JPH0410360A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JPH0410360A
JPH0410360A JP2109564A JP10956490A JPH0410360A JP H0410360 A JPH0410360 A JP H0410360A JP 2109564 A JP2109564 A JP 2109564A JP 10956490 A JP10956490 A JP 10956490A JP H0410360 A JPH0410360 A JP H0410360A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
air
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2109564A
Other languages
Japanese (ja)
Inventor
Takashi Ouchi
崇 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2109564A priority Critical patent/JPH0410360A/en
Publication of JPH0410360A publication Critical patent/JPH0410360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the energy availability of a fuel cell by using an inert gas as a substitution gas at the starting or stopping time of power generation by separating and forming from the gas or air of a reformed burner by using dump power which a fuel cell generates even at the time of a light load. CONSTITUTION:The output current control portion 6 of a fuel cell 1 outputs a signal 6 to command a start of the driving motor 14M of a compressor 14 to an auxiliary power source 8 when the total of a load current IL and an auxiliary current Is drops to a prescribed level or less, and concurrently controls the fuel cell 1 and a fuel reformer 2 so that the driving current Ib of the motor 14M is additionally supplied. For this, inert gas for substitution is produced by making use of dump power at the time of a light load. A required quantity of CO2 enriched gas 11B is stored all times in a tank 15 to create a waiting state of gas substitution. It is thereby possible to use inert gas as substitution gas at the time of start or stop of power generation and improve the energy availability of a fuel cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池発電装置、ことに燃料電池の起動
、停止時に、燃料電池の反応ガス系統内の反応ガス全不
活性ガスで置換するための置換用ガスの生成、供給系統
の構成に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a fuel cell power generation system, in particular, a method for replacing all of the reactant gas in the reactant gas system of the fuel cell with inert gas when starting and stopping the fuel cell. Regarding the generation of replacement gas and the configuration of the supply system.

〔従来の技術〕[Conventional technology]

燃料電池は周知のように電解質層を挟持した一対の燃料
電極と酸化剤電極とを有する単電池(単位セル)を複数
積層してセルスタックを構成し、このセルスタックに反
応ガスとして水素を含む燃料ガスと、空気等の酸素を含
む酸化剤ガスとを供給して1!池反応による直接光it
−行うものであシ、この場合に使用する電解質、運転温
度の相違によジアルカリ形、りん酸形、溶融炭酸塩形等
の燃料電池が知られている。
As is well known, a fuel cell consists of a cell stack formed by stacking a plurality of single cells (unit cells) each having a pair of fuel electrodes and an oxidizer electrode with an electrolyte layer sandwiched between them, and this cell stack contains hydrogen as a reactive gas. 1! Supplying fuel gas and oxidizing gas containing oxygen such as air! Direct light by pond reaction
In this case, there are known fuel cells of dialkali type, phosphoric acid type, molten carbonate type, etc. depending on the electrolyte used and the operating temperature.

ところで1反応ガスの供給を停止した燃料電池の起動、
停止時には安全管理のため燃料!池本体およびこれに反
応ガスを供給、排出する系統全不活性ガス、例えば窒素
で置換するガス置換が行われており、特に燃料ガス系統
は水素金倉むため安全管理上ガス置換が不可欠となって
いる。これは、停止状態にある燃料!池を起動する場合
に、燃料ガス系統内に空気または酸化剤ガスが残ってい
る状態で燃料ガスを供給すると、酸素との爆鳴気が形成
されて爆発的反応を起こす危険があるので、不活性ガス
で置換しておぐ必要があるからである。
By the way, 1. Starting up a fuel cell with the supply of reactant gas stopped,
Fuel for safety management when stopped! Gas replacement is carried out by replacing the entire pond body and the system that supplies and discharges reaction gas to it with an inert gas, such as nitrogen.In particular, the fuel gas system contains hydrogen, so gas replacement is essential for safety management. There is. This is fuel at a standstill! If you supply fuel gas with air or oxidizer gas remaining in the fuel gas system when starting up the fuel gas system, there is a risk of an explosive reaction forming with the oxygen. This is because it is necessary to replace the gas with active gas.

また、燃料電池の停止時に燃料電池本体内に燃料ガスが
残りなまま放置すると、燃料電池の内部放電、あるいは
湛度変化等釦よって燃料ガスの圧力が低下し、系外から
空気が燃料ガス系に侵入し、前述のように爆鳴気を形成
するおそれがあり、この場合にも不活性ガスによるガス
置換をしておく必要がある。
In addition, if the fuel cell is left with no fuel gas remaining inside the fuel cell when it is stopped, the pressure of the fuel gas will decrease due to internal discharge of the fuel cell or a change in the filling rate, causing air to enter the fuel gas system from outside the system. There is a risk that the gas may enter the air and form explosive gas as described above, and in this case as well, it is necessary to replace the gas with an inert gas.

一万、酸化剤ガス系統では、万一、燃料ガス系統から燃
料ガスが漏洩してぐると爆鳴気を形成して爆発的反応を
起こすので、燃料ガス系統と同様に不活性ガスのガス置
換が必要とされる。
In the case of an oxidizing gas system, in the unlikely event that fuel gas leaks from the fuel gas system, it will form an explosive atmosphere and cause an explosive reaction, so as with the fuel gas system, inert gas should be replaced. is required.

上記のようなガス置換の念めの不活性ガスは従来外部か
ら調達し之不活性ガスを圧力ボンベ等の貯蔵タンク内に
貯蔵し、燃料電池の起動、停止時に貯蔵タンクから反応
ガス系統に不活性ガスを供給するようにしたものが知ら
れている。
Conventionally, the inert gas for gas replacement as mentioned above is procured from outside, and is stored in a storage tank such as a pressure cylinder, and the inert gas is transferred from the storage tank to the reaction gas system when starting or stopping the fuel cell. A device that supplies active gas is known.

〔発明が解決しようとする訓題〕[The problem that the invention attempts to solve]

燃料電池はその運転温度が170’Cないし2゜0℃と
高ぐ、このような状態で燃料電池を軽負荷または無負荷
状態にすると、第3図に燃料電池の電圧−電流特性線図
の一例を示すように、定常運転(電流密度50ないし2
00 mA/crI)Tは0゜8℃程度以下に保持され
る単セル電圧がIVkいし1.1℃程度のいわゆる開回
路電圧近くKまで上昇し、単位セルの電極の劣化が促進
されるという問題が発生する。従来このような問題を回
避する逢めに、燃料電池の出方側に電気ヒータ等の負F
T装+tを設けて軽負荷時ま念は無負荷時にも電力′l
t消費し、単セル電圧を0.8v以下に保持する対策が
とられてAるが、電気ヒータの発生熱の回収には限界が
あり、ことに燃料電池を移動用電源として使用する場合
には発生熱を外部に放熱することすら容易でないなどの
問題があり、発電装置のエネルギー効率の改善が求めら
れている。
The operating temperature of a fuel cell is as high as 170'C to 2°C, and when the fuel cell is put into a light load or no-load state under these conditions, the voltage-current characteristic diagram of the fuel cell is shown in Figure 3. As an example, steady operation (current density 50 to 2
00 mA/crI)T is said to be that the voltage of a single cell kept below about 0°8°C rises to K, which is close to the so-called open circuit voltage of about IVk to 1.1°C, and the deterioration of the unit cell electrode is accelerated. A problem occurs. Conventionally, in order to avoid such problems, a negative F such as an electric heater was installed on the output side of the fuel cell.
By installing a T-equipment +T, the power can be reduced even when there is no load.
Measures have been taken to maintain the single cell voltage below 0.8V, but there are limits to the recovery of the heat generated by electric heaters, especially when using fuel cells as a mobile power source. However, there are problems in that it is not easy to radiate the generated heat to the outside, and there is a need to improve the energy efficiency of power generation equipment.

一方、従来のガス置換方法では、貯蔵タンクに常時一定
量以上の不活性ガスをIFえておく必要があり、不活性
ガスの補充などの管理業務が煩雑なばかりか、移動用電
源装置にあっては、貯蔵タンクを車輌(C塔載しなけれ
ばならないため釦車軟重量が増し、経済的不利益を招ぐ
という問題がある。
On the other hand, with conventional gas replacement methods, it is necessary to always keep a certain amount of inert gas in the storage tank, which not only complicates management tasks such as replenishing the inert gas, but also makes it difficult to maintain the capacity of the mobile power supply. However, since the storage tank has to be mounted on the vehicle (C tower), the weight of the button car increases, resulting in an economic disadvantage.

この発明の目的は、エネルギー利用効率が高く、かつ保
守を省力化できる置換ガスの分離生成装置を備え念燃料
電池発電装置?得ることにある。
The purpose of this invention is to create a fuel cell power generation system that is equipped with a replacement gas separation and generation device that has high energy utilization efficiency and can save labor on maintenance. It's about getting.

〔課題を解決する念めの手段〕[A precautionary measure to solve the problem]

上記課題?解決する冷めに、この発明によれば、燃料改
質器で生成する燃料ガスと、ブロワがら送られる反応空
気とを燃料室および空気室にそれぞれ受けて発電する燃
料電池が、その発電の開始および停止に際して前記燃料
室および空気室に残存する@記燃料ガスおよび反応空気
が不活性ガスに置換されるものにおいて、前記燃料改質
器の#!暁廃ガスを受けて燃燐廃ガス中の二酸化炭素富
化ガスを分離回収する分離膜式の分離装置と、回収した
二酸化炭素富化ガスの圧縮機と、圧縮された二酸化炭素
富化ガスの貯蔵タンクと、貯蔵された二酸化炭素富化ガ
スを発電の開始ま念は停止時に前記・燃料室および空気
室に供給する配管系とからなる置換ガスの分離生成装置
全*え、@泥圧縮機が前記燃料′I!池の軽質荷時余剰
電力の供給を受けて動作するよう形成されてなるもの、
または#換ガスの分離生成装置が、空気中の窒素富化ガ
スを分離回収する分離膜式の分離装置と、回収し念窒素
富化ガスの圧縮機と、圧縮した窒素富化ガスの貯蔵タン
クと、貯蔵された窒素富化ガスを発電の開始ま念は停止
時に燃料室および空気室に供給する配管系とからなるも
のとする。
The above issue? According to the present invention, a fuel cell that generates electricity by receiving fuel gas generated by a fuel reformer and reaction air sent from a blower into a fuel chamber and an air chamber, respectively, starts generating electricity and #! of the fuel reformer in which the fuel gas and reaction air remaining in the fuel chamber and air chamber are replaced with inert gas upon shutdown. A separation membrane type separator that receives Akatsuki waste gas and separates and recovers carbon dioxide-enriched gas in the combustion phosphorus waste gas, a compressor for the recovered carbon dioxide-enriched gas, and a compressor for the compressed carbon dioxide-enriched gas. A complete replacement gas separation and generation device consisting of a storage tank and a piping system that supplies the stored carbon dioxide-enriched gas to the fuel chamber and air chamber when power is stopped, and the mud compressor. is the fuel 'I! A device configured to operate by receiving surplus electricity from a pond during light loads;
Or # The replacement gas separation and generation device includes a separation membrane type separation device that separates and recovers nitrogen-enriched gas from the air, a compressor for the recovered nitrogen-enriched gas, and a storage tank for the compressed nitrogen-enriched gas. and a piping system for supplying the stored nitrogen-enriched gas to the fuel chamber and air chamber when power generation starts and stops.

〔作用〕[Effect]

この発明の構成において、置換ガスの分離生成装置を燃
料改質器バーナの燃焼廃ガス中の二酸化炭素、′またけ
大気中の窒素を分離膜式の分離装置で分離回収し、燃料
電池の余剰電力で駆動される吸気機能を有する圧縮機で
加圧して不活性ガスの貯蔵タンクに蓄積し、燃料電池の
発電の開始または停止時に燃料電池の反応ガス室に供給
してガス置換を行うよう構成し念ことにより、軽負荷時
の発電電力を利用して不活性ガスを分離回収できるとと
もに、単セル電圧to、sv以下に保持して電極の劣化
を阻止する機能が得られる。また、不活性ガスを自動的
に分離生成できるので、不活性ガスの補充などの煩雑な
保守管理を必要とせず、かつ不活性ガス全自己生成する
ことにより貯蔵量を低減できるので、移動電源装置など
車載すべき貯蔵タンクを軽量化できる機能が得られる。
In the structure of the present invention, the replacement gas separation and generation device is used to separate and recover carbon dioxide in the combustion waste gas of the fuel reformer burner, and nitrogen in the atmosphere is separated and recovered by a separation membrane type separation device, and the surplus gas is removed from the fuel cell. It is configured to pressurize with a compressor with an intake function driven by electricity, store it in an inert gas storage tank, and supply it to the reaction gas chamber of the fuel cell to perform gas replacement when the fuel cell starts or stops power generation. By doing so, it is possible to separate and recover the inert gas using the generated power during light loads, and also to maintain the single cell voltage to, sv or less to prevent deterioration of the electrodes. In addition, since the inert gas can be automatically separated and generated, there is no need for complicated maintenance management such as replenishing the inert gas, and the amount of storage can be reduced by generating all the inert gas by itself, so the mobile power supply This provides functions that can reduce the weight of storage tanks to be mounted on vehicles.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる燃料電池全電装fl’
を簡略化して示すシステム構成図である。図において、
燃料電池1は、電解液室またはマド+、+ックスを挟ん
で一対の電極を配した単位セル1Uの積層体で構成され
、各単位セルIUK#−i一対のtmの基材側に互いに
直交する方向に形成された復数の溝からなる燃料室1F
と酸化剤室(実施例では空気室)IAが形成される。燃
料改質器2は反応熱を供給するバーナ2Bを有する炉体
内に、原料過熱器2Hおよび水蒸気改質を行う反応管2
Ri備え、改質原料としての液化天然ガス(LNG)、
液化石油ガス(LPG)、ナフサ、またはメタノール等
のいずれかと水蒸気との混合物を原料過熱器2Hを介し
て反応管2Rに送ることにより、水素リッチな燃料ガス
2Fに改質され、燃料ガスの供給系4を介して燃料電池
1の燃料室1Fに供給される。一方空気室iAKは反応
空気ブロワ(まなは圧縮機ン3から反応空気3Aがその
供給系5を介して供給され、各単位セル1Uの一対のt
離間で電気化学反応に基づく直接発電が行われる。また
、反応を終った燃料ガス2Fのオフガス2G、および反
応空気3Aのオフガス3Gは改質器バーナ2Bに送られ
、その燃焼熱によって改質62が所定の動作温度に保持
されるとともに、必要な反応熱が反応管2RK供給され
る。
Figure 1 shows a complete electrical system fl' for a fuel cell according to an embodiment of the present invention.
It is a system configuration diagram showing a simplified version of the system. In the figure,
The fuel cell 1 is composed of a laminate of unit cells 1U in which a pair of electrodes are arranged with an electrolyte chamber or a mud +, + box in between. Fuel chamber 1F consisting of multiple grooves formed in the direction of
An oxidizer chamber (air chamber in the embodiment) IA is formed. The fuel reformer 2 includes a raw material superheater 2H and a reaction tube 2 that performs steam reforming in a furnace body that has a burner 2B that supplies reaction heat.
Ri preparation, liquefied natural gas (LNG) as a reforming raw material,
By sending a mixture of liquefied petroleum gas (LPG), naphtha, methanol, etc. and steam to the reaction tube 2R via the raw material superheater 2H, it is reformed into hydrogen-rich fuel gas 2F, and the fuel gas is supplied. It is supplied to the fuel chamber 1F of the fuel cell 1 via the system 4. On the other hand, the air chamber iAK is supplied with 3A of reaction air from a reaction air blower (compressor 3) via its supply system 5, and a pair of t
Direct power generation based on electrochemical reactions takes place at a distance. In addition, the off-gas 2G of the fuel gas 2F that has completed the reaction and the off-gas 3G of the reaction air 3A are sent to the reformer burner 2B, and the reformer 62 is maintained at a predetermined operating temperature by the combustion heat, and the necessary Reaction heat is supplied to reaction tube 2RK.

−万、燃料電池1の発電電力は電流制御部6によって1
llJaされ、電力変換器7によって外部負荷に適合し
た例えば一定電圧の交流電力に変換して外部負荷回路に
供給されるとともに1出力電流の一部分は補機を源8を
介して反応空気ブロワ3の駆動モータ3Mや図示しない
原料ポンプ、放電用の電気ヒータ、あるいけ操作弁等に
供給される。
-10,000, the electric power generated by the fuel cell 1 is controlled by the current controller 6 to
llJa, is converted by the power converter 7 into, for example, constant voltage AC power adapted to the external load and supplied to the external load circuit, and a part of the output current is sent to the auxiliary equipment via the source 8 to the reaction air blower 3. It is supplied to the drive motor 3M, a raw material pump (not shown), an electric heater for discharging, an operating valve, etc.

10は置換ガスの分離生成装置であり、改質器バーナ2
Bの燃焼廃ガス12Bの一部をダンパー12を介して受
け、水分凝縮器15で廃ガス中の水分を除去した後、二
酸化炭素(Cot)  の分離器11で002分11[
1膜11Aによって廃ガスの主成分である二酸化炭素C
O倉  を分離する。回収されたCO1富化ガス11B
は、圧縮機14によって高圧ガスに変換され、操作弁1
4Bt−介して貯蔵タンク15に貯蔵される。貯蔵タン
ク15はその出口側に減圧弁18を含む配管系17を備
え、燃料電池の発1の開始時ま念は停止時に反応ガスの
供給を停止し念状態で弁19Fおよび19Aを開ぐこと
によってCO2富化ガス71Bが燃料室1F+を含む燃
料ガス系および空気室1人を含む反応空気系にそれぞれ
供給され、系内に残っfc燃料ガスおよび空気を系外に
パージして不活性のCO1富化ガスに置換する。
10 is a replacement gas separation and generation device, and a reformer burner 2
A part of the combustion waste gas 12B of B is received through the damper 12, and after removing moisture from the waste gas in the moisture condenser 15, it is sent to the carbon dioxide (Cot) separator 11 for 002 minutes 11[
1 Membrane 11A removes carbon dioxide C, the main component of waste gas.
Separate O-kura. Recovered CO1 enriched gas 11B
is converted into high pressure gas by the compressor 14, and the operation valve 1
4Bt- is stored in the storage tank 15. The storage tank 15 is equipped with a piping system 17 including a pressure reducing valve 18 on its outlet side, and at the start of the fuel cell generation 1, the supply of reactant gas is stopped and the valves 19F and 19A are opened. CO2-enriched gas 71B is supplied to the fuel gas system containing the fuel chamber 1F+ and the reaction air system containing one air chamber, respectively, and the fc fuel gas and air remaining in the system are purged to the outside of the system and the inert CO1 Replace with enriched gas.

一万燃料電池1の出カフ流制御部6ば、負荷電流工1お
よび補機を流Isを電流検出器9A、9B等によって監
使しており、負荷電流工1と補機電流工sの和が所定レ
ベル以下(例えば定格電流の2OFF;以下)に低下し
たとき、補機電源8に圧縮機14の駆動モータ14Mの
始動を指令する信号6Sを出力するととも釦、駆動モー
タ14Mの駆動を流1bを追加供給するよう燃料電池、
燃料改Jit器を制御する。これにより、軽負荷時の余
剰電力を利用して置換用の不活性ガスを生成できると同
時に、燃料電池の出力を流が減り過ぎることによって生
ずる単セル電圧の上昇と、これに基因する1i極の劣化
を防止することができる。
The output cuff flow control unit 6 of the fuel cell 1 supervises the flow Is of the load current 1 and the auxiliary equipment using current detectors 9A, 9B, etc. When the sum decreases to a predetermined level or less (for example, 2OFF of the rated current; or less), a signal 6S is output to the auxiliary power supply 8 to instruct the start of the drive motor 14M of the compressor 14, and a button is pressed to start the drive motor 14M. a fuel cell to additionally supply stream 1b;
Controls the fuel reformer JIT. This makes it possible to generate inert gas for replacement using surplus power during light loads, and at the same time reduce the output of the fuel cell by reducing the rise in single cell voltage caused by too much flow and the 1i electrode caused by this. deterioration can be prevented.

ま九、貯蔵タンク15のガス圧は圧力スイッチ16によ
って検出され、圧力が所定レベルに到達し念とき、制御
信号16St−ダンパー12.操作弁14E、および圧
縮機14に向けてそれぞれ出力することによシ、貯蔵タ
ンク15に常時所定量のCO! 富化ガス11Bを貯蔵
してガス置換の待機状態とすることができる。なお、圧
縮機14は分離膜11Aに差圧を生じさせるための吸引
機能を有するものが好ましい。また、制動空気用のコン
プレッサおよび圧力タンクを有する移動電源装置である
場合、これらを置換ガスの分離生成装置の圧縮機および
貯蔵タンクに兼用することも可能であジ、車載重量の4
!減および設備コストの低減に寄与することができる。
9. The gas pressure in the storage tank 15 is detected by the pressure switch 16, and when the pressure reaches a predetermined level, the control signal 16St-damper 12. By outputting to the operation valve 14E and the compressor 14, a predetermined amount of CO! is constantly stored in the storage tank 15. The enriched gas 11B can be stored and placed in a standby state for gas replacement. Note that the compressor 14 preferably has a suction function to generate a pressure difference across the separation membrane 11A. In addition, in the case of a mobile power supply unit having a brake air compressor and pressure tank, these can also be used as the compressor and storage tank of the displacement gas separation and generation device.
! This can contribute to reductions in equipment costs and equipment costs.

第2図は、この発明の異なる実施例を示すシステム構成
図であり、分離装置21がコンブレ、す24で加圧され
た空気全M/素富化ガス27と窒素富化ガス26に分離
する酸素透過膜21Aを備えた点が前述の実施例と異な
っておシ、複数段の透過膜を酸素が透過することにより
、酸素の大部分が分離され念残りの窒素富化ガス26が
圧縮機14でみ圧され、貯蔵タンク15に蓄積される。
FIG. 2 is a system configuration diagram showing a different embodiment of the present invention, in which a separation device 21 separates air pressurized by a comb 24 into a total M/element enriched gas 27 and a nitrogen enriched gas 26. The difference from the previous embodiment is that an oxygen permeable membrane 21A is provided, and oxygen permeates through the multiple stages of permeable membranes, whereby most of the oxygen is separated and the remaining nitrogen-enriched gas 26 is sent to the compressor. 14 and stored in a storage tank 15.

なお、燃料電池1が加圧式である場合、反応空気フロワ
3(この場合コンプレッサンで加圧された空気の一部を
分離装置21に供給するよう構成してもよく、前述の実
施例と同様に軽負荷時の余剰電力を有効に利用して置換
用の不活性ガスを生成。
In addition, when the fuel cell 1 is a pressurized type, it may be constructed so that a part of the air pressurized by the reaction air floor 3 (in this case, a compressor) is supplied to the separation device 21, similar to the above embodiment. Effectively utilizes surplus electricity during light loads to generate inert gas for replacement.

貯蔵できるとともに、軽負荷が原因で燃料電池に生ずる
電jの劣化全阻止することができる。
In addition to being able to store electricity, it is possible to completely prevent the deterioration of electricity that occurs in the fuel cell due to light loads.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、燃料電池が軽負荷時において
も発電する余剰電力を利用して改質バーナの廃ガスまた
は空気から不活性ガスを分離生成して貯蔵する置換ガス
の分離生成装置を設け、発電の開始ま念は停止時に貯蔵
した不活性ガスを置換ガスとして利用するよう構成した
。その結果、従来電気ヒータなどを設けて無駄に消費し
ていた軽負荷時の発電電力を不活性ガスを分離生成、貯
蔵するという形で有効利用でき、かつ貯蔵した不活性ガ
スを置換ガスとして利用できるので、燃料電池のエネル
ギー利用効率を改善できると同時に運転コストを低減で
きる利点が得られる。まな、燃料電池の負荷が所定レベ
ル以下に低下することを防止できるので、単セル電圧の
上昇による電極の劣化を阻止することがrfl能であシ
、これにより燃料電池を長寿命化する効果が得られる。
As mentioned above, this invention provides a displacement gas separation and generation device that separates and stores inert gas from the waste gas or air of a reforming burner using surplus electricity generated by a fuel cell even under light load. The system was designed so that the inert gas stored at the time of shutdown is used as replacement gas before starting power generation. As a result, the power generated during light loads, which was previously wasted by installing electric heaters, can be used effectively by separating and storing inert gas, and the stored inert gas can be used as replacement gas. Therefore, it is possible to improve the energy utilization efficiency of the fuel cell, and at the same time, there is an advantage that the operating cost can be reduced. Furthermore, since it is possible to prevent the load on the fuel cell from dropping below a predetermined level, the rfl function can prevent deterioration of the electrodes due to an increase in single cell voltage, which has the effect of extending the life of the fuel cell. can get.

また、置換ガスの分離生成装置によって常に必要な量の
不活性ガスを生成し貯蔵できるので、不活性ガスの補光
とこれに要する費用を軽減でき、し次がって燃料電池の
管理コスト、運転コスト。
In addition, since the replacement gas separation and generation device can always generate and store the required amount of inert gas, it is possible to reduce inert gas supplementation and the cost required for this, which in turn reduces fuel cell management costs. operating costs.

およびメンテナンスコストを低減できる利点が得られる
とともに、移動電源装置においては車載する不活性ガス
量およびその貯蔵ボンベを軽減できる利点が得られる。
In addition, in the mobile power supply device, the amount of inert gas mounted on the vehicle and the storage cylinder thereof can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例になる燃料電池発電装置を簡
略化して示すシステム構成図、第2図はこの発明の異な
る実施例を示すシステム構成図、第3図は燃料電池の電
圧−電流特性の一例を示す特性線図である。 7・・・燃料電池、1人・・・空気室、1F・・・燃料
室、1U・・・単位セル、2・・・燃料改質器、2E・
・・バーナ2H・・・過熱器、2R・・・反応管、2F
・・・燃料ガス3・・・反応空気ブロワ、3A・・・反
応空気、4,5・・・反応ガスの供給系、6・・・電流
制御部、7・・・電力変換器、8・・・補機電源、9・
・・電流検出器、10・・・置換ガスの分離生成装置、
11.21・・・分離器、11A、21A・・・分離膜
、12・・・ダンパー 13・・・#縮器、14.24
・・・圧縮機、15・・・貯蔵タンク、16・・・圧力
スイッチ、17・・・配管、16.18 、 1 9A
 、  1 9B、*、 71B・・・co2 g化ガ
ヌ26・・・N1富化ガス、3M、14M、24M・、
Fig. 1 is a system configuration diagram showing a simplified fuel cell power generation device according to an embodiment of the present invention, Fig. 2 is a system configuration diagram showing a different embodiment of the invention, and Fig. 3 is a voltage-current diagram of the fuel cell. FIG. 3 is a characteristic diagram showing an example of characteristics. 7...Fuel cell, 1 person...Air chamber, 1F...Fuel chamber, 1U...Unit cell, 2...Fuel reformer, 2E...
...Burner 2H...Superheater, 2R...Reaction tube, 2F
... Fuel gas 3 ... Reaction air blower, 3A ... Reaction air, 4, 5 ... Reaction gas supply system, 6 ... Current control section, 7 ... Power converter, 8.・・Auxiliary power supply, 9・
... Current detector, 10... Replacement gas separation and generation device,
11.21...Separator, 11A, 21A...Separation membrane, 12...Damper 13...#Compressor, 14.24
...Compressor, 15...Storage tank, 16...Pressure switch, 17...Piping, 16.18, 19A
, 1 9B, *, 71B...co2 g-ganu 26...N1 enriched gas, 3M, 14M, 24M...
.

Claims (1)

【特許請求の範囲】 1)燃料改質器で生成する燃料ガスと、ブロワから送ら
れる反応空気とを燃料室および空気室にそれぞれ受けて
発電する燃料電池が、その発電の開始および停止に際し
て前記燃料室および空気室に残存する前記燃料ガスおよ
び反応空気が不活性ガスに置換されるものにおいて、前
記燃料改質器の燃焼廃ガスを受けて燃焼廃ガス中の二酸
化炭素富化ガスを分離回収する分離膜式の分離装置と、
回収した二酸化炭素富化ガスの圧縮機と、圧縮された二
酸化炭素富化ガスの貯蔵タンクと、貯蔵された二酸化炭
素富化ガスを発電の開始または停止時に前記燃料室およ
び空気室に供給する配管系とからなる置換ガスの分離生
成装置を備え、前記圧縮機が前記燃料電池の軽負荷時余
剰電力の供給を受けて動作するよう形成されてなること
を特徴とする燃料電池発電装置。 2)置換ガスの分離生成装置が、空気中の窒素富化ガス
を分離回収する分離膜式の分離装置と、回収した窒素富
化ガスの圧縮機と、圧縮した窒素富化ガスの貯蔵タンク
と、貯蔵された窒素富化ガスを発電の開始または停止時
に燃料室および空気室に供給する配管系とからなること
を特徴とする請求項1記載の燃料電池発電装置。
[Scope of Claims] 1) A fuel cell that generates electricity by receiving fuel gas generated by a fuel reformer and reaction air sent from a blower into a fuel chamber and an air chamber, respectively, when starting and stopping power generation, In a device in which the fuel gas and reaction air remaining in the fuel chamber and the air chamber are replaced with inert gas, the combustion waste gas from the fuel reformer is received, and the carbon dioxide enriched gas in the combustion waste gas is separated and recovered. A separation membrane type separation device,
A compressor for the recovered carbon dioxide-enriched gas, a storage tank for the compressed carbon dioxide-enriched gas, and piping for supplying the stored carbon dioxide-enriched gas to the fuel chamber and the air chamber at the time of starting or stopping power generation. What is claimed is: 1. A fuel cell power generation device comprising: a replacement gas separation and generation device comprising a system, wherein the compressor is configured to operate in response to a supply of surplus power from the fuel cell during light loads. 2) The replacement gas separation and generation device includes a separation membrane type separation device that separates and recovers nitrogen-enriched gas in the air, a compressor for the recovered nitrogen-enriched gas, and a storage tank for the compressed nitrogen-enriched gas. and a piping system for supplying the stored nitrogen-enriched gas to the fuel chamber and the air chamber at the time of starting or stopping power generation.
JP2109564A 1990-04-25 1990-04-25 Fuel cell power generating device Pending JPH0410360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109564A JPH0410360A (en) 1990-04-25 1990-04-25 Fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109564A JPH0410360A (en) 1990-04-25 1990-04-25 Fuel cell power generating device

Publications (1)

Publication Number Publication Date
JPH0410360A true JPH0410360A (en) 1992-01-14

Family

ID=14513442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109564A Pending JPH0410360A (en) 1990-04-25 1990-04-25 Fuel cell power generating device

Country Status (1)

Country Link
JP (1) JPH0410360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
JP2004362915A (en) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd Solid polymer electrolyte fuel cell
JP2006294466A (en) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp Fuel cell power generation system
JP2007317497A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Method of operating fuel cell
US7310869B2 (en) 2004-06-28 2007-12-25 Brother Kogyo Kabushiki Kaisha Flat connector, ink jet head and method of manufacturing them
US7354673B2 (en) 2002-11-22 2008-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of controlling the same fuel cell system
JP2009245702A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Water processing unit for fuel cell power generation system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
US7687162B2 (en) 2001-01-31 2010-03-30 Kabushiki Kaisha Toshiba Purging method of fuel cell system
US7354673B2 (en) 2002-11-22 2008-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of controlling the same fuel cell system
US7976999B2 (en) 2002-11-22 2011-07-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of controlling the same fuel cell system
JP2004362915A (en) * 2003-06-04 2004-12-24 Matsushita Electric Ind Co Ltd Solid polymer electrolyte fuel cell
JP4547868B2 (en) * 2003-06-04 2010-09-22 パナソニック株式会社 Solid polymer electrolyte fuel cell
US7310869B2 (en) 2004-06-28 2007-12-25 Brother Kogyo Kabushiki Kaisha Flat connector, ink jet head and method of manufacturing them
US7320603B2 (en) 2004-06-28 2008-01-22 Brother Kabushiki Kaisha Flat connector
JP2006294466A (en) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp Fuel cell power generation system
JP2007317497A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Method of operating fuel cell
JP2009245702A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Water processing unit for fuel cell power generation system

Similar Documents

Publication Publication Date Title
US5346778A (en) Electrochemical load management system for transportation applications
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
US8722266B2 (en) Fuel cell system
US6007930A (en) Method for initiating a fuel cell
US20180347054A1 (en) Integrated electrochemical compressor and cascade storage method and system
US20050186454A1 (en) Starting a fuel cell system using ambient air and a low voltage blower
WO2008096801A1 (en) Fuel cell system
US10128523B2 (en) Fuel cell system and control method for the same
JP3849749B2 (en) Fuel cell system
KR20090082282A (en) Fuel cell system
CN104137315A (en) Fuel cell system
KR101245766B1 (en) System and method for operating fuel cell of emergency state
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JPH0410360A (en) Fuel cell power generating device
JP2007141744A (en) Fuel cell system
KR101418422B1 (en) System for independent start-up of fuel cell for ship
JP2001229951A (en) Fuel-cell system for moving object
US20100304239A1 (en) Rapid start-up and operating system for a fuel cell power plant utilizing a reformate
JP4802476B2 (en) Fuel cell system and operation method thereof
JP2007109469A (en) Fuel cell power generation system
JP5263868B2 (en) Fuel cell, fuel cell device, vehicle equipped with the same, and cogeneration device
JP2013243009A (en) Fuel battery system
JP6776794B2 (en) Fuel cell system
JP2003234116A (en) Control method and control device of fuel cell
JPH02132771A (en) Fuel cell system