JP2004362915A - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2004362915A
JP2004362915A JP2003159233A JP2003159233A JP2004362915A JP 2004362915 A JP2004362915 A JP 2004362915A JP 2003159233 A JP2003159233 A JP 2003159233A JP 2003159233 A JP2003159233 A JP 2003159233A JP 2004362915 A JP2004362915 A JP 2004362915A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
solid polymer
polymer electrolyte
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003159233A
Other languages
Japanese (ja)
Other versions
JP4547868B2 (en
Inventor
Katsuzo Konakawa
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003159233A priority Critical patent/JP4547868B2/en
Publication of JP2004362915A publication Critical patent/JP2004362915A/en
Application granted granted Critical
Publication of JP4547868B2 publication Critical patent/JP4547868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability of a solid polymer electrolyte fuel cell by preventing the deterioration of a solid polymer electrolyte membrane upon the interruption of an operation, in the solid polymer electrolyte fuel cell using an oxygen separation membrane. <P>SOLUTION: The deterioration of the solid polymer electrolyte membrane 1 is prevented by communicating with an inlet manifold 5 of fuel gas through the oxygen separation membrane 21 separating oxygen gas molecules from nitrogen gas molecules, making flow nitrogen gas on hydrogen side, and quickly exhausting hydrogen gas upon the interruption of the operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池に関する。
【0002】
【従来の技術】
従来、この種の燃料電池は、イオン導電性が付与された固体高分子電解質膜の両面に触媒を担持したガス拡散電極を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータを介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極に燃料ガス及び酸化ガスを供給すると、固体高分子電解質膜でのイオン導電と各ガス拡散電極の化学反応が進行して一対のガス拡散電極間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータを介して外部回路に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0003】
そして、燃料電池の酸化側の空気(酸素)と比較して、燃料電池の燃料側の水素の消費量が大きくなり、燃料電池システムの停止時に、燃料側の圧力が相対的に大きく低下するため、固体高分子電解質膜を挟む燃料側と酸化側との間に大きな圧力差が発生し、燃料電池の電池構成要素が劣化してしまうという問題点があった。また、停止時燃料側に残った水素は速やかに排出する必要がある。すなわち、停止後酸素が配管又は固体高分子電解質膜を通り流入すると急激な酸化反応を生じ高温化又は触媒の酸化劣化を生じる。この点を解消するため、燃料電池システム停止時に、燃料電池内の反応ガス(主に、水素)を不活性ガス(例えば、N2等)や反応済空気で置換することが開示されている(例えば、特許文献1参照)。
【0004】
また、上記燃料電池で用いる反応ガスは、主成分である水素の濃度が高ければ、高いほど燃料電池の発電効率を向上させることができるため、酸素富化装置により酸素濃度が増加した酸素富化空気をスタック加湿部の空気導入口に供給するシステムが開示されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平7−272740号公報
【特許文献2】
特開2000−260458号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の燃料電池システム(特許文献1)は、窒素等の不活性ガスボンベを用いるため、運転している間、このガスボンベの残ガス量の確認と無くなると補充する必要があり、手間を要し、燃料電池システムが煩雑になり、コストも高くなるという問題点があった。また、特許文献2では、燃料電池システムの停止については、十分考慮がなされていなかった。
【0007】
【課題を解決するための手段】
本発明の固体高分子電解質型燃料電池は、前記従来の課題を解決するもので、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を燃料ガス入口管を介して燃料ガスの入口マニホールドに連通して構成してある。
【0008】
これによって、運転停止時は、この窒素ガスを水素側に流し水素ガスを速やかに排出する事により、固体高分子電解質膜の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池を提供できる。
【0009】
すなわち、固体高分子電解質型燃料電池の運転停止時は、燃料ガスの水素ガスの供給を停止した後、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を介して燃料ガスの入口マニホールドに連通したことにより、空気から酸素ガス分子を除いたすなわち窒素ガス分子を燃料電池の燃料側に供給し、水素ガスを追い出し窒素ガスで置換できる。このため、固体高分子電解質型燃料電池の運転停止後、水素ガスが燃料電池内に残り、カソード側への拡散によりカソード側での酸素との反応や、アノード側に停止時に空気の混入により、燃焼による高温化、触媒の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0010】
【発明の実施の形態】
請求項1記載の発明は、固体高分子電解質膜を挟持する一対のガス拡散電極と、ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を燃料ガス入口管を介して燃料ガスの入口マニホールドに連通させて構成してある。
【0011】
これによって、運転停止時は、この窒素ガスを水素側に流し水素ガスを速やかに排出する事により、固体高分子電解質膜の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池を提供できる。
【0012】
すなわち、固体高分子電解質膜は高温になると電気変換率の低下や材料劣化による信頼性の低下を生じ、これを防止するため、運転中は空気や水を流して冷却しているが運転停止とともに冷却は停止する。
【0013】
また、酸素ガスと水素ガスが存在すると触媒近くで燃焼反応を促進し急激な温度上昇により触媒性能は劣化する。そこで、固体高分子電解質型燃料電池の運転停止時は、燃料ガスの水素ガスの供給を停止した後、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を燃料ガス入口管を介して燃料ガスの入口マニホールドに連通したことにより、空気から酸素ガス分子を除いたすなわち窒素ガス分子を燃料電池の燃料側に供給し、水素ガスを追い出し窒素ガスで置換できる。このため、固体高分子電解質型燃料電池の運転停止後、水素ガスが燃料電池内に残り、カソード側への拡散によりカソード側での酸素との反応や、アノード側に停止時に空気の混入により、燃焼による高温化、触媒の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0014】
請求項2記載の発明は、特に請求項1の固体高分子電解質型燃料電池を酸素分離膜と燃料ガスの入口マニホールド間の燃料ガス入口管の途中に開閉弁を構成したことにより、確実なガスの置換が可能となり、信頼性の向上が図れる。すなわち、燃料電池の運転中は開閉弁を閉止してアノード側には水素ガスのみを流し燃料電池の高効率動作を保つ。次に燃料電池の停止時は、開閉弁を開放して、燃料ガスの水素ガスの供給を停止した後、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を介して燃料ガスの入口マニホールドに連通した開閉弁を開放したことにより、空気から酸素ガス分子を除いたすなわち窒素ガス分子を速やかに燃料電池の燃料側に供給し、水素ガスを追い出し窒素ガスで置換できる。このため、確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0015】
請求項3記載の発明は、特に請求項1〜2の固体高分子電解質型燃料電池を酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜の他方の窒素濃度が高くなった空気を燃料ガスの入口マニホールドに連通させたことにより、酸素分離膜により高濃度の窒素ガスを停止時の燃料電池のアノード側に供給でき安定して確実なガスの置換が可能となり、信頼性の向上が図れる。
【0016】
すなわち、酸素分離膜は圧力差があると、ガス種により溶解拡散の速度が異なる事を利用している。酸素分離膜の両面に圧力差を設けると、大気側の酸素が膜表面に溶解し膜内を拡散し減圧側の膜表面から離脱するという原理で動作する。このため、酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜の他方の窒素濃度が十分に高くなった空気を燃料ガス入口管を介して燃料ガスの入口マニホールドに連通させたことにより、燃料電池の停止時、ほとんど窒素の高濃度窒素ガスで、燃料電池の燃料側の水素ガスを追い出し窒素ガスで置換できる。このため、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0017】
請求項4記載の発明は、特に請求項1〜3の固体高分子電解質型燃料電池の酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を酸化ガス入口管を介して酸化ガスの入口マニホールドに連通させたことにより、燃料電池の燃料側のガスの置換により高温化と触媒の劣化を防止して信頼性を高めるとともに、燃料電池のカソード側の酸素分圧を高くでき燃料電池の高効率化が可能となる。
【0018】
すなわち、酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜の他方の窒素濃度が十分に高くなった空気を燃料ガスの入口マニホールドに連通させたことにより、燃料電池の停止時、ほとんど窒素の高濃度窒素ガスで、燃料電池の燃料側の水素ガスを追い出し窒素ガスで置換できる。このため、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。そして、酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を、酸化ガスの入口マニホールドに連通させたことによりカソード側の酸素分圧が高くなる。燃料電池の発電効率は固体高分子膜のプロトン伝導度により決まり、このプロトン伝導度は、アノード、カソードの各ガスのガス分圧に影響する。カソード側に空気を用い、その酸素濃度20.8%から酸素濃度が高くなった空気をカソードに供給することにより燃料電池の発電効率が上昇する。このため、燃料電池の高効率化が可能となり、同じ発電効率の設定の場合は燃料電池の小型化が可能であり、コンパクト化と安価が図れ、また、使用性能が向上できる。
【0019】
請求項5記載の発明は、特に請求項1〜4の固体高分子電解質型燃料電池を酸素分離膜は複数備え、直列に配置したことにより、酸素分離膜により空気はより高濃度に酸素ガスと窒素ガスに分離でき、燃料電池の燃料側のガスの置換により高温化と触媒の劣化を完全に防止して信頼性を高めるとともに、燃料電池のカソード側の酸素分圧をより高くでき燃料電池のさらに高効率化が可能となる。
【0020】
すなわち、酸素分離膜は圧力差があると、ガス種により溶解拡散の速度が異なる事を利用している。酸素分離膜の両面に圧力差を設けると、大気側の酸素が膜表面に溶解し膜内を拡散し減圧側の膜表面から離脱するという原理で動作する。このため、一定の圧力差では面積に応じて分離されるガスの濃度が決まる。そこで、酸素分離膜を複数備え、直列に配置したことにより、格段で逐次分離でき、圧力差を大きくしなくてもかつ面積を大きくしなくても、酸素分離効率がさらに向上し、高濃度のガスに分離できる。このため、酸素分離膜は複数備え、直列に配置したことにより、カソード側には高濃度の酸素ガスを供給し、停止時アノード側には高濃度の窒素ガスを流して水素ガスの置換が可能となり、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。そして、カソード側の酸素濃度をさらに高めた空気をカソードに供給することにより燃料電池の発電効率が上昇する。このため、燃料電池のさらなる高効率化が可能となり、同じ発電効率の設定の場合は燃料電池の小型化が可能であり、コンパクト化と安価がさらに図れ、また、使用性能が向上できる。
【0021】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0022】
(実施例1)
図1は、本発明の第1の実施例における固体高分子電解質型燃料電池の全体構成図、図2は燃料電池のセパレータの構成図、図3は燃料電池の発電セルの断面図を示す。図3において、固体高分子電解質型燃料電池は、イオン伝導性が付与された固体高分子電解質膜11の両面に触媒を担持したガス拡散電極12を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータ1を介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極12に燃料ガス及び酸化ガスを供給すると、固体高分子電解質膜11でのイオン導電と各ガス拡散電極の電気化学反応が進行して一対のガス拡散電極12間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータ1を介して外部回路(図示せず)に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極12の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0023】
図2に示すセパレータ1は、セパレータ1の流路溝2は、ガス拡散電極12に対応した形状としガス不透過性と導電性を有するカーボン、表面処理をした金属等を用いて構成する。入口マニホールド3から燃料または酸化ガスが流入され、流路溝2の溝を経たガスを出口マニホールド4より流出する。他方酸化ガスまたは燃料ガスのセパレータ1はこのセパレータ1の背面側に同様の流れる構成を設け入口マニホールド5及び出力マニホールド6よりガスの流入と導出が行われる。これにより、固体高分子電解質の膜11を挟持する一対のガス拡散電極12のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口側から出口側に導く流路溝2を形成したセパレータ1を構成している。
【0024】
そして、図1に示す固体高分子電解質型燃料電池は、積層発電セル13は、図3に示した固体高分子電解質膜11の両面に触媒を担持したガス拡散電極12を両面に重ね合わせて発電セル間にセパレータ1を介在させ発電セルを積層してスタック化してあり、端版14により締結してある。(電力の取り出し用電極や回路は図示せず) 酸化ガスは、フィルターや湿度調整部等と接続した酸化ガス入口管15により入口マニホールド3に接続し、出口マニホールド4には酸化ガス出口管16により酸化ガス送風機17に接続してある。また、燃料ガスは、燃料タンク、改質器や湿度調整部等と接続した燃料ガス入口管18により入口マニホールド5に接続し、出口マニホールド6には燃料ガス出口管19により燃料ガス送風機20に接続してある。そして、酸素ガス分子と窒素ガス分子を分離する酸素分離膜21を介して燃料ガスの入口マニホールド5に連通する燃料ガス入口管18と開閉弁22を介して接続してある。また。酸素分離膜21の他方は排気ファン23を介して外気に開放している。
【0025】
以上のように構成された酸素分離膜を用いた固体高分子電解質型燃料電池について、以下その動作、作用を説明する。
【0026】
酸化ガスは、酸化ガス送風機17を動作させることにより、フィルターや湿度調整部等で調整された後、酸化ガス入口管15から積層発電セル13の入口マニホールド3からはいりセパレータ1の流路溝2を流れた後、出口マニホールド4から酸化ガス出口管16を通り酸化ガス送風機17から外部に流れる。同時に、燃料ガス送風機20を動作させることにより、燃料ガスは、燃料タンク、改質器や湿度調整部等から燃料ガス入口管18を通り、積層発電セル13の入口マニホールド5からはいりセパレータ1の流路溝2を流れた後、出口マニホールド6から燃料ガス出口管19を通り燃料ガス送風機20から外部に放出する。放出する酸化ガス、燃料ガスは、熱交換器、加湿交換器等に連結して、その熱、湿度、未分解ガス等再度利用しても良い。燃料ガスが流路溝2を流れる時、ガス拡散電極に拡散して電気化学反応を行い、水となり順次質量を減じながら出口マニホールド4に至り排出される。
【0027】
そして、酸素ガス分子と窒素ガス分子を分離する酸素分離膜21を介して燃料ガスの入口マニホールド5に連通させて構成してあるため、運転停止時は、この窒素ガスを水素側に流し水素ガスを速やかに排出する事により、固体高分子電解質膜11の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池を提供できる。
【0028】
すなわち、固体高分子電解質膜11は高温になると電気変換率の低下や材料劣化による信頼性の低下を生じ、これを防止するため、運転中は空気や水を流して冷却しているが運転停止とともに冷却は停止する。また、酸素ガスと水素ガスが存在すると触媒近くで燃焼反応を促進し急激な温度上昇により触媒性能は劣化する。そこで、固体高分子電解質型燃料電池の運転停止時は、燃料ガスの水素ガスの供給を停止した後、酸素ガス分子と窒素ガス分子を分離する酸素分離膜21を介して燃料ガスの入口マニホールド5に連通したことにより、空気から酸素ガス分子を除いたすなわち窒素ガス分子を燃料電池の燃料側に供給し、水素ガスを追い出し窒素ガスで置換できる。このため、固体高分子電解質型燃料電池の運転停止後、水素ガスが燃料電池内に残り、カソード側への拡散によりカソード側での酸素との反応や、アノード側に停止時に空気の混入により、燃焼による高温化、触媒の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0029】
また、酸素分離膜21と燃料ガスの入口マニホールド5の連通路の途中に開閉弁22を構成したことにより、確実なガスの置換が可能となり、信頼性の向上が図れる。すなわち、燃料電池の運転中は開閉弁22を閉止してアノード側には水素ガスのみを流し燃料電池の高効率動作を保つ。次に燃料電池の停止時は、開閉弁22を開放して、燃料ガスの水素ガスの供給を停止した後、酸素ガス分子と窒素ガス分子を分離する酸素分離膜21を介して燃料ガスの入口マニホールド5に連通した開閉弁22を開放したことにより、空気から酸素ガス分子を除いたすなわち窒素ガス分子を速やかに燃料電池の燃料側に供給し、水素ガスを追い出し窒素ガスで置換できる。このため、確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0030】
また、酸素分離膜21の片方を送風機23により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜21の他方の窒素濃度が高くなった空気を燃料ガスの入口マニホールド5に連通させたことにより、酸素分離膜21の他方は排気ファン23を介して外気に開放しているため、排気ファン23を動作させると空気導入口24から吸引し入った空気は酸素分離膜21で酸素を多く含むガスとして排気ファン23から外気に排出される。そのため酸素分離膜21の開閉弁22に連通した部分に溜まった空気は窒素比率が次第に大きくなり、しばらくするとほとんど窒素のガスとなる。
【0031】
そのため、酸素分離膜21により高濃度の窒素ガスを停止時の燃料電池のアノード側に供給でき安定して確実なガスの置換が可能となり、信頼性の向上が図れる。
【0032】
すなわち、酸素分離膜21は圧力差があると、ガス種により溶解拡散の速度が異なる事を利用している。酸素分離膜21の両面に圧力差を設けると、大気側の酸素が膜表面に溶解し膜内を拡散し減圧側の膜表面から離脱するという原理で動作する。このため、酸素分離膜21の片方を送風機23により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜21の他方の窒素濃度が十分に高くなった空気を燃料ガスの入口マニホールド5に連通させたことにより、燃料電池の停止時、ほとんど窒素の高濃度窒素ガスで、燃料電池の燃料側の水素ガスを追い出し窒素ガスで置換できる。このため、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。
【0033】
(実施例2)
図4は、本発明の第2の実施例における固体高分子電解質型燃料電池の全体構成図を示す。実施例1と異なるところは、酸素分離膜21の片方を送風機23により減圧して酸素濃度が高くなった空気を酸化ガスの入口マニホールド3に連通させたことにより、燃料電池の燃料側のガスの置換により高温化と触媒の劣化を防止して信頼性を高めるとともに、燃料電池のカソード側の酸素分圧を高くでき燃料電池の高効率化が可能となる。
【0034】
すなわち、酸素分離膜21の片方を送風機23により減圧して酸素濃度が高くなった空気を排出し、酸素分離膜21の他方の窒素濃度が十分に高くなった空気を燃料ガスの入口マニホールド3に連通させたことにより、燃料電池の停止時、ほとんど窒素の高濃度窒素ガスで、燃料電池の燃料側の水素ガスを追い出し窒素ガスで置換できる。このため、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。そして、酸素分離膜21の片方を送風機23により減圧して酸素濃度が高くなった空気を、酸化ガスの入口マニホールド3に連通させたことによりカソード側の酸素分圧が高くなる。燃料電池の発電効率は固体高分子電解質膜11のプロトン伝導度により決まり、このプロトン伝導度は、アノード、カソードの各ガスのガス分圧に影響する。カソード側に空気を用い、その酸素濃度20.8%から酸素濃度が高くなった空気をカソードに供給することにより燃料電池の発電効率が上昇する。このため、燃料電池の高効率化が可能となり、同じ発電効率の設定の場合は燃料電池の小型化が可能であり、コンパクト化と安価が図れ、また、使用性能が向上できる。
【0035】
(実施例3)
図5は、本発明の第3の実施例における固体高分子電解質型燃料電池の部分構成図を示す。実施例1と異なるところは、酸素分離膜21は複数備え、直列に配置したことにある。本実施例では酸素分離膜を21(a),21(b),21(c)と3枚を直列としてある。このことにより、酸素分離膜21(a),21(b),21(c)により空気はより高濃度に酸素ガスと窒素ガスに分離でき、燃料電池の燃料側のガスの置換により高温化と触媒の劣化を完全に防止して信頼性を高めるとともに、燃料電池のカソード側の酸素分圧をより高くでき燃料電池のさらに高効率化が可能となる。
【0036】
すなわち、酸素分離膜21(a),21(b),21(c)は圧力差があると、ガス種により溶解拡散の速度が異なる事を利用している。酸素分離膜21(a),21(b),21(c)の両面に圧力差を設けると、大気側の酸素が膜表面に溶解し膜内を拡散し減圧側の膜表面から離脱するという原理で動作する。このため、一定の圧力差では面積に応じて分離されるガスの濃度が決まる。そこで、酸素分離膜21(a),21(b),21(c)を複数備え、直列に配置したことにより、格段で逐次分離でき、圧力差を大きくしなくてもかつ面積を大きくしなくても、酸素分離効率がさらに向上し、高濃度のガスに分離できる。このため、酸素分離膜21(a),21(b),21(c)は複数備え、直列に配置したことにより、カソード側には高濃度の酸素ガスを供給し、停止時アノード側には高濃度の窒素ガスを流して水素ガスの置換が可能となり、安定して確実なガスの置換が可能となり、燃焼による高温化、触媒の劣化を確実に防止して信頼性を高めた固体高分子電解質型燃料電池とすることが出来る。そして、カソード側の酸素濃度をさらに高めた空気をカソードに供給することにより燃料電池の発電効率が上昇する。このため、燃料電池のさらなる高効率化が可能となり、同じ発電効率の設定の場合は燃料電池の小型化が可能であり、コンパクト化と安価がさらに図れ、また、使用性能が向上できる。
【0037】
【発明の効果】
以上のように、本発明によれば、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を介して燃料ガスの入口マニホールドに連通させて構成したことによって、運転停止時は、この窒素ガスを水素側に流し水素ガスを速やかに排出する事により、固体高分子電解質膜の劣化を防止して信頼性を高めた固体高分子電解質型燃料電池を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における固体高分子電解質型燃料電池を示す全体構成図
【図2】本発明の第1の実施例における固体高分子電解質型燃料電池のセパレータの構成図
【図3】本発明の第1の実施例における固体高分子電解質型燃料電池の発電セルの断面図
【図4】本発明の第2の実施例における固体高分子電解質型燃料電池の全体構成図
【図5】本発明の第3の実施例における固体高分子電解質型燃料電池の部分構成図
【符号の説明】
1 セパレータ
3 入口マニホールド(酸化ガス)
4 出口マニホールド(酸化ガス)
5 入口マニホールド(燃料ガス)
6 出口マニホールド(燃料ガス)
11 固体高分子電解質膜
12 ガス拡散電極
15 酸化ガス入口管
18 燃料ガス入口管
21 酸素分離膜
22 開閉弁
23 送風機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid polymer electrolyte fuel cell.
[0002]
[Prior art]
Conventionally, this type of fuel cell has a power generation cell in which a gas diffusion electrode carrying a catalyst on both surfaces of a solid polymer electrolyte membrane provided with ionic conductivity is superposed on both surfaces. Then, a plurality of the power generation cells are connected to obtain a predetermined voltage. For this reason, a separator is interposed between the power generation cells, and the power generation cells are stacked and stacked. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes, the ionic conduction in the solid polymer electrolyte membrane and the chemical reaction of each gas diffusion electrode progress. As a result, a voltage is generated between the pair of gas diffusion electrodes, and power is supplied to an external circuit via a pair of separators at both ends having a function of a current collecting electrode. In such power generation, supplying the supplied gas to the electrode surface of the gas diffusion electrode as evenly as possible increases the gas utilization rate and improves power generation efficiency and output performance.
[0003]
Then, compared to the air (oxygen) on the oxidizing side of the fuel cell, the consumption of hydrogen on the fuel side of the fuel cell increases, and the pressure on the fuel side drops relatively greatly when the fuel cell system stops. In addition, there is a problem that a large pressure difference is generated between the fuel side and the oxidation side sandwiching the solid polymer electrolyte membrane, and the cell components of the fuel cell are deteriorated. Further, it is necessary to quickly discharge the hydrogen remaining on the fuel side at the time of stop. That is, if oxygen flows after the stoppage through the pipe or the solid polymer electrolyte membrane, a rapid oxidation reaction occurs, resulting in a high temperature or oxidative deterioration of the catalyst. In order to solve this problem, it is disclosed that when the fuel cell system is stopped, the reaction gas (mainly, hydrogen) in the fuel cell is replaced with an inert gas (for example, N2 or the like) or reacted air (for example, see Japanese Patent Application Laid-Open (JP-A) No. 2004-122131). And Patent Document 1).
[0004]
In addition, the higher the concentration of hydrogen, which is the main component, in the reaction gas used in the fuel cell, the higher the power generation efficiency of the fuel cell can be improved. A system for supplying air to an air inlet of a stack humidifier is disclosed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-7-272740 [Patent Document 2]
JP 2000-260458 A
[Problems to be solved by the invention]
However, since the conventional fuel cell system (Patent Document 1) uses an inert gas cylinder such as nitrogen, it is necessary to check the remaining gas amount of the gas cylinder during operation and to replenish it when it runs out. However, there has been a problem that the fuel cell system becomes complicated and the cost increases. Also, in Patent Document 2, sufficient consideration has not been given to stopping the fuel cell system.
[0007]
[Means for Solving the Problems]
A solid polymer electrolyte fuel cell according to the present invention solves the above-mentioned conventional problems, and communicates an oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules to a fuel gas inlet manifold via a fuel gas inlet pipe. It is configured.
[0008]
Thus, when the operation is stopped, the nitrogen gas is caused to flow to the hydrogen side and the hydrogen gas is quickly discharged, thereby preventing the deterioration of the solid polymer electrolyte membrane and improving the reliability of the solid polymer electrolyte fuel cell. Can be provided.
[0009]
That is, when the operation of the polymer electrolyte fuel cell is stopped, the supply of hydrogen gas as the fuel gas is stopped, and then the fuel cell is connected to the fuel gas inlet manifold through the oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules. As a result, oxygen gas molecules are removed from the air, that is, nitrogen gas molecules are supplied to the fuel side of the fuel cell, and hydrogen gas is expelled and replaced with nitrogen gas. For this reason, after the operation of the solid polymer electrolyte fuel cell is stopped, hydrogen gas remains in the fuel cell, and reacts with oxygen on the cathode side by diffusion to the cathode side, and when air is mixed into the anode side when stopped, A solid polymer electrolyte fuel cell with improved reliability by preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is characterized in that a pair of gas diffusion electrodes sandwiching the solid polymer electrolyte membrane, and a flow channel for guiding the fuel gas and the oxidizing gas from the respective inlet manifolds to the outlet manifolds on each surface of the gas diffusion electrodes. An oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules from the formed separator is connected to a fuel gas inlet manifold via a fuel gas inlet pipe.
[0011]
Thus, when the operation is stopped, the nitrogen gas is caused to flow to the hydrogen side and the hydrogen gas is quickly discharged, thereby preventing the deterioration of the solid polymer electrolyte membrane and improving the reliability of the solid polymer electrolyte fuel cell. Can be provided.
[0012]
In other words, when the temperature of the solid polymer electrolyte membrane becomes high, the electrical conversion rate decreases and the reliability deteriorates due to material deterioration.To prevent this, air and water are flowed during operation to cool the membrane. Cooling stops.
[0013]
In addition, when oxygen gas and hydrogen gas are present, the combustion reaction is promoted near the catalyst, and the catalyst performance deteriorates due to a rapid temperature rise. Therefore, when the operation of the solid polymer electrolyte fuel cell is stopped, the supply of hydrogen gas as a fuel gas is stopped, and an oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules is connected to the fuel gas through a fuel gas inlet pipe. The oxygen gas molecules are removed from the air, that is, the nitrogen gas molecules are supplied to the fuel side of the fuel cell, and the hydrogen gas can be expelled and replaced by the nitrogen gas. For this reason, after the operation of the solid polymer electrolyte fuel cell is stopped, hydrogen gas remains in the fuel cell, and reacts with oxygen on the cathode side by diffusion to the cathode side, and when air is mixed into the anode side when stopped, A solid polymer electrolyte fuel cell with improved reliability by preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0014]
The second aspect of the present invention provides a solid polymer electrolyte fuel cell in which an on-off valve is provided in the fuel gas inlet pipe between the oxygen separation membrane and the fuel gas inlet manifold. Can be replaced, and the reliability can be improved. That is, during operation of the fuel cell, the on-off valve is closed, and only hydrogen gas is flowed to the anode side to maintain high efficiency operation of the fuel cell. Next, when the fuel cell is stopped, the on-off valve is opened to stop the supply of hydrogen gas as a fuel gas, and then to the fuel gas inlet manifold through an oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules. By opening the communicating on-off valve, oxygen gas molecules are removed from the air, that is, nitrogen gas molecules are quickly supplied to the fuel side of the fuel cell, and hydrogen gas is expelled and replaced with nitrogen gas. For this reason, the gas can be reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0015]
The invention according to claim 3 is particularly directed to the solid polymer electrolyte fuel cell according to claims 1 and 2, wherein one of the oxygen separation membranes is depressurized by a blower to discharge air having an increased oxygen concentration, and the other of the oxygen separation membranes is discharged. The oxygen-enriched air communicates with the fuel gas inlet manifold, allowing the oxygen separation membrane to supply high-concentration nitrogen gas to the anode side of the fuel cell when it is stopped. And reliability can be improved.
[0016]
That is, the oxygen separation membrane utilizes the fact that the rate of dissolution / diffusion differs depending on the gas species when there is a pressure difference. When a pressure difference is provided between the two surfaces of the oxygen separation membrane, the oxygen separation membrane operates on the principle that oxygen on the atmosphere side dissolves on the membrane surface, diffuses in the membrane, and separates from the membrane surface on the reduced pressure side. For this reason, one side of the oxygen separation membrane is decompressed by a blower to discharge air having a high oxygen concentration, and the other air having a sufficiently high nitrogen concentration is discharged from the oxygen separation membrane through a fuel gas inlet pipe. When the fuel cell is stopped, hydrogen gas on the fuel side of the fuel cell can be expelled and replaced with nitrogen gas when the fuel cell is stopped. For this reason, the gas can be stably and reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0017]
According to the fourth aspect of the present invention, in particular, one of the oxygen separation membranes of the solid polymer electrolyte fuel cells according to the first to third aspects is decompressed by a blower to oxidize air having an increased oxygen concentration through an oxidizing gas inlet pipe. By communicating with the gas inlet manifold, the replacement of gas on the fuel side of the fuel cell prevents high temperature and catalyst deterioration, thereby improving reliability and increasing the oxygen partial pressure on the cathode side of the fuel cell. It is possible to increase the efficiency of the battery.
[0018]
That is, one of the oxygen separation membranes was depressurized by a blower to discharge air having an increased oxygen concentration, and the other of the oxygen separation membranes having an increased nitrogen concentration was communicated with the fuel gas inlet manifold. Thereby, when the fuel cell is stopped, the hydrogen gas on the fuel side of the fuel cell can be expelled and replaced with the nitrogen gas with almost high concentration nitrogen gas of nitrogen. For this reason, the gas can be stably and reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained. Then, air having an increased oxygen concentration by reducing the pressure of one of the oxygen separation membranes by a blower is communicated to the oxidizing gas inlet manifold, whereby the oxygen partial pressure on the cathode side is increased. The power generation efficiency of the fuel cell is determined by the proton conductivity of the solid polymer membrane, and this proton conductivity affects the gas partial pressure of each of the anode and cathode gases. By using air on the cathode side and supplying air having an oxygen concentration higher than the oxygen concentration of 20.8% to the cathode, the power generation efficiency of the fuel cell increases. For this reason, the efficiency of the fuel cell can be increased, and when the same power generation efficiency is set, the size of the fuel cell can be reduced, so that the size and cost can be reduced, and the use performance can be improved.
[0019]
In the invention according to claim 5, the solid polymer electrolyte fuel cells according to claims 1 to 4 are provided with a plurality of oxygen separation membranes and arranged in series, so that the oxygen separation membrane allows air to be mixed with oxygen gas at a higher concentration. Nitrogen gas can be separated, and the replacement of the gas on the fuel side of the fuel cell can completely prevent high temperature and catalyst deterioration, thereby improving reliability and increasing the oxygen partial pressure on the cathode side of the fuel cell. Further higher efficiency can be achieved.
[0020]
That is, the oxygen separation membrane utilizes the fact that the rate of dissolution / diffusion differs depending on the gas species when there is a pressure difference. When a pressure difference is provided between the two surfaces of the oxygen separation membrane, the oxygen separation membrane operates on the principle that oxygen on the atmosphere side dissolves on the membrane surface, diffuses in the membrane, and separates from the membrane surface on the reduced pressure side. For this reason, at a constant pressure difference, the concentration of the gas to be separated is determined according to the area. Therefore, by providing a plurality of oxygen separation membranes and arranging them in series, the separation can be performed remarkably sequentially, and even if the pressure difference is not increased and the area is not increased, the oxygen separation efficiency is further improved, and It can be separated into gas. For this reason, a plurality of oxygen separation membranes are provided and arranged in series, so that high-concentration oxygen gas is supplied to the cathode side and high-concentration nitrogen gas flows to the anode side during shutdown to replace hydrogen gas. As a result, the gas can be stably and reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing a high temperature due to combustion and deterioration of the catalyst can be obtained. The power generation efficiency of the fuel cell is increased by supplying the cathode with air having further increased oxygen concentration on the cathode side. For this reason, it is possible to further increase the efficiency of the fuel cell, and in the case of setting the same power generation efficiency, it is possible to reduce the size of the fuel cell, further reduce the size and cost, and improve the use performance.
[0021]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
(Example 1)
FIG. 1 is an overall configuration diagram of a solid polymer electrolyte fuel cell according to a first embodiment of the present invention, FIG. 2 is a configuration diagram of a fuel cell separator, and FIG. 3 is a sectional view of a power generation cell of the fuel cell. In FIG. 3, a solid polymer electrolyte fuel cell constitutes a power generation cell by stacking gas diffusion electrodes 12 carrying a catalyst on both surfaces of a solid polymer electrolyte membrane 11 provided with ion conductivity on both surfaces. . Then, a plurality of the power generation cells are connected to obtain a predetermined voltage. For this reason, the separators 1 are interposed between the power generation cells, and the power generation cells are stacked and stacked. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes 12, the ionic conduction in the solid polymer electrolyte membrane 11 and the electrochemical As the reaction proceeds, a voltage is generated between the pair of gas diffusion electrodes 12, and power is supplied to an external circuit (not shown) via the pair of separators 1 on both ends having a function of a current collecting electrode. In such power generation, supplying the supplied gas to the electrode surface of the gas diffusion electrode 12 as evenly as possible increases the gas utilization rate and improves the power generation efficiency and output performance.
[0023]
In the separator 1 shown in FIG. 2, the flow channel 2 of the separator 1 has a shape corresponding to the gas diffusion electrode 12 and is made of carbon having gas impermeability and conductivity, surface-treated metal, or the like. Fuel or oxidizing gas flows from the inlet manifold 3, and flows out of the outlet manifold 4 through the gas of the flow channel 2. On the other hand, the oxidizing gas or fuel gas separator 1 is provided with a similar flow structure on the back side of the separator 1, and gas is introduced and discharged from the inlet manifold 5 and the output manifold 6. Thereby, the separator 1 is formed in which the flow grooves 2 for guiding the fuel gas and the oxidizing gas from the respective inlet sides to the respective outlet sides are formed on the respective surfaces of the pair of gas diffusion electrodes 12 sandwiching the solid polymer electrolyte membrane 11. are doing.
[0024]
In the solid polymer electrolyte fuel cell shown in FIG. 1, the stacked power generation cell 13 generates electric power by superposing the gas diffusion electrodes 12 supporting the catalyst on both surfaces of the solid polymer electrolyte membrane 11 shown in FIG. The power generation cells are stacked to form a stack with a separator 1 interposed between the cells, and are fastened by end plates 14. (Electric power extraction electrodes and circuits are not shown.) The oxidizing gas is connected to the inlet manifold 3 by an oxidizing gas inlet pipe 15 connected to a filter, a humidity adjusting unit, and the like, and the oxidizing gas outlet pipe 16 is connected to the outlet manifold 4. It is connected to an oxidizing gas blower 17. The fuel gas is connected to the inlet manifold 5 by a fuel gas inlet pipe 18 connected to a fuel tank, a reformer, a humidity control unit, and the like, and the fuel gas is connected to the outlet manifold 6 to a fuel gas blower 20 by a fuel gas outlet pipe 19. I have. The fuel gas is connected to a fuel gas inlet pipe 18 communicating with the fuel gas inlet manifold 5 through an oxygen separation membrane 21 for separating oxygen gas molecules and nitrogen gas molecules through an on-off valve 22. Also. The other side of the oxygen separation membrane 21 is open to the outside air via an exhaust fan 23.
[0025]
The operation and action of the solid polymer electrolyte fuel cell using the oxygen separation membrane configured as described above will be described below.
[0026]
The oxidizing gas is adjusted by a filter, a humidity adjusting unit, and the like by operating the oxidizing gas blower 17, and then enters from the oxidizing gas inlet pipe 15 through the inlet manifold 3 of the stacked power generation cell 13 and passes through the flow channel 2 of the separator 1. After flowing, it flows from the outlet manifold 4 through the oxidizing gas outlet pipe 16 to the outside from the oxidizing gas blower 17. At the same time, by operating the fuel gas blower 20, the fuel gas flows from the fuel tank, the reformer, the humidity control unit, etc., through the fuel gas inlet pipe 18, flows from the inlet manifold 5 of the stacked power generation cell 13, and flows into the separator 1. After flowing through the channel 2, the fuel gas is discharged from the outlet manifold 6 to the outside through the fuel gas outlet pipe 19 through the fuel gas blower 20. The released oxidizing gas and fuel gas may be connected to a heat exchanger, a humidifying exchanger and the like, and the heat, humidity, undecomposed gas and the like may be reused. When the fuel gas flows through the flow channel 2, the fuel gas diffuses into the gas diffusion electrode to perform an electrochemical reaction, becomes water, and is discharged to the outlet manifold 4 while sequentially reducing the mass.
[0027]
Since the fuel cell is connected to the fuel gas inlet manifold 5 through an oxygen separation membrane 21 for separating oxygen gas molecules and nitrogen gas molecules, when the operation is stopped, the nitrogen gas is caused to flow to the hydrogen side and the hydrogen gas By promptly discharging the solid polymer electrolyte membrane, it is possible to provide a solid polymer electrolyte fuel cell in which the deterioration of the polymer electrolyte membrane 11 is prevented and the reliability is improved.
[0028]
That is, when the temperature of the solid polymer electrolyte membrane 11 becomes high, the electrical conversion rate decreases and the reliability deteriorates due to material deterioration. To prevent this, air or water is flown during operation to cool the solid polymer electrolyte membrane 11. At the same time, cooling stops. In addition, when oxygen gas and hydrogen gas are present, the combustion reaction is promoted near the catalyst, and the catalyst performance deteriorates due to a rapid temperature rise. Therefore, when the operation of the solid polymer electrolyte fuel cell is stopped, the supply of hydrogen gas as the fuel gas is stopped, and then the fuel gas inlet manifold 5 through the oxygen separation membrane 21 for separating oxygen gas molecules and nitrogen gas molecules. , The oxygen gas molecules are removed from the air, that is, the nitrogen gas molecules are supplied to the fuel side of the fuel cell, and the hydrogen gas is expelled and replaced with the nitrogen gas. For this reason, after the operation of the solid polymer electrolyte fuel cell is stopped, hydrogen gas remains in the fuel cell, and reacts with oxygen on the cathode side by diffusion to the cathode side, and when air is mixed into the anode side when stopped, A solid polymer electrolyte fuel cell with improved reliability by preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0029]
In addition, since the on-off valve 22 is provided in the middle of the communication path between the oxygen separation membrane 21 and the fuel gas inlet manifold 5, the gas can be reliably replaced, and the reliability can be improved. That is, during the operation of the fuel cell, the on-off valve 22 is closed, and only the hydrogen gas flows to the anode side, so that the fuel cell operates at high efficiency. Next, when the fuel cell is stopped, the on-off valve 22 is opened to stop the supply of the hydrogen gas as the fuel gas, and then the fuel gas inlet through the oxygen separation membrane 21 for separating oxygen gas molecules and nitrogen gas molecules. By opening the on-off valve 22 connected to the manifold 5, the oxygen gas molecules are removed from the air, that is, the nitrogen gas molecules are quickly supplied to the fuel side of the fuel cell, and the hydrogen gas is expelled and replaced with the nitrogen gas. For this reason, the gas can be reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0030]
Further, one of the oxygen separation membranes 21 is decompressed by the blower 23 to discharge air having an increased oxygen concentration, and the other of the oxygen separation membranes 21 is communicated with the air having an increased nitrogen concentration to the fuel gas inlet manifold 5. As a result, since the other side of the oxygen separation membrane 21 is open to the outside air via the exhaust fan 23, when the exhaust fan 23 is operated, the air sucked in from the air inlet 24 converts oxygen into oxygen by the oxygen separation membrane 21. The exhaust gas is exhausted to the outside air from the exhaust fan 23 as a gas containing much. Therefore, the air stored in the portion of the oxygen separation membrane 21 communicating with the on-off valve 22 gradually increases in nitrogen ratio, and after a while, becomes almost nitrogen gas.
[0031]
Therefore, a high-concentration nitrogen gas can be supplied to the anode side of the fuel cell when the fuel cell is stopped by the oxygen separation membrane 21, so that the gas can be replaced stably and surely, and the reliability can be improved.
[0032]
That is, the oxygen separation membrane 21 utilizes the fact that when there is a pressure difference, the rate of dissolution / diffusion differs depending on the type of gas. When a pressure difference is provided between both surfaces of the oxygen separation membrane 21, the operation is performed on the principle that oxygen on the atmosphere side dissolves on the membrane surface, diffuses inside the membrane, and separates from the membrane surface on the reduced pressure side. For this reason, one of the oxygen separation membranes 21 is depressurized by the blower 23 to discharge the air having an increased oxygen concentration, and the other of the oxygen separation membranes 21 having the sufficiently increased nitrogen concentration is supplied to the fuel gas inlet manifold 5. When the fuel cell is stopped, the hydrogen gas on the fuel side of the fuel cell can be expelled and replaced with the nitrogen gas when the fuel cell is stopped. For this reason, the gas can be stably and reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained.
[0033]
(Example 2)
FIG. 4 is an overall configuration diagram of a solid polymer electrolyte fuel cell according to a second embodiment of the present invention. The difference from the first embodiment is that one of the oxygen separation membranes 21 is depressurized by a blower 23 and the oxygen-enriched air is communicated with the oxidizing gas inlet manifold 3 so that the gas on the fuel side of the fuel cell can be removed. The substitution prevents the temperature from rising and the catalyst from deteriorating, thereby increasing the reliability. In addition, the oxygen partial pressure on the cathode side of the fuel cell can be increased, and the efficiency of the fuel cell can be increased.
[0034]
That is, one of the oxygen separation membranes 21 is decompressed by the blower 23 to discharge air having an increased oxygen concentration, and the other of the oxygen separation membranes 21 having the sufficiently increased nitrogen concentration is supplied to the fuel gas inlet manifold 3. With the communication, when the fuel cell is stopped, hydrogen gas on the fuel side of the fuel cell can be expelled and replaced with nitrogen gas with almost high concentration nitrogen gas. For this reason, the gas can be stably and reliably replaced, and a solid polymer electrolyte fuel cell having high reliability by reliably preventing high temperature due to combustion and deterioration of the catalyst can be obtained. Then, the air having an increased oxygen concentration by reducing the pressure of one of the oxygen separation membranes 21 by the blower 23 is communicated to the oxidizing gas inlet manifold 3 to increase the oxygen partial pressure on the cathode side. The power generation efficiency of the fuel cell is determined by the proton conductivity of the polymer electrolyte membrane 11, and this proton conductivity affects the gas partial pressure of each of the anode and cathode gases. By using air on the cathode side and supplying air having an oxygen concentration higher than the oxygen concentration of 20.8% to the cathode, the power generation efficiency of the fuel cell increases. For this reason, the efficiency of the fuel cell can be increased, and when the same power generation efficiency is set, the size of the fuel cell can be reduced, so that the size and cost can be reduced, and the use performance can be improved.
[0035]
(Example 3)
FIG. 5 is a partial configuration diagram of a solid polymer electrolyte fuel cell according to a third embodiment of the present invention. The difference from the first embodiment is that a plurality of oxygen separation membranes 21 are provided and arranged in series. In this embodiment, three oxygen separation membranes 21 (a), 21 (b) and 21 (c) are arranged in series. As a result, air can be separated into oxygen gas and nitrogen gas at a higher concentration by the oxygen separation membranes 21 (a), 21 (b), and 21 (c), and the temperature of the fuel cell can be increased by replacing the gas on the fuel side. The catalyst can be completely prevented from being deteriorated to improve reliability, and the oxygen partial pressure on the cathode side of the fuel cell can be further increased, so that the efficiency of the fuel cell can be further improved.
[0036]
That is, the oxygen separation membranes 21 (a), 21 (b), and 21 (c) utilize the fact that the rate of dissolution / diffusion differs depending on the type of gas when there is a pressure difference. If a pressure difference is provided between both surfaces of the oxygen separation membranes 21 (a), 21 (b), and 21 (c), oxygen on the atmospheric side dissolves on the membrane surface, diffuses in the membrane, and separates from the membrane surface on the reduced pressure side. Works on the principle. For this reason, at a constant pressure difference, the concentration of the gas to be separated is determined according to the area. Therefore, by providing a plurality of oxygen separation membranes 21 (a), 21 (b) and 21 (c) and arranging them in series, the separation can be performed remarkably sequentially, without increasing the pressure difference and increasing the area. However, the oxygen separation efficiency is further improved, and the gas can be separated into high concentration gas. For this reason, a plurality of oxygen separation membranes 21 (a), 21 (b), 21 (c) are provided and arranged in series, so that a high-concentration oxygen gas is supplied to the cathode side, and to the anode side during shutdown. High-concentration nitrogen gas allows the replacement of hydrogen gas, enabling stable and reliable gas replacement, and reliably preventing high temperature and deterioration of the catalyst due to combustion, thereby improving reliability. An electrolyte fuel cell can be obtained. The power generation efficiency of the fuel cell is increased by supplying the cathode with air having further increased oxygen concentration on the cathode side. For this reason, it is possible to further increase the efficiency of the fuel cell, and in the case of setting the same power generation efficiency, it is possible to reduce the size of the fuel cell, further reduce the size and cost, and improve the use performance.
[0037]
【The invention's effect】
As described above, according to the present invention, by communicating with the fuel gas inlet manifold through the oxygen separation membrane that separates oxygen gas molecules and nitrogen gas molecules, this nitrogen gas is shut down during operation. By flowing the hydrogen gas to the hydrogen side and quickly discharging the hydrogen gas, it is possible to provide a solid polymer electrolyte fuel cell in which the deterioration of the polymer electrolyte membrane is prevented and the reliability is improved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a solid polymer electrolyte fuel cell according to a first embodiment of the present invention; FIG. 2 is a configuration diagram of a separator of the solid polymer electrolyte fuel cell according to the first embodiment of the present invention; FIG. 3 is a cross-sectional view of a power generation cell of a solid polymer electrolyte fuel cell according to a first embodiment of the present invention. FIG. 4 is an overall configuration diagram of a solid polymer electrolyte fuel cell according to a second embodiment of the present invention. FIG. 5 is a partial configuration diagram of a solid polymer electrolyte fuel cell according to a third embodiment of the present invention.
1 Separator 3 Inlet manifold (oxidizing gas)
4 Outlet manifold (oxidizing gas)
5 Inlet manifold (fuel gas)
6. Exit manifold (fuel gas)
DESCRIPTION OF SYMBOLS 11 Solid polymer electrolyte membrane 12 Gas diffusion electrode 15 Oxidizing gas inlet pipe 18 Fuel gas inlet pipe 21 Oxygen separation membrane 22 On-off valve 23 Blower

Claims (5)

固体高分子電解質膜を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口マニホールドから出口マニホールドに導く流路溝を形成したセパレータより構成し、酸素ガス分子と窒素ガス分子を分離する酸素分離膜を燃料ガス入口管を介して前記燃料ガスの入口マニホールドに連通させたことを特徴とする固体高分子電解質型燃料電池。A pair of gas diffusion electrodes sandwiching the solid polymer electrolyte membrane, and a separator having a flow channel formed on each surface of the gas diffusion electrodes to guide the fuel gas and the oxidizing gas from the respective inlet manifold to the outlet manifold, A solid polymer electrolyte fuel cell, wherein an oxygen separation membrane for separating oxygen gas molecules and nitrogen gas molecules communicates with the fuel gas inlet manifold via a fuel gas inlet pipe. 酸素分離膜と燃料ガスの入口マニホールド間の燃料ガス入口管の途中に開閉弁を構成したことを特徴とする請求項1記載の固体高分子電解質型燃料電池。2. The solid polymer electrolyte fuel cell according to claim 1, wherein an on-off valve is provided in the fuel gas inlet pipe between the oxygen separation membrane and the fuel gas inlet manifold. 酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を排出し、前記酸素分離膜の他方の窒素濃度が高くなった空気を燃料ガス入口管を介して燃料ガスの入口マニホールドに連通させたことを特徴とする請求項1〜2記載の固体高分子電解質型燃料電池。One of the oxygen separation membranes is decompressed by a blower to discharge air having an increased oxygen concentration, and the other of the oxygen separation membranes having an increased nitrogen concentration is supplied to a fuel gas inlet manifold via a fuel gas inlet pipe. 3. The solid polymer electrolyte fuel cell according to claim 1, wherein the fuel cells are connected to each other. 酸素分離膜の片方を送風機により減圧して酸素濃度が高くなった空気を酸化ガス入口管を介して酸化ガスの入口マニホールドに連通させたことを特徴とする請求項1〜3記載の固体高分子電解質型燃料電池。4. The solid polymer according to claim 1, wherein one of the oxygen separation membranes is decompressed by a blower, and the air having an increased oxygen concentration is communicated to an oxidizing gas inlet manifold through an oxidizing gas inlet pipe. Electrolyte fuel cell. 酸素分離膜は複数備え、直列に配置したことを徴とする請求項1〜4記載の固体高分子電解質型燃料電池。5. The solid polymer electrolyte fuel cell according to claim 1, wherein a plurality of oxygen separation membranes are provided and arranged in series.
JP2003159233A 2003-06-04 2003-06-04 Solid polymer electrolyte fuel cell Expired - Fee Related JP4547868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159233A JP4547868B2 (en) 2003-06-04 2003-06-04 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159233A JP4547868B2 (en) 2003-06-04 2003-06-04 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004362915A true JP2004362915A (en) 2004-12-24
JP4547868B2 JP4547868B2 (en) 2010-09-22

Family

ID=34052354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159233A Expired - Fee Related JP4547868B2 (en) 2003-06-04 2003-06-04 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4547868B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078140A (en) * 2006-09-22 2008-04-03 Gm Global Technology Operations Inc Dismissal (purging) method at stack stoppage
CN114914494A (en) * 2022-06-27 2022-08-16 北京亿华通科技股份有限公司 Durability control method and device for fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410360A (en) * 1990-04-25 1992-01-14 Fuji Electric Co Ltd Fuel cell power generating device
JPH09206541A (en) * 1996-02-06 1997-08-12 Nitto Denko Corp Separation of oxygen and argon in air and device therefor
JP2002110207A (en) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp Fuel cell system and operation method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410360A (en) * 1990-04-25 1992-01-14 Fuji Electric Co Ltd Fuel cell power generating device
JPH09206541A (en) * 1996-02-06 1997-08-12 Nitto Denko Corp Separation of oxygen and argon in air and device therefor
JP2002110207A (en) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp Fuel cell system and operation method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078140A (en) * 2006-09-22 2008-04-03 Gm Global Technology Operations Inc Dismissal (purging) method at stack stoppage
US8445145B2 (en) 2006-09-22 2013-05-21 GM Global Technology Operations LLC Stack shutdown purge method
CN114914494A (en) * 2022-06-27 2022-08-16 北京亿华通科技股份有限公司 Durability control method and device for fuel cell stack
CN114914494B (en) * 2022-06-27 2023-11-10 北京亿华通科技股份有限公司 Durability control method and device for fuel cell stack

Also Published As

Publication number Publication date
JP4547868B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4350944B2 (en) Method for improving operating efficiency of fuel cell power equipment
US7566511B2 (en) Solid polymer cell assembly
US7132189B2 (en) Fuel cell stack with bypass
JP4877711B2 (en) Fuel cell system
US7163760B2 (en) Fuel cell stack having a bypass flow passage
JP2007128868A (en) Anode flow shifting method using pulling-out function of closed type injector
KR20190026026A (en) Catalytic degradation recovery apparatus and catalyst deterioration recovery method
JP2004031135A (en) Fuel cell and its control method
JP5155649B2 (en) Solid polymer fuel cell power generation system
JP5538192B2 (en) Fuel cell system
JP2010061981A (en) Starting method for fuel cell system
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP4547868B2 (en) Solid polymer electrolyte fuel cell
JP2004134130A (en) Fuel cell stack
JP2004087190A (en) Solid polymer cell assembly
JP2004206951A (en) Fuel cell with dehumidification/humidification device
JP2001351666A (en) Fuel cell system using phosphoric acid and stopping method of the same
JP5798879B2 (en) Solid polymer fuel cell power generation system
JP2005268091A (en) Operation method of fuel cell, and fuel cell system
JP5194580B2 (en) Fuel cell system
JP2004071348A (en) Fuel circulation type fuel cell system
JP2007059105A (en) Fuel cell stack equipped with switching means
JP2004265632A (en) Polymer electrolyte type fuel cell
JP2021185258A (en) Hydrogen purification system and operational method thereof
JP3829116B2 (en) Fuel cell and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees