出口16に連結してある。7は第
1段目分離膜モジュ−ル1と第2段目分離膜モジュ−ル
6との間に設けた第1段目真空ポンプである。81は第
2段目分離膜モジュ−ル6の非透過側ガスを第1段目分
離膜モジュ−ル1のガス供給配管2に戻すためのリタ−
ン配管である。9は第2段目分離膜モジュ−ル6の透過
側を減圧する第2段目真空ポンプ、10は第2段目真空
ポンプ9の吐出側に連結した凝縮器、101は凝縮液取
出し管、82は不凝縮ベントガスを第2段目分離膜モジ
ュ−ル6のガス供給側61に戻すためのリタ−ン配管で
ある。
Reference numeral 6 denotes a second stage separation membrane module having a selective permeability for organic vapors, which is connected to the permeation side outlet 16 of the first stage separation membrane module 1. Reference numeral 7 is a first-stage vacuum pump provided between the first-stage separation membrane module 1 and the second-stage separation membrane module 6. Reference numeral 81 is a retarder for returning the non-permeate side gas of the second stage separation membrane module 6 to the gas supply pipe 2 of the first stage separation membrane module 1.
Piping. 9 is a second-stage vacuum pump for reducing the pressure on the permeate side of the second-stage separation membrane module 6, 10 is a condenser connected to the discharge side of the second-stage vacuum pump 9, 101 is a condensate extraction pipe, Reference numeral 82 is a return pipe for returning the non-condensed vent gas to the gas supply side 61 of the second stage separation membrane module 6.

【0012】本発明において処理する有機蒸気含有ガス
は、空気又は窒素等の不活性ガス中に凝縮性有機蒸気を
1VOL%以下の極低濃度で含有する低濃度有機蒸気含有
ガスである。
The organic vapor-containing gas to be treated in the present invention is a low-concentration organic vapor-containing gas containing a condensable organic vapor at an extremely low concentration of 1 VOL% or less in an inert gas such as air or nitrogen.

【0013】本発明により有機蒸気含有ガスを処理する
には、有機蒸気含有ガスを送風機又は圧縮機3により第
1段目分離膜モジュ−ル1に導入する。この導入ガス中
の微粉塵、ゴミ等は前処理フィルタ−4で除去し、ガス
温度はガスク−ラ−5により膜分離に適した温度(通常
5℃〜50℃)に調節する。第1段目分離膜モジュ−ル
1の膜には、送風機又は圧縮機3による加圧と第1段目
真空ポンプ7による減圧とのために膜間差圧が作用し、
第1段目分離膜モジュ−ル1に導入された有機蒸気含有
ガスがこの膜間差圧のもとで分離され、有機蒸気が膜を
選択的に透過する。
To treat the organic vapor-containing gas according to the present invention, the organic vapor-containing gas is introduced into the first stage separation membrane module 1 by a blower or a compressor 3. Fine dust, dust, etc. in the introduced gas are removed by the pretreatment filter-4, and the gas temperature is adjusted by the gas cooler-5 to a temperature suitable for membrane separation (usually 5 ° C to 50 ° C). The transmembrane pressure difference acts on the membrane of the first-stage separation membrane module 1 due to the pressurization by the blower or the compressor 3 and the decompression by the first-stage vacuum pump 7.
The organic vapor-containing gas introduced into the first-stage separation membrane module 1 is separated under this transmembrane pressure difference, and the organic vapor permeates the membrane selectively.

【0014】第1段目分離膜モジュ−ル1の非透過側ガ
スは非透過側ガス流出管11から流出するが、その一部
が分路配管12より第1段目分離膜モジュ−ル1内の透
過側空間に上記第1段目真空ポンプ7による吸引で高速
で流入され、第1段目分離膜モジュ−ル1内の透過側空
間がその流入ガスでパ−ジされ、第1段目分離膜モジュ
−ル1の分離効率がアップする。
The gas on the non-permeate side of the first-stage separation membrane module 1 flows out from the non-permeate-side gas outflow pipe 11, a part of which is passed through the shunt pipe 12 to the first-stage separation membrane module 1. The first-stage vacuum pump 7 sucks into the permeate-side space at a high speed, and the permeate-side space in the first-stage separation membrane module 1 is purged with the inflowing gas. The separation efficiency of the eye separation membrane module 1 is improved.

【0015】第1段目分離膜モジュ−ル1の透過側出口
16を流出していくガスは、上記パ−ジにより有機蒸気
濃度が希釈されているが、この希釈ガスが第2段目分離
膜モジュ−ル6に導入され、第2段目真空ポンプ9によ
る第2段目分離膜モジュ−ル6の透過側の減圧のもとで
分離されて有機蒸気が第2段目分離膜モジュ−ル6の膜
を選択的に透過し、高濃度有機蒸気含有ガスとされる。
更に、この高濃度有機蒸気含有ガスが第2段目真空ポン
プ9の吐出側から常圧にて凝縮器10に導かれ、有機蒸
気が液相化され回収される。
The gas flowing out of the permeation side outlet 16 of the first-stage separation membrane module 1 is diluted with the organic vapor concentration by the above-mentioned page, and this diluted gas is the second-stage separation gas. The organic vapor is introduced into the membrane module 6 and separated under the reduced pressure on the permeate side of the second-stage separation membrane module 6 by the second-stage vacuum pump 9 to separate the organic vapor into the second-stage separation membrane module. The gas of the high-concentration organic vapor is selectively permeated through the film of Rule 6.
Further, this high-concentration organic vapor-containing gas is introduced from the discharge side of the second stage vacuum pump 9 to the condenser 10 at atmospheric pressure, and the organic vapor is liquefied and recovered.

【0016】この凝縮器10の冷却温度、常圧から定ま
る飽和蒸気圧の不凝縮ベントガスが戻し配管82を経て
第2段目分離膜モジュ−ル6のガス供給側61に戻さ
れ、第2段目分離膜モジュ−ル6の非透過側流出ガスが
戻し配管81を経て第1段目分離膜モジュ−ル1のガス
供給配管2に戻され、回分的に処理されていく。
An uncondensed vent gas having a saturated vapor pressure determined from the cooling temperature and normal pressure of the condenser 10 is returned to the gas supply side 61 of the second stage separation membrane module 6 through the return pipe 82, and the second stage. Outflow gas on the non-permeate side of the eye separation membrane module 6 is returned to the gas supply pipe 2 of the first stage separation membrane module 1 via the return pipe 81 and is processed batchwise.

【0017】上記第1段目分離膜モジュ−ル1並びに第
2段目分離膜モジュ−ル6には、中空糸膜モジュ−ル、
スパイラル型膜モジュ−ル、プレ−ト型膜モジュ−ルの
何れの形式も使用でき、特に、処理ガス量に対し圧力損
失をできるだけ抑制できるものを使用することが望まし
い。特に第1段目分離膜モジュ−ル1には、透過側への
ガスパ−ジを行い得るものが使用される。膜は、処理ガ
スに応じて選定されるが、シリコ−ンゴム系の複合膜が
広く使用される。
The first-stage separation membrane module 1 and the second-stage separation membrane module 6 are hollow fiber membrane modules,
Either a spiral type membrane module or a plate type membrane module can be used, and it is particularly preferable to use one that can suppress the pressure loss with respect to the amount of processing gas as much as possible. In particular, the first-stage separation membrane module 1 is one that can perform gas purging on the permeate side. The membrane is selected according to the processing gas, but silicone rubber-based composite membranes are widely used.

【0018】上記送風機又は圧縮機3、或いは、第1段
目真空ポンプ7並びに第2段目真空ポンプ9はプロセス
の処理条件や経済性のもとで定めた各分離膜モジュ−ル
の膜間差圧に応じて選定されるが、通常それぞれの圧力
は、送風機の場合2000mmH2O,圧縮機の場合2
0kg/cm2G以下,真空ポンプの場合20〜200Toor
(到達圧力)が広く使用される。
The blower or compressor 3, or the first-stage vacuum pump 7 and the second-stage vacuum pump 9 are provided between the membranes of each separation membrane module determined under the processing conditions and economic efficiency of the process. It is selected according to the differential pressure, but each pressure is usually 2000 mmH 2 O for the blower and 2 for the compressor.
0 kg / cm 2 G or less, 20 to 200 Toor for vacuum pump
(Ultimate pressure) is widely used.

【0019】上記ガスク-ラ-3や凝縮器10の冷却水温
度もプロセスの処理条件や経済性に基づき選定される
が、冷凍水,チラ−水,ク−リングタワ−冷却水等が広
く使用される。
The temperature of the cooling water for the gas cooler 3 and the condenser 10 is also selected based on the processing conditions and economic efficiency of the process, but frozen water, chiller water, cooling tower cooling water, etc. are widely used. It

【0020】上記の有機蒸気含有ガスの処理において
は、第1段目分離膜モジュ−ル1内の透過側を非透過側
流出ガスの一部でパ−ジしているから、第1段目分離膜
モジュ−ル1の分離効率を高めることができる。また、
第2段目分離膜モジュ−ル6において分離処理するガス
は、第1段目分離膜モジュ−ル1の膜を透過した高濃度
有機蒸気含有ガスが第1段目分離膜モジュ−ル1内の透
過側にパ−ジされた非透過側ガスで混合,希釈されたも
のであり、その非透過側ガスの混合は分離に逆行し、第
2段目分離膜モジュ−ル6の分離に対してネガティブに
作用するが、このネガティブ作用に比べて第1段目分離
膜モジュ−ル1の上記分離効率のアップの方が勝り、全
体としての分離効率を高くでき、その結果、同一分離性
能のもとで、消費電力量の軽減、膜面積の減少を図り得
る。このことは次の試験例からも確認できる。
In the above treatment of the organic vapor-containing gas, the permeate side in the first-stage separation membrane module 1 is purged with a part of the non-permeate-side outflow gas, so that the first-stage separation membrane module 1 is treated. The separation efficiency of the separation membrane module 1 can be increased. Also,
The gas to be separated in the second-stage separation membrane module 6 is the high-concentration organic vapor-containing gas that has permeated the membrane of the first-stage separation membrane module 1 in the first-stage separation membrane module 1. Is mixed and diluted with the non-permeate side gas purged to the permeate side, and the mixture of the non-permeate side gas is against the separation, and the second stage separation membrane module 6 is separated from the separation. Although the above-mentioned separation efficiency of the first-stage separation membrane module 1 is superior to this negative effect, the overall separation efficiency can be increased, and as a result, the same separation performance can be obtained. Under the circumstances, it is possible to reduce the power consumption and the film area. This can be confirmed from the following test example.

【0021】試験例 第1段目分離膜モジュ−ル1並びに第2段目分離膜モジ
ュ−ル6に膜面積30m2,シリコ−ンゴム系複合膜の
スパイラル型ガス分離膜モジュ−ルを使用し、ユ−ティ
リティの冷却水にはク−リングタワ−循環水を使用し
た。第1段目分離膜モジュ−ルへのガス導入圧力を約1
000mmH2O,第1段目分離膜モジュ−ル1の透過
側真空度を約80Toor,第1段目真空ポンプ7の吐出側
圧力を500mmH2O,第2段目分離膜モジュ−ル6
の透過側真空度を80Toorとし、第1段目分離膜モジュ
−ル1並びに第2段目分離膜モジュ−ル6でのガス操作
温度を共に約30℃とし、更に、第1段目分離膜モジュ
−ル1の透過側流出ガス総流量に対するパ−ジガス量を
60%として、濃度0.5VoL%のn−ヘキサン蒸気含
有空気を供給量100Nm3/hrで処理したところ、
n−ヘキサン回収率は70%以上、回収量は1.4kg
/hrであり、放出ガス中のn−ヘキサン濃度は0.1
5VoL%以下、排水量は0.1kg/hrであった。ま
た、所要電力量は6.0KWであった。
Test Example A spiral type gas separation membrane module having a membrane area of 30 m 2 and a silicone rubber-based composite membrane is used as the first stage separation membrane module 1 and the second stage separation membrane module 6. As the utility cooling water, cooling water circulating water was used. The gas introduction pressure to the 1st stage separation membrane module is about 1
000 mmH 2 O, the permeation side vacuum degree of the first stage separation membrane module 1 is about 80 Toor, the discharge side pressure of the first stage vacuum pump 7 is 500 mmH 2 O, the second stage separation membrane module 6
The vacuum degree on the permeation side is 80 Toor, the gas operating temperature in the first stage separation membrane module 1 and the second stage separation membrane module 6 is both about 30 ° C., and the first stage separation membrane is When the amount of purge gas with respect to the total flow rate of the outflow gas on the permeate side of Module 1 was set to 60%, n-hexane vapor-containing air having a concentration of 0.5 VoL% was treated at a supply amount of 100 Nm 3 / hr,
n-hexane recovery rate is 70% or more, recovery amount is 1.4 kg
/ Hr and the concentration of n-hexane in the released gas is 0.1
It was 5 VoL% or less, and the discharge amount was 0.1 kg / hr. In addition, the required power amount was 6.0 KW.

【0022】これに対して、パ−ジガス量を0%とした
場合(パ−ジを行わない場合)、上記と同量のn−ヘキ
サン回収量(1.4kg/hr)を達成するには、膜面
積84m2のもとで16.5KWの電力を必要とし、本
発明に比べ、約2.8倍のモジュ−ル膜面積と約2.7
5倍の電力量を必要とした。
On the other hand, when the purge gas amount is set to 0% (when no purge is performed), the same amount of n-hexane recovery (1.4 kg / hr) as described above can be achieved. A power of 16.5 KW is required under a membrane area of 84 m 2 , and the module membrane area is about 2.8 times that of the present invention and about 2.7.
It required 5 times the amount of power.

【0023】[0023]

【発明の効果】本発明の凝縮性有機蒸気の回収方法によ
れば、上述した通り低濃度の凝縮性有機蒸気を含有する
空気又は窒素等から有機蒸気を分離膜モジュ−ルと凝縮
器を使用して低電力量、小膜面積で回収でき、省エネル
ギ−並びに装置の小型化を図ることができる。
According to the method for recovering the condensable organic vapor of the present invention, the organic vapor is separated from the air or nitrogen containing the low concentration of the condensable organic vapor by using the separation membrane module and the condenser. Therefore, it is possible to recover with a low electric energy and a small film area, and it is possible to achieve energy saving and downsizing of the device.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明において使用する凝縮性有機蒸気回収装置
を示す回路図である。
FIG. 1 is a circuit diagram showing a condensable organic vapor recovery device used in the present invention.

【符号の説明】 1 第1段目分離膜モジュ−ル 11 非透過側ガス流出管 12 非透過側ガス分路管 13 放出管 3 送風機又は圧縮機 6 第2段目分離膜モジュ−ル 7 第1段目真空ポンプ 81 リタ−ン配管 82 リタ−ン配管 9 第2段目真空ポンプ 10 凝縮器[Explanation of reference numerals] 1st stage separation membrane module 11 non-permeate side gas outflow pipe 12 non-permeate side gas shunt pipe 13 discharge pipe 3 blower or compressor 6 second stage separation membrane module 7th First stage vacuum pump 81 Return pipe 82 Return pipe 9 Second stage vacuum pump 10 Condenser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気中又は不活性ガス中に凝縮性蒸気を含
む低濃度有機蒸気含有ガスを有機蒸気に対して選択透過
性を有する第1段目分離膜モジュ−ルに導き、非透過ガ
スの一部を放出し残部を上記第1段目分離膜モジュ−ル
内の透過側に流入させ、同第1段目分離膜モジュ−ルの
透過側出口からのガスを有機蒸気に対して選択透過性を
有する第2段目分離膜モジュ−ルに導き、該第2段目分
離膜モジュ−ルの非透過ガスを上記第1段目分離膜モジ
ュ−ルのガス供給側に戻すと共に同第2段目分離膜モジ
ュ−ルの透過側ガスを凝縮器に導き凝縮性有機蒸気を液
相化して回収することを特徴とする凝縮性有機蒸気の回
収方法。
1. A low-concentration organic vapor-containing gas containing a condensable vapor in air or an inert gas is introduced into a first-stage separation membrane module having a selective permeability for organic vapor, and a non-permeable gas is obtained. Of the gas is discharged from the permeate side of the first-stage separation membrane module, and the remaining gas is selected from the permeate-side outlet of the first-stage separation membrane module for the organic vapor. It is led to a permeable second stage separation membrane module, and the non-permeated gas of the second stage separation membrane module is returned to the gas supply side of the first stage separation membrane module and A method for recovering a condensable organic vapor, which comprises introducing a gas on the permeate side of a second-stage separation membrane module into a condenser and converting the condensable organic vapor into a liquid phase to recover it.
JP3212955A 1991-07-29 1991-07-29 Condensable organic vapor recovery method Expired - Lifetime JPH0761413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3212955A JPH0761413B2 (en) 1991-07-29 1991-07-29 Condensable organic vapor recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3212955A JPH0761413B2 (en) 1991-07-29 1991-07-29 Condensable organic vapor recovery method

Publications (2)

Publication Number Publication Date
JPH0549841A true JPH0549841A (en) 1993-03-02
JPH0761413B2 JPH0761413B2 (en) 1995-07-05

Family

ID=16631064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3212955A Expired - Lifetime JPH0761413B2 (en) 1991-07-29 1991-07-29 Condensable organic vapor recovery method

Country Status (1)

Country Link
JP (1) JPH0761413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582817B1 (en) * 1999-11-29 2006-05-24 주식회사 삼양사 A recovery method of condensable vapors using a membrane separator
JP2008173545A (en) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology System for recovering organic vapor and method for recovering vapor
WO2022118849A1 (en) * 2020-12-02 2022-06-09 東レ株式会社 Gas separation system, and method for producing gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176425A (en) * 1987-12-29 1989-07-12 Ube Ind Ltd Dehumidification of gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176425A (en) * 1987-12-29 1989-07-12 Ube Ind Ltd Dehumidification of gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582817B1 (en) * 1999-11-29 2006-05-24 주식회사 삼양사 A recovery method of condensable vapors using a membrane separator
JP2008173545A (en) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology System for recovering organic vapor and method for recovering vapor
WO2022118849A1 (en) * 2020-12-02 2022-06-09 東レ株式会社 Gas separation system, and method for producing gas

Also Published As

Publication number Publication date
JPH0761413B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US5256295A (en) Two-stage membrane process and apparatus
JPH05192530A (en) Improved gas film separating method
US5069686A (en) Process for reducing emissions from industrial sterilizers
US5256296A (en) Membrane process and apparatus for removing a component from a fluid stream
Leemann et al. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization
JPH08198606A (en) Method and apparatus for membrane separation of gas
JPH07507235A (en) How to remove organic compounds from water
WO1992011918A1 (en) Membrane process and apparatus for removing a component from a fluid stream
JP2007254572A (en) Methane concentration system and its operation method
EA021823B1 (en) Method and system of regenerating a solvent
WO1996015843A1 (en) Very high purity nitrogen by membrane separation
JP2898741B2 (en) Treatment method of exhaust gas containing organic vapor
JPH0549841A (en) Recovering method of condensable organic vapor
JP3727552B2 (en) Perfluoro compound gas separation and recovery equipment
JPH09124514A (en) Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor
JP2012236123A (en) Carbon dioxide separation and recovery system in exhaust gas by zeolite membrane
JPH0857243A (en) Separation of gas by partial purging for preliminary or after purification
JP3032595B2 (en) Gas separation method
EP0971785A1 (en) Recovery of perfluorinated compounds and hydrofluorocarbon gases using molecular sieve membranes
JP2832371B2 (en) Organic solvent vapor recovery method
JPH04131118A (en) Continuous treatment of gas containing organic solvent vapor
JPH05226A (en) Dehydration and concentration of aqueous solution of organic matter
JP2938194B2 (en) Organic component vapor mixed gas treatment method
JPH09206541A (en) Separation of oxygen and argon in air and device therefor
US6478851B2 (en) Ethylene treatment by gas permeation