JPH09206541A - Separation of oxygen and argon in air and device therefor - Google Patents

Separation of oxygen and argon in air and device therefor

Info

Publication number
JPH09206541A
JPH09206541A JP8045525A JP4552596A JPH09206541A JP H09206541 A JPH09206541 A JP H09206541A JP 8045525 A JP8045525 A JP 8045525A JP 4552596 A JP4552596 A JP 4552596A JP H09206541 A JPH09206541 A JP H09206541A
Authority
JP
Japan
Prior art keywords
gas
separation membrane
air
argon
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8045525A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
賢一 井上
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8045525A priority Critical patent/JPH09206541A/en
Publication of JPH09206541A publication Critical patent/JPH09206541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate oxygen and argon in air by leading air or gas separated from air to a gas separation membrane and performing stepwise operations for leading the impermeablle gas or the permeable gas therefrom to the next gas separation membrane specified times. SOLUTION: Gas separation membranes in each of which the permeation rate of oxygen is different from that of argon are connected by (m) pieces (positive integer of >=2) via piping. Air or gas S separated from air is led to a gas separation membrane 1 on the n-th stage ((n) is positive integer of <(m)), and stepwise operations of leading the impermeablle gas or the permeable gas to a gas separation membrane of the (n+1)th stage are performed (m-1) times to collect the impermeablle gas or the permeable gas from a gas separation membrane of the final stage. That is, after the feed gas S is removed with dust by a filter F, it is boosted by a compressor or a blower C and is introduced into the separation membrane 1. The introduced gas pressure is regulated by a pressure control valve V. A vacuum pump P is installed on the permeation side of the separation membrane 1, and pressure difference between the feed side and the permeation side becomes driving force to allow the feed gas to be permeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気中に存在し、
沸点が近接した酸素とアルゴンとをガス分離膜を用いて
分離する方法及びそのための分離装置に属し、空気より
酸素やアルゴンを高濃度で効率よく回収もしくは精製す
るために好適に用いられる。
TECHNICAL FIELD The present invention exists in the air,
It belongs to a method for separating oxygen and argon, which have close boiling points, using a gas separation membrane, and a separation device therefor, and is preferably used for efficiently collecting or purifying oxygen and argon at a high concentration from air.

【0002】[0002]

【従来の技術】空気中には、約78体積%の窒素と約2
1体積%(以下、「体積」を省く。)の酸素が存在して
いるが、このほかの微量成分として約0.9%のアルゴ
ンや約0.03%の二酸化炭素等も含まれている。これ
らのガスは、種々の製品の製造過程において雰囲気調整
に用いられたり、あるいは製品の生成反応に関与したり
する。従って、これらのガスを高濃度で効率よく個別に
濃縮し精製することができれば、有益である。空気中よ
り上記のガスを濃縮精製する方法としては、圧縮深冷分
離法や圧力変動式吸着(PSA)法が一般的である。
2. Description of the Related Art In the air, about 78% by volume of nitrogen and about 2
Oxygen is present in an amount of 1% by volume (hereinafter, “volume” is omitted), but other trace components include about 0.9% argon and about 0.03% carbon dioxide. . These gases are used for adjusting the atmosphere in the production process of various products, or participate in product formation reaction. Therefore, it would be beneficial if these gases could be efficiently concentrated and individually purified at high concentrations. As a method for concentrating and purifying the above gas from the air, a compression cryogenic separation method and a pressure fluctuation adsorption (PSA) method are generally used.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のどちら
の方法も対象成分の沸点差を利用しているので、例えば
アルゴン(bp=−186℃)と酸素(bp=−183
℃)のように沸点の近い成分同士の分離は困難である。
即ち、空気中の成分ガスを深冷分離法やPSA法で濃縮
精製すれば、得られるガス組成は、沸点の近いガスの空
気中での含有比率に近い値となり、単独成分としては、
それ以上の高純度化を望むことができない。例えば、空
気中の酸素をPSA法で濃縮する場合、酸素純度は約9
5%が経済的限界値となり、残りの5%はアルゴンとな
る。空気からアルゴンを濃縮する場合は同様に酸素が濃
縮ガス中に不可避的に混入する。それ故、本発明の目的
は、沸点が近接した酸素とアルゴンとを空気中から経済
的且つ容易に分離する方法とそのための装置を提供する
ことにある。
However, since both of the above methods utilize the boiling point difference of the target component, for example, argon (bp = -186 ° C.) and oxygen (bp = -183 ° C.).
It is difficult to separate components having similar boiling points such as (° C).
That is, if the component gas in the air is concentrated and purified by the cryogenic separation method or the PSA method, the obtained gas composition becomes a value close to the content ratio of the gas having a close boiling point in the air, and as a single component,
It is not possible to hope for a higher degree of purification. For example, when the oxygen in the air is concentrated by the PSA method, the oxygen purity is about 9
5% is the economic limit and the remaining 5% is argon. Similarly, in the case of concentrating argon from air, oxygen is inevitably mixed in the concentrated gas. Therefore, an object of the present invention is to provide a method for economically and easily separating oxygen and argon having close boiling points from the air and an apparatus therefor.

【0004】[0004]

【課題を解決するための手段】その目的を達成するため
に、本発明の空気中の酸素とアルゴンとの分離方法は、
酸素の透過速度とアルゴンの透過速度の異なるm個(m
は2以上の正の整数)のガス分離膜を配管を介して接続
し、空気又は空気から分離されたガスをn段目(nはm
より小さい正の整数)のガス分離膜に導き、その非透過
ガス又は透過ガスを[n+1]段目のガス分離膜に導く
段数操作を[m−1]回行い、最終段のガス分離膜の非
透過ガス又は透過ガスを採集することを特徴とする。
In order to achieve the object, the method for separating oxygen in air from argon according to the present invention comprises:
M (m) with different oxygen and argon permeation rates
Is a positive integer of 2 or more) and is connected to a gas separation membrane via a pipe, and air or a gas separated from air is n-th stage (n is m
Smaller number of positive integers) and the non-permeation gas or permeation gas to the [n + 1] th gas separation membrane is performed [m-1] times, and the final stage gas separation membrane It is characterized in that a non-permeable gas or a permeable gas is collected.

【0005】また、本発明の分離方法に適切な装置は、
酸素の透過速度とアルゴンの透過速度の異なるm個(m
は2以上の正の整数)のガス分離膜と、n段目(nはm
より小さい正の整数)のガス分離膜の非透過ガス又は透
過ガスが[n+1]段目のガス分離膜に導かれるように
各段のガス分離膜に連結された少なくとも[m−1]本
の配管とを備えたことを特徴とする。
An apparatus suitable for the separation method of the present invention is
M (m) with different oxygen and argon permeation rates
Is a gas separation membrane with a positive integer of 2 or more, and the nth stage (n is m
(A smaller positive integer) at least [m−1] of gas separation membranes connected to the gas separation membranes of the respective stages so that the non-permeation gas or the permeation gas of the gas separation membranes of the gas separation membranes of the (n + 1) th stage is introduced. And a pipe.

【0006】既述のように、酸素とアルゴンとは沸点が
近いが、膜に対する透過速度は、膜の選択次第では大き
く異なるから、膜による両者の分離は可能である。図面
を用いて説明すると、図1において、2成分以上の混合
ガスで構成された供給ガスSは、好ましくはプレフィル
ターFで除塵された後、圧縮機もしくはブロアーCによ
り昇圧されて分離膜1に導入される。導入ガス圧は、分
離膜1の非透過側に連結された圧力調節弁Vで調節すれ
ばよい。分離膜1では、その透過側に真空ポンプPが設
置され、供給側との圧力差が推進力となって供給ガスが
透過する。分離膜1の材質としては、酸素の透過速度と
アルゴンの透過速度の異なるものを選定しておく。する
と、非透過側では透過速度の小さい成分の濃度が、透過
側では透過速度の大きい成分の濃度が、それぞれ高くな
る。
As described above, although the boiling points of oxygen and argon are close to each other, the permeation rate through the membrane is greatly different depending on the choice of the membrane, so that the membrane can be separated. Explaining with reference to the drawings, in FIG. 1, a feed gas S composed of a mixed gas of two or more components is preferably dust-removed by a pre-filter F and then pressurized by a compressor or a blower C to a separation membrane 1. be introduced. The introduced gas pressure may be adjusted by the pressure control valve V connected to the non-permeable side of the separation membrane 1. A vacuum pump P is installed on the permeation side of the separation membrane 1 so that the pressure difference between the separation membrane 1 and the supply side serves as a driving force to permeate the supply gas. As the material of the separation membrane 1, those having different oxygen permeation rates and argon permeation rates are selected. Then, the concentration of the component having a low transmission rate on the non-transmission side increases, and the concentration of the component having a high transmission rate on the transmission side increases.

【0007】そこで、本発明では、図2に示すように酸
素の透過速度とアルゴンの透過速度の異なる複数のガス
分離膜21,22,・・mを配管を介して接続し、空気
又は空気から分離された供給ガスSを第1分離膜21に
導き、その非透過ガスL1を第2分離膜22に導き、同
様の段数操作を追加した後、最終段のガス分離膜mの非
透過ガスLmを採集する。各段において、非透過側では
透過速度の遅い成分濃度が、透過側では透過速度の速い
成分濃度が、それぞれ高くなるから、段数操作を追加す
るに連れて非透過ガス中に透過速度の遅い成分が濃縮さ
れ、最終段から採集される非透過ガスが精製ガスとな
る。副生成物として、透過速度の速い成分の高濃度ガス
が1段目の透過ガスR1で得られる。
Therefore, in the present invention, as shown in FIG. 2, a plurality of gas separation membranes 21, 22, ..., M having different oxygen permeation rates and argon permeation rates are connected through a pipe to remove air or air from the air. The separated feed gas S is guided to the first separation membrane 21, the non-permeating gas L1 thereof is guided to the second separation membrane 22, and after adding the same number of steps, the non-permeating gas Lm of the gas separation membrane m of the final step is added. To collect. In each stage, the concentration of the component having a slower permeation rate on the non-permeation side and the concentration of the component with a faster permeation rate on the permeation side become higher. Is condensed and the non-permeated gas collected from the final stage becomes the purified gas. As a by-product, a high-concentration gas having a high permeation rate is obtained in the first-stage permeation gas R1.

【0008】また、非透過ガスを次段のガス分離膜に導
く段数操作に代えて、図3に示すように透過ガスRnを
次段のガス分離膜(n+1)に導く段数操作を追加すれ
ば、段数操作を追加するに連れて透過ガス中に透過速度
の速い成分が濃縮され、最終段から採集される透過ガス
Rmが精製ガスとなる。この場合は、1段目の非透過ガ
スL1が副生成物となる。
Further, in place of the step number operation for introducing the non-permeate gas to the next gas separation membrane, a step number operation for introducing the permeate gas Rn to the next gas separation membrane (n + 1) is added as shown in FIG. Then, as the number of steps is added, the component having a high permeation rate is concentrated in the permeate gas, and the permeate gas Rm collected from the last stage becomes the purified gas. In this case, the non-permeable gas L1 of the first stage becomes a by-product.

【0009】一方、図4に示すように、本発明分離装置
Qの1段目のガス分離膜の供給口に圧縮深冷分離装置又
はPSA装置Tを接続し、1段目のガス分離膜に供給さ
れるガスを予め圧縮深冷分離法又はPSA法により濃縮
しておけば更に精製効率が良くなる。モレキュラーシー
ブを利用したPSA酸素製造装置では、一般的に空気中
から窒素、水蒸気、二酸化炭素を除去して濃度90〜9
5%の酸素ガスを製造することができ、残り5〜10%
の大半はアルゴンであるから、本発明分離装置と組み合
わせることにより、100%に近い高純度酸素又は高濃
度アルゴンを得ることができる。また、圧縮深冷分離法
によっても濃度98.0%の酸素ガスを製造することが
できるから、本発明分離装置と組み合わせることによ
り、100%に近い高純度酸素又は高濃度アルゴンを得
ることができる。
On the other hand, as shown in FIG. 4, a compression cryogenic separation device or a PSA device T is connected to the supply port of the gas separation membrane of the first stage of the separation device Q of the present invention to connect the gas separation membrane of the first stage. If the supplied gas is concentrated in advance by the compression cryogenic separation method or the PSA method, the purification efficiency will be further improved. In a PSA oxygen production apparatus using a molecular sieve, nitrogen, water vapor, and carbon dioxide are generally removed from the air to obtain a concentration of 90 to 9
5% oxygen gas can be produced, the remaining 5-10%
Since most of them are argon, high purity oxygen or high concentration argon close to 100% can be obtained by combining with the separation device of the present invention. Oxygen gas having a concentration of 98.0% can also be produced by the compression cryogenic separation method. Therefore, high purity oxygen or high-concentration argon close to 100% can be obtained by combining with the separation device of the present invention. .

【0010】さらに、図2のように非透過ガスを採集す
る場合は、(n+1)段目のガス分離膜の透過ガスをn段目
のガス分離膜の供給側に還流させ、供給ガスもしくは前
段の非透過ガスと合流させて再度供給することにより、
ガスの使用効率を高めることができる。図3のように透
過ガスを採集する場合は、同様に非透過ガスを還流させ
ればよい。なお、真空ポンプPは、分離膜1の供給側に
設置されるブロアーCと対にして用いられ、ブロアーC
に代えて圧縮機が用いられる場合は通常必要ない。但
し、採集ガスの純度を向上させたい場合は、圧縮機と真
空ポンプとを組み合わせても良い。
Further, when the non-permeate gas is collected as shown in FIG. 2, the permeate gas of the (n + 1) th stage gas separation membrane is refluxed to the supply side of the nth stage gas separation membrane to supply gas. Or by merging with the non-permeable gas in the previous stage and supplying again,
The use efficiency of gas can be improved. When the permeated gas is collected as shown in FIG. 3, the non-permeated gas may be similarly refluxed. The vacuum pump P is used as a pair with the blower C installed on the supply side of the separation membrane 1.
It is usually not necessary if a compressor is used instead. However, if it is desired to improve the purity of the collected gas, a compressor and a vacuum pump may be combined.

【0011】[0011]

【発明の実施の形態】本発明の実施にあたって、圧縮
機、真空ポンプ、ブロアー等の回転機器類を用いる場合
は、機器の仕様として取り扱うガス性状に耐性が有り、
且つ効率よく操作できるものであれば良いが、取り扱い
ガス中への不純成分や第三成分の混入をできるだけ避け
るために、ドライ容積式が適している。従って、圧縮機
であればスクリューコンプレッサー、真空ポンプであれ
ば揺動式オイルフリー真空ポンプが良い。プレフィルタ
ーもガス性状に耐性が有ればよいが、着脱作業上の便を
考慮すると、交換作業の容易なカートリッジ式が適して
いる。
BEST MODE FOR CARRYING OUT THE INVENTION In practicing the present invention, when rotating equipment such as a compressor, a vacuum pump, a blower, etc. is used, it is resistant to the gas properties handled as the equipment specifications,
The dry volume formula is suitable so long as it can be operated efficiently, but in order to avoid contamination of the handling gas with the impure component and the third component as much as possible. Therefore, a screw compressor is preferable for a compressor, and an oscillating oil-free vacuum pump is preferable for a vacuum pump. The pre-filter is also required to be resistant to gas properties, but considering the convenience of attachment / detachment work, a cartridge type that is easy to replace is suitable.

【0012】ガス分離膜としては、酸素の透過速度とア
ルゴンの透過速度とが大きく異なり、これらガスを選択
的に効率よく分離するものがよい。例えば含フッ素ポリ
イミド系膜、架橋シリコーン系膜が適している。分離膜
のモジュール形状としては、スパイラル型、中空糸型、
プレート&フレーム型等、用途に応じて選定すればよ
い。
As the gas separation membrane, it is preferable that the permeation rate of oxygen and the permeation rate of argon are greatly different and the gases are selectively and efficiently separated. For example, a fluorine-containing polyimide film and a crosslinked silicone film are suitable. As the module shape of the separation membrane, spiral type, hollow fiber type,
A plate & frame type or the like may be selected according to the application.

【0013】[0013]

【実施例】【Example】

−実施例1− この実施例は、PSA装置より供給される濃度95%の
アルゴン含有酸素ガスからアルゴンガスを分離し、更に
高濃度の酸素ガスを精製するシステムで、図4の全体シ
ステムの内、分離装置Qの部分に図5のシステムを適用
したものである。
-Example 1-This example is a system for separating argon gas from oxygen gas containing argon having a concentration of 95% supplied from a PSA apparatus and purifying a higher concentration of oxygen gas. The system of FIG. 5 is applied to the separating device Q.

【0014】分離装置Qは、酸素の透過速度が0.16
Nm3/m2/hr/atm、アルゴンの透過速度が0.
057Nm3/m2/hr/atmの3段のガス分離膜5
1,52,53と、各段のガス分離膜51〜53の供給
口に配管を介して接続され、冷却水Wを共用する圧縮機
C1〜C3と、圧縮機C1の上流側に連結されたプレフィ
ルターFと、各段のガス分離膜51〜53の非透過側出
口に連結された配管の途中に配置された圧力調整弁V1
〜V3とを備えている。
The separator Q has an oxygen permeation rate of 0.16.
Nm 3 / m 2 / hr / atm, the permeation rate of argon is 0.
057 Nm 3 / m 2 / hr / atm three-stage gas separation membrane 5
1, 52, 53, and compressors C1 to C3 that are connected to the supply ports of the gas separation membranes 51 to 53 of the respective stages via piping and share the cooling water W, and are connected to the upstream side of the compressor C1. A pressure control valve V1 arranged in the middle of a pipe connected to the pre-filter F and the non-permeate side outlets of the gas separation membranes 51 to 53 of each stage.
~ V3.

【0015】図中、実線矢印は、ガスの流路及び流れ方
向を示し、図面が繁雑になるのを避けるために配管は省
略されているが、各段の透過ガスRが圧縮機によって圧
縮されて次段の供給ガスとなり、最終段の透過ガスが採
集されるように配管されている。また、1段目を除いて
各段の非透過ガスLnは、前段の圧縮機Cn-1の直前に還
流されて前々段の透過ガスと合流し、前段の分離膜に対
する供給ガスSn-1となるように配管されている。
In the figure, solid arrows indicate the flow path and flow direction of the gas, and piping is omitted to avoid complicated drawings, but the permeated gas R at each stage is compressed by the compressor. It becomes a supply gas for the next stage, and the permeated gas for the final stage is collected. In addition, the non-permeate gas L n of each stage except the first stage is refluxed immediately before the compressor C n-1 of the previous stage and merges with the permeate gas of the previous stage, and the supply gas S to the separation membrane of the previous stage. It is piped to be n-1 .

【0016】圧縮機C1〜C3は、いずれも吐出圧8at
mのタムローター(TAMROTOR)社製スクリューコンプレッ
サーである。ただし、風量及びモーター出力は、第一圧
縮機C1が8.7m3/min.及び75kW、第二圧縮
機が7.6m3/min.及び55kW、第三圧縮機が
3.6m3/min.及び30kWである。プレフィル
ターFとしては、風量5m3/min.、除去粒子径1
μmのケ゛ルマン・サイエンス・シ゛ャハ゜ン(株)製ポリピュア1式を用
いた。
Each of the compressors C1 to C3 has a discharge pressure of 8 at.
It is a screw compressor manufactured by TAMROTOR of m. However, the air volume and the motor output were 8.7 m 3 / min. And 75 kW, the second compressor was 7.6 m 3 / min. And 55 kW, the third compressor was 3.6 m 3 / min. And 30 kW. The pre-filter F has an air flow of 5 m 3 / min. , Particle size removed 1
A μm polymanufactured by Gellmann Science Japan Co., Ltd. was used.

【0017】分離膜51〜53は、いずれも膜面積30
2/本の日東電工(株)製含フッ素ポリイミド系ガス
分離膜からなるスパイラル型膜モジュールである。ただ
し、膜の使用本数は、第一分離膜10本、第二分離膜7
本、第三分離膜3本とした。この例での各ライン物質収
支結果を表1に示す。
Each of the separation membranes 51 to 53 has a membrane area of 30.
This is a spiral wound type membrane module consisting of m 2 / piece fluorine-containing polyimide gas separation membrane manufactured by Nitto Denko Corporation. However, the number of membranes used is 10 for the first separation membrane and 7 for the second separation membrane.
And three third separation membranes. Table 1 shows the mass balance results for each line in this example.

【0018】[0018]

【表1】 表1にみられるように、PSA装置では95%までしか
精製されなかった酸素ガスを、わずか3段の膜分離から
なる本発明分離方法と組み合わせることにより、99.
5%まで精製することができた。しかも同時に非透過ガ
スL1により7.3%に濃縮されたアルゴンガスが得ら
れた。
[Table 1] As can be seen in Table 1, by combining oxygen gas, which was purified up to 95% in the PSA apparatus, with the separation method of the present invention comprising only three stages of membrane separation, 99.
It could be purified to 5%. At the same time, an argon gas concentrated to 7.3% by the non-permeable gas L1 was obtained.

【0019】−実施例2− この実施例は、PSA装置より供給される濃度95%の
アルゴン含有酸素ガスからアルゴンガスを分離し濃縮す
るシステムで、図4の全体システムの内、分離装置Qの
部分に図6のシステムを適用したものである。
-Example 2-This example is a system for separating and concentrating argon gas from oxygen gas containing argon having a concentration of 95% supplied from a PSA apparatus. The system of FIG. 6 is applied to a part.

【0020】分離装置Qは、酸素の透過速度が0.16
Nm3/m2/hr/atm、アルゴンの透過速度が0.
057Nm3/m2/hr/atmの3段のガス分離膜5
1,52,53と、前2段のガス分離膜51,52の供
給口に配管を介して接続され、冷却水Wを共用する圧縮
機C1,C2と、圧縮機C1の上流側に連結されたプレフ
ィルターFと、各段のガス分離膜51〜53の非透過側
出口に連結された配管の途中に配置された圧力調整弁V
1〜V3とを備えている。
The separator Q has an oxygen permeation rate of 0.16.
Nm 3 / m 2 / hr / atm, the permeation rate of argon is 0.
057 Nm 3 / m 2 / hr / atm three-stage gas separation membrane 5
1, 52, 53 and the supply ports of the gas separation membranes 51, 52 of the previous two stages are connected via pipes, and are connected to the compressors C1, C2 that share the cooling water W and the upstream side of the compressor C1. And a pressure control valve V disposed in the middle of a pipe connected to the pre-filter F and the non-permeate side outlets of the gas separation membranes 51 to 53 of each stage.
1 to V3.

【0021】図中、実施例1と同じく実線矢印は、ガス
の流路及び流れ方向を示し、配管は省略されている。た
だし、実施例1と異なり、各段の非透過ガスLが圧縮機
によって圧縮されて次段の供給ガスとなり、最終段の非
透過ガスが採集されるように配管されている。また、1
段目を除いて後2段の透過ガスRは、前段の圧縮機の直
前に還流されて供給ガスとなるように配管されている。
In the figure, like the first embodiment, the solid line arrows indicate the flow path and flow direction of the gas, and the piping is omitted. However, unlike the first embodiment, the non-permeable gas L of each stage is compressed by the compressor to be the supply gas of the next stage, and the non-permeable gas of the final stage is collected so as to be collected. Also, 1
The permeating gas R in the second and second stages excluding the second stage is piped so as to be refluxed immediately before the compressor in the first stage to be a supply gas.

【0022】圧縮機C1,C2は、いずれも吐出圧8at
mのタムローター(TAMROTOR)社製スクリューコンプレッ
サーである。ただし、風量及びモーター出力は、第一圧
縮機C1が3.8m3/min.及び30kW、第二圧縮
機が2.4m3/min.及び18.5kWである。プ
レフィルターFとしては、風量2.3m3/min.、
除去粒子径1μmのケ゛ルマン・サイエンス・シ゛ャハ゜ン(株)製ポリピ
ュア1式を用いた。
Each of the compressors C1 and C2 has a discharge pressure of 8 at.
It is a screw compressor manufactured by TAMROTOR of m. However, the air volume and the motor output were 3.8 m 3 / min. And 30 kW, the second compressor is 2.4 m 3 / min. And 18.5 kW. The pre-filter F has an air flow rate of 2.3 m 3 / min. ,
Polypure 1 formula manufactured by Gellmann Science Japan Co., Ltd. having a removed particle diameter of 1 μm was used.

【0023】分離膜51〜53は、いずれも膜面積30
2/本の日東電工(株)製含フッ素ポリイミド系ガス
分離膜からなるスパイラル型膜モジュールである。ただ
し、膜の使用本数は、第一分離膜4本、第二分離膜3
本、第三分離膜1本とした。この例での各ライン物質収
支結果を表2に示す。
Each of the separation membranes 51 to 53 has a membrane area of 30.
This is a spiral wound type membrane module consisting of m 2 / piece fluorine-containing polyimide gas separation membrane manufactured by Nitto Denko Corporation. However, the number of membranes used is 4 for the first separation membrane and 3 for the second separation membrane.
And one third separation membrane. Table 2 shows the results of mass balance of each line in this example.

【0024】[0024]

【表2】 表2にみられるように、PSA装置で不純物として5%
だけ含まれていたアルゴンガスを、わずか3段の膜分離
からなる本発明分離方法と組み合わせることにより、9
0.3%まで濃縮することができた。しかも同時に透過
ガスR1により97.7%に濃縮された酸素ガスが得ら
れた。
[Table 2] As can be seen in Table 2, the PSA equipment used 5% impurities.
By combining the argon gas contained only in the present invention with the separation method of the present invention comprising only three stages of membrane separation,
It was possible to concentrate to 0.3%. At the same time, oxygen gas concentrated to 97.7% by the permeating gas R1 was obtained.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、互いに
沸点が近いために従来法では分離困難とされていた空気
中の酸素とアルゴンであっても、効率よく少ない設置ス
ペースでしかも簡単な操作で分離し、酸素の高純度化及
びアルゴンの高濃度化を達成することができる。
As described above, according to the present invention, even in the case of oxygen and argon in the air, which have been difficult to separate by the conventional method because the boiling points are close to each other, they can be efficiently and easily installed in a small installation space. It is possible to achieve high purification of oxygen and high concentration of argon by performing separation by various operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の作用を説明するガスフロー図であ
る。
FIG. 1 is a gas flow diagram illustrating the operation of the present invention.

【図2】 非透過ガスを採集する場合の本発明の作用を
説明するガスフロー図である。
FIG. 2 is a gas flow diagram for explaining the operation of the present invention when collecting a non-permeable gas.

【図3】 透過ガスを採集する場合の本発明の作用を説
明するガスフロー図である。
FIG. 3 is a gas flow diagram for explaining the operation of the present invention when collecting a permeated gas.

【図4】 PSA装置と本発明分離装置との組み合わせ
システムを示すガスフロー図である。
FIG. 4 is a gas flow diagram showing a combined system of a PSA device and a separation device of the present invention.

【図5】 第一実施例の3段酸素濃縮システムを示すガ
スフロー図である。
FIG. 5 is a gas flow diagram showing a three-stage oxygen concentration system according to the first embodiment.

【図6】 第二実施例の3段アルゴン濃縮システムを示
すガスフロー図である。
FIG. 6 is a gas flow diagram showing a three-stage argon concentration system according to a second embodiment.

【符号の説明】[Explanation of symbols]

1,21,22,51,52,53 ガス分離膜 S,S1〜S3 供給ガス F プレフィルター C,C1〜C3 圧縮機又はブロアー P 真空ポンプ V,V1〜V3 圧力調節弁 L,L1〜L3 非透過ガス R,R1〜R3 透過ガス W 冷却水 T PSA装置 Q ガス分離装置 1,2,22,51,52,53 Gas separation membrane S, S1 to S3 Supply gas F Pre-filter C, C1 to C3 Compressor or blower P Vacuum pump V, V1 to V3 Pressure control valve L, L1 to L3 Non Permeation gas R, R1 to R3 Permeation gas W Cooling water T PSA device Q Gas separation device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素の透過速度とアルゴンの透過速度の
異なるm個(mは2以上の正の整数)のガス分離膜を配
管を介して接続し、空気又は空気から分離されたガスを
n段目(nはmより小さい正の整数)のガス分離膜に導
き、その非透過ガス又は透過ガスを[n+1]段目のガ
ス分離膜に導く段数操作を[m−1]回行い、最終段の
ガス分離膜の非透過ガス又は透過ガスを採集することを
特徴とする空気中の酸素とアルゴンとの分離方法。
1. m (m is a positive integer of 2 or more) gas separation membranes having different oxygen permeation rates and argon permeation rates are connected through a pipe, and air or gas separated from air is n [M-1] times the number of steps (n is a positive integer smaller than m) leading to the gas separation membrane, and the non-permeated gas or permeated gas to the [n + 1] th gas separation membrane A method for separating oxygen and argon in air, which comprises collecting a non-permeating gas or a permeating gas of a gas separation membrane of a stage.
【請求項2】 1段目のガス分離膜の供給口にPSA装
置又は圧縮深冷分離装置が接続され、1段目のガス分離
膜に供給されるガスがPSA法又は圧縮深冷分離法によ
り濃縮されている請求項1に記載の空気中の酸素とアル
ゴンとの分離方法。
2. A PSA device or a compression cryogenic separation device is connected to the supply port of the first gas separation membrane, and the gas supplied to the first gas separation membrane is produced by the PSA method or the compression cryogenic separation method. The method for separating oxygen and argon in the air according to claim 1, which is concentrated.
【請求項3】 副生成物として1段目のガス分離膜の透
過ガス又は非透過ガスを採集する請求項1又は2に記載
の空気中の酸素とアルゴンとの分離方法。
3. The method for separating oxygen and argon in air according to claim 1 or 2, wherein a permeated gas or a non-permeated gas of the first-stage gas separation membrane is collected as a by-product.
【請求項4】 酸素の透過速度とアルゴンの透過速度の
異なるm個(mは2以上の正の整数)のガス分離膜と、
n段目(nはmより小さい正の整数)のガス分離膜の非
透過ガス又は透過ガスが[n+1]段目のガス分離膜に
導かれるように各段のガス分離膜に連結された少なくと
も[m−1]本の配管とを備えたことを特徴とする空気
中の酸素とアルゴンとの分離装置。
4. m gas separation membranes (m is a positive integer of 2 or more) having different oxygen permeation rates and argon permeation rates,
At least the gas separation membranes connected to the gas separation membranes of the n-th stage (n is a positive integer smaller than m) are connected to the gas separation membranes of the respective stages so that the non-permeated gas or the permeated gas of the gas separation membranes is guided to the [n + 1] th gas separation membrane [M-1] A device for separating oxygen and argon in the air, which comprises a number of pipes.
JP8045525A 1996-02-06 1996-02-06 Separation of oxygen and argon in air and device therefor Pending JPH09206541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8045525A JPH09206541A (en) 1996-02-06 1996-02-06 Separation of oxygen and argon in air and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8045525A JPH09206541A (en) 1996-02-06 1996-02-06 Separation of oxygen and argon in air and device therefor

Publications (1)

Publication Number Publication Date
JPH09206541A true JPH09206541A (en) 1997-08-12

Family

ID=12721839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8045525A Pending JPH09206541A (en) 1996-02-06 1996-02-06 Separation of oxygen and argon in air and device therefor

Country Status (1)

Country Link
JP (1) JPH09206541A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362915A (en) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd Solid polymer electrolyte fuel cell
JP2008238099A (en) * 2007-03-28 2008-10-09 Air Liquide Japan Ltd Gas manufacturing method and gas manufacturing equipment using gas separation membrane
US7658788B2 (en) 2003-08-06 2010-02-09 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
US7771519B2 (en) 2005-01-03 2010-08-10 Air Products And Chemicals, Inc. Liners for ion transport membrane systems
US8114193B2 (en) 2003-08-06 2012-02-14 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362915A (en) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd Solid polymer electrolyte fuel cell
JP4547868B2 (en) * 2003-06-04 2010-09-22 パナソニック株式会社 Solid polymer electrolyte fuel cell
US7658788B2 (en) 2003-08-06 2010-02-09 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
US8114193B2 (en) 2003-08-06 2012-02-14 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
US7771519B2 (en) 2005-01-03 2010-08-10 Air Products And Chemicals, Inc. Liners for ion transport membrane systems
JP2008238099A (en) * 2007-03-28 2008-10-09 Air Liquide Japan Ltd Gas manufacturing method and gas manufacturing equipment using gas separation membrane

Similar Documents

Publication Publication Date Title
KR101985551B1 (en) Process for separation of gases
CA2172301C (en) Pressure driven solid electrolyte membrane gas separation method
AU2012361210B2 (en) Method for separating gases
JP2664169B2 (en) Method for separating components of gaseous fluid
US5282969A (en) High pressure feed membrane separation process
JP3167794B2 (en) Multi-stage cascade sweep process for diaphragm gas separation
JPS63296820A (en) Production of high-purity hydrogen or helium
EP0702995A1 (en) Membrane gas separation
JPH0550327B2 (en)
EP0430304B1 (en) Separation of gas mixtures
WO2016130244A1 (en) An integrated process and apparatus for recovery of helium rich streams
JPH05221608A (en) Membrane oxygen method and system
WO2020156902A1 (en) A device and a membrane process for separating gas components from a gas stream having varying composition or flow rate
US6387157B1 (en) Mixed gas concentration regulating method and concentration regulating apparatus
WO2006013918A1 (en) Double separation method and double separation system for oxygen gas and nitrogen gas
JP2007254572A (en) Methane concentration system and its operation method
CN114904372A (en) Energy-saving carbon dioxide capture system and method thereof
JPH06205924A (en) Method of forming highly pure film
US5252219A (en) Compressed permeate sweep membrane separation process
JPH09206541A (en) Separation of oxygen and argon in air and device therefor
EP0695574B1 (en) Gas separation with fractional purge for pre- or post-purification
JPWO2007023761A1 (en) Method and system for parallel separation of oxygen gas and nitrogen gas
EP3888773A1 (en) Membrane process and system for high recovery of a nonpermeating gas
JP7031214B2 (en) Helium-enriched gas production method and gas separation system
JP2002035530A (en) Method for operating gas separation membrane