JP2001229951A - Fuel-cell system for moving object - Google Patents

Fuel-cell system for moving object

Info

Publication number
JP2001229951A
JP2001229951A JP2000038405A JP2000038405A JP2001229951A JP 2001229951 A JP2001229951 A JP 2001229951A JP 2000038405 A JP2000038405 A JP 2000038405A JP 2000038405 A JP2000038405 A JP 2000038405A JP 2001229951 A JP2001229951 A JP 2001229951A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
residual
fuel
residual hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000038405A
Other languages
Japanese (ja)
Other versions
JP3928319B2 (en
Inventor
Yasukazu Iwasaki
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000038405A priority Critical patent/JP3928319B2/en
Publication of JP2001229951A publication Critical patent/JP2001229951A/en
Application granted granted Critical
Publication of JP3928319B2 publication Critical patent/JP3928319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel-cell system for moving objects, that can reduce residual hydrogen concentration to an extremely low level in a hydrogen circula tion system consisting of the fuel-pole side of a fuel cell and the secondary side of hydrogen separation film, at the time of system suspension, within a short time before the temperature of the hydrogen separation film becomes lower than the hydrogen-embrittlement temperature. SOLUTION: At system suspension, electricity is generated by residual hydrogen, while vapor is circulated in a hydrogen circulation system HLP, consisting of the fuel-pole side of a fuel cell 100 and the secondary side of hydrogen separation film 106. After that, while the vapor is being circulated in the hydrogen circulation system, voltage is applied to the fuel cell 100 from a battery 401, and by electrochemically transporting residual hydrogen which is left in slight amount from the fuel pole to the air pole of the fuel cell, residual hydrogen concentration in the hydrogen circulation system is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動体用燃料電池
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile fuel cell system.

【0002】[0002]

【従来の技術】従来の水素分離器を採用する燃料電池シ
ステムには、図5に示す構成のものが知られている。こ
の従来の燃料電池システムにおいて、100は燃料電
池、101はメタノール102を水103を用いて水蒸
気改質し、水素リッチなガス104を生成する改質器、
105は水素リッチなガス104から水素を分離する水
素分離器、106はパラジウムを主成分とする水素分離
膜、108は水素リッチなガス104から水素分離器1
05によって大部分の水素が分離された排ガス107を
燃焼させる燃焼器である。
2. Description of the Related Art A fuel cell system employing a conventional hydrogen separator has a configuration shown in FIG. In this conventional fuel cell system, 100 is a fuel cell, 101 is a reformer that steam reforms methanol 102 using water 103 to generate a hydrogen-rich gas 104,
Reference numeral 105 denotes a hydrogen separator for separating hydrogen from the hydrogen-rich gas 104, reference numeral 106 denotes a hydrogen separation membrane containing palladium as a main component, and reference numeral 108 denotes a hydrogen separator 1 from the hydrogen-rich gas 104.
This is a combustor for burning the exhaust gas 107 from which most of the hydrogen has been separated by 05.

【0003】水素分離器105で精製された純水素11
0は加湿器111で水蒸気が加えられ、燃料電池100
の燃料極に送られ、燃料電池100の燃料極で水素の一
部が消費され、凝縮器112で水蒸気が回収され、ポン
プ112により水素分離器105に戻される。すなわち
水素循環系HLPが構成されている。
[0003] Pure hydrogen 11 purified by a hydrogen separator 105
0 indicates that water vapor is added by the humidifier 111 and the fuel cell 100
And a part of the hydrogen is consumed by the fuel electrode of the fuel cell 100, steam is collected by the condenser 112, and returned to the hydrogen separator 105 by the pump 112. That is, a hydrogen circulation system HLP is configured.

【0004】一方、コンプレッサ120により空気12
1は燃料電池100の空気極に送られ、ここで一部の酸
素が消費され、凝縮器123で水蒸気が回収された後、
燃焼器108に送られ、ここで排ガス107を燃焼させ
るのに用いられる。凝縮器112,123で回収された
水蒸気は液体の水として水タンク131に回収される。
On the other hand, air 12
1 is sent to the air electrode of the fuel cell 100, where a part of oxygen is consumed, and after the steam is recovered in the condenser 123,
It is sent to a combustor 108 where it is used to burn the exhaust gas 107. The water vapor collected in the condensers 112 and 123 is collected in the water tank 131 as liquid water.

【0005】メタノールタンク130内のメタノール並
びに水タンク131内の水はポンプ132,133によ
って蒸発器109に送られ、燃焼器108で発生した熱
によって気化され、改質器101に送られる。なお、燃
焼器108で発生した熱は蒸発器109で用いられる
他、改質器101内での吸熱反応の熱源や水素分離膜1
06の保温等に利用される。そして燃焼器108で発生
する熱量が不足している場合には、メタノールタンク1
30内のメタノールを燃焼器108に送り燃料の不足分
を補う場合もある。燃料電池100の運転圧力は圧力セ
ンサ140の信号に基づき、システム全体をコントロー
ルするコントローラ(図示せず)により制御される。
The methanol in the methanol tank 130 and the water in the water tank 131 are sent to the evaporator 109 by the pumps 132 and 133, are vaporized by the heat generated in the combustor 108, and are sent to the reformer 101. The heat generated in the combustor 108 is used in the evaporator 109, a heat source for the endothermic reaction in the reformer 101, and the hydrogen separation membrane 1
It is used for heat retention of 06. If the amount of heat generated in the combustor 108 is insufficient, the methanol tank 1
The methanol in 30 may be sent to combustor 108 to compensate for the shortage of fuel. The operating pressure of the fuel cell 100 is controlled by a controller (not shown) that controls the entire system based on the signal of the pressure sensor 140.

【0006】次に従来の燃料電池システムを停止する方
法について説明する。水素分離膜106の1次側を窒素
パージするために、メタノール及び水の蒸発器109へ
の供給を停止し、バルブ300を開いて外部に設けられ
た窒素供給装置により供給される窒素を系内に導入し、
蒸発器109の蒸気発生側、改質器101、水素分離器
105における水素分離膜106の1次側(I)、燃焼
器108、蒸発器109の熱源側の順にパージし、水素
やメタノールを不活性ガスで置換する。
Next, a method for stopping the conventional fuel cell system will be described. In order to purge the primary side of the hydrogen separation membrane 106 with nitrogen, supply of methanol and water to the evaporator 109 is stopped, and the valve 300 is opened to supply nitrogen supplied by a nitrogen supply device provided outside to the system. Introduced to
Purging is performed in the order of the steam generation side of the evaporator 109, the reformer 101, the primary side (I) of the hydrogen separation membrane 106 in the hydrogen separator 105, the combustor 108, and the heat source side of the evaporator 109 to remove hydrogen and methanol. Replace with active gas.

【0007】また水素分離器105における水素分離膜
106の2次側(II)を窒素パージするために、バルブ
301を閉じ、バルブ303を排気のために開き、バル
ブ302を開き、外部に設けられた窒素供給装置により
供給される窒素を水素循環系HLP内に導入し、ポンプ
112、水素分離膜106の2次側(II)、加湿器11
1、燃料電池100の燃料極、凝縮器112の順にパー
ジし、水素を不活性ガスで置換する。
In order to purge the secondary side (II) of the hydrogen separation membrane 106 in the hydrogen separator 105 with nitrogen, the valve 301 is closed, the valve 303 is opened for exhaustion, and the valve 302 is opened. The nitrogen supplied by the supplied nitrogen supply device is introduced into the hydrogen circulation system HLP, and the pump 112, the secondary side (II) of the hydrogen separation membrane 106, the humidifier 11
1. Purging the fuel electrode of the fuel cell 100 and the condenser 112 in this order, and replacing hydrogen with an inert gas.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
従来の燃料電池システムでは、次のような技術的課題が
残されていた。水素分離器を採用した燃料電池システム
では、水素分離膜としてパラジウムを主とする合金膜を
用いているため、システム停止の際に、水素分離膜の温
度が例えば、170〜200℃という水素脆化温度以下
になる前に、極めて低濃度(数百ppm以下)にまで速
やかに水素を除去する必要がある。
However, such a conventional fuel cell system has the following technical problems. In a fuel cell system employing a hydrogen separator, an alloy film mainly composed of palladium is used as the hydrogen separation film. Therefore, when the system is stopped, the temperature of the hydrogen separation film is, for example, 170 to 200 ° C., which causes hydrogen embrittlement. It is necessary to quickly remove hydrogen to a very low concentration (several hundred ppm or less) before the temperature becomes lower than the temperature.

【0009】この水素除去は、オンサイトの燃料電池発
電プラントであれば不活性ガスである窒素ガスでパージ
することにより技術的に容易に行うことができる。しか
しその場合、窒素ガスの消費量が多いため、消費する窒
素ガスのコスト、窒素ボンベの交換あるいは液体窒素の
充填等の保守作業コスト等が問題となる。水素分離膜を
有していない燃料電池システムであっても、不活性ガス
パージを必要とする燃料電池を使用している場合であれ
ば同様に問題である。
This removal of hydrogen can be easily performed technically in an on-site fuel cell power plant by purging with nitrogen gas which is an inert gas. However, in this case, since the consumption amount of the nitrogen gas is large, the cost of the nitrogen gas to be consumed, maintenance work cost such as replacement of the nitrogen cylinder or filling of the liquid nitrogen, and the like become problems. Even a fuel cell system that does not have a hydrogen separation membrane has the same problem if a fuel cell that requires inert gas purging is used.

【0010】そこで、消費する窒素の量を節約するため
に、あるいは保守作業を低減するために、種々の提案が
なされている。例えば前者では特開平9−45351号
公報に記載された技術があり、後者では特開平6−20
3864号公報に記載された技術がある。しかしなが
ら、燃料電池自動車に供される移動体用燃料電池システ
ムでは、スペースの制約が非常に厳しく、システム停止
のたびに大量に消費される窒素ガスをボンベに抱えて車
載することは非常に困難であり、上述したような窒素パ
ージを必要としない燃料電池システムが切望されてい
る。
Therefore, various proposals have been made to save the amount of nitrogen consumed or to reduce maintenance work. For example, in the former, there is a technique described in JP-A-9-45351, and in the latter, JP-A-6-20
There is a technique described in Japanese Patent No. 3864. However, in a mobile fuel cell system used for a fuel cell vehicle, space restrictions are extremely severe, and it is very difficult to mount a large amount of nitrogen gas in a cylinder every time the system is stopped. There is a need for a fuel cell system that does not require a nitrogen purge as described above.

【0011】水素分離膜を有しない燃料電池システムで
あれば、例えば特開平8一195210号公報に記載さ
れているように、燃料電池の燃料極並びに空気極の入口
側並びに出口側を遮断弁により遮断し、燃料極側の遮断
された空間の、圧力調整のためのバッファタンクを設け
る提案がなされている。
In a fuel cell system having no hydrogen separation membrane, for example, as described in Japanese Patent Application Laid-Open No. Hei 8-195210, the inlet and outlet sides of the fuel electrode and the air electrode of the fuel cell are shut off by shut-off valves. It has been proposed to provide a buffer tank for pressure regulation in a closed space on the fuel electrode side.

【0012】しかし水素分離膜を有する燃料電池システ
ムにおいては、水素分離膜の水素脆化を防止するために
極めて低い水素濃度にまで窒素パージすることが必要な
ため、このような遮断をかけるだけでは窒素パージを不
要にすることはできず、このような提案を移動体用燃料
電池システムに適用することはできない。
However, in a fuel cell system having a hydrogen separation membrane, it is necessary to purge nitrogen to an extremely low hydrogen concentration in order to prevent hydrogen embrittlement of the hydrogen separation membrane. Nitrogen purging cannot be eliminated, and such proposals cannot be applied to mobile fuel cell systems.

【0013】他方、燃料電池の燃料極を不活性ガスを用
いてパージするだけでは、電極触媒に吸着している水素
があるために効果的にパージすることが困難である。こ
れを解決し、パージを効果的に行い、残留水素濃度を低
減するための方法として、不活性ガスによるパージを行
いながら余剰電力を発電し、放電抵抗回路で余剰電力を
放電することによって、残留水素を消費する方法が知ら
れている。しかしながら、この方法でも、残留水素濃度
が低減するにつれて燃料電池の残留水素の消費能力が低
下するため、システムの通常の運転を停止させた後、水
素脆化が始まる温度までシステム温度が低下する前まで
の短時間のうちに極めて低い水素濃度にまで残留水素濃
度を下げることが難しい。
On the other hand, it is difficult to purify the fuel electrode of the fuel cell effectively only by purging it with an inert gas due to the presence of hydrogen adsorbed on the electrode catalyst. As a method for solving this and effectively performing the purging to reduce the residual hydrogen concentration, surplus power is generated while purging with an inert gas, and the surplus power is discharged by a discharge resistor circuit. Methods for consuming hydrogen are known. However, even with this method, the residual hydrogen consumption capacity of the fuel cell decreases as the residual hydrogen concentration decreases, so that after the normal operation of the system is stopped, before the system temperature decreases to a temperature at which hydrogen embrittlement starts. It is difficult to reduce the residual hydrogen concentration to an extremely low hydrogen concentration within a short time until the above.

【0014】本発明はこのような従来の技術的課題に鑑
みてなされたもので、システム停止時に燃料電池の燃料
極側と水素分離膜の2次側から構成される水素循環系の
残留水素濃度を水素分離膜の温度が水素脆化温度以下に
なる前に、短時間のうちに極めて低い水素濃度に低減す
ることができる移動体用燃料電池システムを提供するこ
とを特徴とする。
The present invention has been made in view of such a conventional technical problem, and has a problem that the residual hydrogen concentration in a hydrogen circulation system composed of a fuel electrode side of a fuel cell and a secondary side of a hydrogen separation membrane when the system is stopped. Is to provide a mobile fuel cell system capable of reducing the hydrogen concentration to an extremely low hydrogen concentration in a short time before the temperature of the hydrogen separation membrane becomes equal to or lower than the hydrogen embrittlement temperature.

【0015】[0015]

【課題を解決するための手段】請求項1の発明の移動体
用燃料電池システムは、燃料を改質して水素リッチなガ
スを生成する改質器と、前記改質器によって生成した水
素リッチなガスから水素を分離する水素分離器と、前記
水素分離器で分離された水素と酸素を含むガスとを用い
て発電する燃料電池と、前記燃料電池によって発電され
た電力を貯蔵するバッテリと、前記燃料電池によって発
電された電力と前記バッテリに貯蔵されている電力を制
御する電力制御器と、前記水素分離器と前記燃料電池と
から構成される水素循環系の循環ポンプと、当該システ
ム停止時に、前記水素循環系に水蒸気を循環させながら
当該水素循環系内の残留水素による発電を行った後、当
該水素循環系に水蒸気を循環させながら前記バッテリか
ら前記燃料電池に電圧を印加して当該水素循環系の残留
水素を前記燃料電池の燃料極側から空気極側に電気化学
的に輸送することにより、前記水素循環系内の残留水素
濃度を低減する残留水素パージ手段を備えたものであ
る。
According to a first aspect of the present invention, there is provided a fuel cell system for a mobile object, comprising: a reformer for reforming a fuel to generate a hydrogen-rich gas; and a hydrogen-rich gas generated by the reformer. A hydrogen separator that separates hydrogen from a natural gas, a fuel cell that generates power using a gas containing hydrogen and oxygen separated by the hydrogen separator, and a battery that stores power generated by the fuel cell. A power controller that controls the power generated by the fuel cell and the power stored in the battery, a circulating pump of a hydrogen circulation system including the hydrogen separator and the fuel cell, and when the system is stopped. After performing power generation by residual hydrogen in the hydrogen circulation system while circulating steam in the hydrogen circulation system, the battery is transferred from the battery to the fuel cell while circulating steam in the hydrogen circulation system. Residual hydrogen purging means for reducing the concentration of residual hydrogen in the hydrogen circulation system by applying pressure to electrochemically transport residual hydrogen in the hydrogen circulation system from the fuel electrode side to the air electrode side of the fuel cell It is provided with.

【0016】請求項1の発明の移動体用燃料電池システ
ムでは、システムの停止時に、残留水素パージ手段が、
燃料電池の燃料極側と水素分離膜2次側から構成される
水素循環系に水蒸気を循環させながら残留水素による発
電を行った後、当該水素循環系に水蒸気を循環させなが
らバッテリから燃料電池に電圧を印加し、僅かに残存す
る残留水素を燃料電池の燃料極から空気極に電気化学的
に輸送することにより、水素循環系内の残留水素濃度を
低減する。これにより、水素循環系の残留水素濃度を、
水素分離膜の温度が水素脆化温度以下になる前に短時間
のうちに極めて低い水素濃度に低減する。
In the mobile fuel cell system according to the first aspect of the present invention, when the system is stopped, the residual hydrogen purging means includes:
After generating power by residual hydrogen while circulating water vapor in a hydrogen circulation system composed of the fuel electrode side and the hydrogen separation membrane secondary side of the fuel cell, the battery is transferred from the battery to the fuel cell while circulating water vapor in the hydrogen circulation system. By applying a voltage and electrochemically transporting a small amount of residual hydrogen from the fuel electrode of the fuel cell to the air electrode, the concentration of residual hydrogen in the hydrogen circulation system is reduced. As a result, the residual hydrogen concentration in the hydrogen circulation system
Before the temperature of the hydrogen separation membrane becomes lower than the hydrogen embrittlement temperature, the hydrogen concentration is reduced to an extremely low hydrogen concentration in a short time.

【0017】請求項2の発明は、請求項1の移動体用燃
料電池システムにおいて、前記残留水素パージ手段が前
記残留水素による発電電力を前記バッテリに充電するも
のであり、システム停止時に残留水素による発電電力を
バッテリに充電することによりエネルギ効率を高める。
According to a second aspect of the present invention, in the mobile fuel cell system according to the first aspect, the residual hydrogen purging means charges the battery with electric power generated by the residual hydrogen. Energy efficiency is increased by charging the battery with the generated power.

【0018】請求項3の発明は、請求項1の移動体用燃
料電池システムにおいて、余剰電力を放電する放電抵抗
回路を備え、前記残留水素パージ手段が前記残留水素に
よる発電電力を前記放電抵抗回路に放電するものであ
り、残留水素による発電電力を速やかに消費させること
により残留水素濃度を速やかに低減する。
According to a third aspect of the present invention, there is provided the fuel cell system for a mobile body according to the first aspect, further comprising a discharge resistance circuit for discharging surplus electric power, wherein the residual hydrogen purging means uses the electric power generated by the residual hydrogen to the discharge resistance circuit. The residual hydrogen concentration is rapidly reduced by promptly consuming the power generated by the residual hydrogen.

【0019】請求項4の発明は、請求項1の移動体用燃
料電池システムにおいて、余剰電力を放電する放電抵抗
回路を備え、前記残留水素パージ手段が前記バッテリの
充電状態に応じて、前記残留水素による発電電力の当該
バッテリへの充電と前記放電抵抗回路への放電とを切り
替えるものであり、システム停止時にバッテリの充電状
態に応じて残留水素による発電電力のバッテリへの充電
と放電抵抗回路への放電とを切り替えることによってエ
ネルギ効率を改善し、かつ残留水素濃度を速やかに低減
する。
According to a fourth aspect of the present invention, there is provided the fuel cell system for a mobile body according to the first aspect, further comprising a discharge resistor circuit for discharging surplus power, wherein the residual hydrogen purging means is configured to control the residual hydrogen in accordance with a state of charge of the battery. Switching between charging of the battery with the generated power by hydrogen and discharging to the discharge resistor circuit, and charging and discharging of the generated power with the residual hydrogen to the battery according to the state of charge of the battery when the system is stopped. To improve the energy efficiency and quickly reduce the residual hydrogen concentration.

【0020】請求項5の発明は、請求項1の移動体用燃
料電池システムにおいて、前記残留水素パージ手段が前
記バッテリから前記燃料電池に電圧を印加させ、水素の
電気化学的輸送を一定時間行うものであり、システム停
止時に、残留水素濃度が水素分離膜に影響を与えない程
度まで低減するのに必要な一定時間だけ水素の電気化学
的輸送を行うことにより、バッテリのエネルギロスを最
低限度に抑える。
According to a fifth aspect of the present invention, in the fuel cell system for a mobile body according to the first aspect, the residual hydrogen purging means applies a voltage from the battery to the fuel cell to perform electrochemical transport of hydrogen for a predetermined time. When the system is shut down, the energy loss of the battery is minimized by performing the electrochemical transport of hydrogen for a certain period of time necessary to reduce the residual hydrogen concentration to a level that does not affect the hydrogen separation membrane. suppress.

【0021】請求項6の発明は、請求項1又は5の移動
体用燃料電池システムにおいて、前記残留水素パージ手
段が前記燃料電池の電流電圧特性から前記水素循環系の
残留水素濃度が所望の濃度以下になったことを判断した
ときに、前記バッテリから前記燃料電池への電圧印加を
停止し、水素の電気化学的輸送を停止するものであり、
バッテリのエネルギロスを最低限度に抑える。
According to a sixth aspect of the present invention, in the fuel cell system for a mobile body according to the first or fifth aspect, the residual hydrogen purging means sets the residual hydrogen concentration in the hydrogen circulation system to a desired concentration based on current-voltage characteristics of the fuel cell. When it is determined that the following has been reached, the application of voltage from the battery to the fuel cell is stopped, and the electrochemical transport of hydrogen is stopped,
Minimize battery energy loss.

【0022】請求項7の発明は、請求項1〜6の移動体
用燃料電池システムにおいて、前記空気極の入口側及び
出口側それぞれに遮断手段を備え、前記残留水素パージ
手段が前記水素循環系の残留水素濃度を低減させた後、
前記燃料電池の空気極を水蒸気でパージし、しかる後に
前記空気極の入口側並びに出口側を前記遮断手段により
遮断するものである。
According to a seventh aspect of the present invention, in the fuel cell system for a mobile body according to any of the first to sixth aspects, shutoff means is provided on each of an inlet side and an outlet side of the air electrode, and the residual hydrogen purging means is provided with a hydrogen circulation system. After reducing the residual hydrogen concentration of
The air electrode of the fuel cell is purged with water vapor, and thereafter the inlet and outlet sides of the air electrode are shut off by the shut-off means.

【0023】請求項7の発明の移動体用燃料電池システ
ムでは、システム停止時に、残留水素パージ手段が水素
循環系の余剰水素による余剰発電を終了させた後、ある
いは燃料電池による水素の電気化学的輸送が終了した後
に、燃料電池の空気極を水蒸気によってパージし、さら
に燃料電池の空気極の入口側並びに出口側を遮断手段に
より遮断する。これにより、燃料電池の燃料極側の閉じ
た空間である水素循環系と、燃料電池の空気極側とを共
に水蒸気で満たされて閉じた空間として保持し、システ
ムの温度が低下して水蒸気が凝縮した際に、燃料電池の
燃料極側も空気極側も同程度の減圧状態にして燃料電池
のイオン伝導膜への差圧の発生を抑える。
In the fuel cell system for a mobile body according to the present invention, when the system is stopped, the residual hydrogen purging means terminates the surplus power generation by the surplus hydrogen in the hydrogen circulation system, or electrochemically converts hydrogen by the fuel cell. After the transportation is completed, the air electrode of the fuel cell is purged with water vapor, and the inlet and outlet sides of the air electrode of the fuel cell are shut off by shut-off means. As a result, the hydrogen circulation system, which is a closed space on the fuel electrode side of the fuel cell, and the air electrode side of the fuel cell are both held as a closed space filled with water vapor, and the temperature of the system decreases, and water vapor is generated. When condensed, the fuel electrode side and the air electrode side of the fuel cell are set to the same reduced pressure state to suppress generation of a differential pressure on the ion conductive membrane of the fuel cell.

【0024】請求項8の発明は、請求項1の移動体用燃
料電池システムにおいて、前記水素分離器の入口側並び
に出口側を遮断する遮断手段と、前記燃料電池の燃料極
側を大気開放する開放手段とを備え、前記残留水素パー
ジ手段が前記水素循環系の残留水素の電気化学的輸送が
終了した後、前記水素循環系の前記水素分離器の入口側
並びに出口側を前記遮断手段により遮断し、前記燃料電
池の燃料極を前記大気開放手段により大気開放するもの
である。
According to an eighth aspect of the present invention, in the fuel cell system for a mobile body according to the first aspect, a shutoff means for shutting off an inlet side and an outlet side of the hydrogen separator, and a fuel electrode side of the fuel cell is opened to the atmosphere. Opening means, and after the residual hydrogen purging means completes the electrochemical transport of the residual hydrogen in the hydrogen circulation system, shuts off the inlet side and the outlet side of the hydrogen separator in the hydrogen circulation system by the shut-off means. The fuel electrode of the fuel cell is opened to the atmosphere by the air opening means.

【0025】請求項8の発明の移動体用燃料電池システ
ムでは、システム停止時に、残留水素パージ手段が水素
循環系の残留水素の電気化学的輸送を終了させた後、水
素循環系の水素分離器の入口側並びに出口側を遮断手段
により遮断し、燃料電池の燃料極を大気開放手段により
大気開放する。これにより、システムの温度が低下して
水蒸気が凝縮しても、燃料電池の燃料極並びに空気極側
の圧力をほぼ空気圧のまま保持させ、燃料電池のイオン
伝導膜への差圧の発生を抑える。
In the fuel cell system for a mobile body according to the present invention, when the system is stopped, the residual hydrogen purging means terminates the electrochemical transport of the residual hydrogen in the hydrogen circulation system, and then the hydrogen separator in the hydrogen circulation system. The inlet and outlet sides of the fuel cell are shut off by shut-off means, and the fuel electrode of the fuel cell is opened to the atmosphere by the open-to-air means. As a result, even if the temperature of the system is reduced and water vapor is condensed, the pressure on the fuel electrode and the air electrode side of the fuel cell is maintained at substantially the air pressure, and the generation of a differential pressure on the ion conductive membrane of the fuel cell is suppressed. .

【0026】請求項9の発明は、請求項1〜8の移動体
用燃料電池システムにおいて、前記水素分離器の改質ガ
ス側の入口側及び出口側を遮断する遮断手段を備え、前
記残留水素パージ手段が当該システムの停止時に前記遮
断手段により前記水素分離器の改質ガス側の入口側並び
に出口側を遮断するものである。
According to a ninth aspect of the present invention, there is provided the fuel cell system for a mobile body according to any of the first to eighth aspects, further comprising a shutoff means for shutting off an inlet side and an outlet side of the hydrogen separator on the reformed gas side, The purging means shuts off the reformed gas inlet and outlet sides of the hydrogen separator by the shutoff means when the system is stopped.

【0027】請求項10の発明は、請求項9の移動体用
燃料電池システムにおいて、前記残留水素パージ手段が
前記水素分離器の改質ガス側の入口側並びに出口側を遮
断する前に、前記水素分離器の改質ガス側を水蒸気でパ
ージするものである。
According to a tenth aspect of the present invention, in the fuel cell system for a mobile body according to the ninth aspect, the residual hydrogen purging means shuts off the inlet side and the outlet side on the reformed gas side of the hydrogen separator. The reforming gas side of the hydrogen separator is purged with steam.

【0028】請求項9及び10の発明の移動体用燃料電
池システムでは、システム停止時に残留水素パージ手段
が水素分離器の改質ガス側の入口側並びに出口側を遮断
するが、その前に水素分離器の改質ガス側を水蒸気でパ
ージする。これにより、従来のように外部の窒素供給装
置から窒素を供給してこの部分の水素をパージする必要
をなくし、移動体用のシステムとして小型化を図る。
In the fuel cell system for a mobile body according to the ninth and tenth aspects of the present invention, when the system is stopped, the residual hydrogen purging means shuts off the inlet side and the outlet side of the reformed gas side of the hydrogen separator. Purge the reformed gas side of the separator with steam. This eliminates the necessity of supplying nitrogen from an external nitrogen supply device and purging the hydrogen in this portion as in the related art, and achieves downsizing as a system for a moving body.

【0029】[0029]

【発明の効果】請求項1の発明によれば、水素循環系の
残留水素濃度を、水素分離膜の温度が水素脆化温度以下
になる前に短時間のうちに極めて低い水素濃度に低減す
ることができる。
According to the first aspect of the present invention, the residual hydrogen concentration in the hydrogen circulation system is reduced to an extremely low hydrogen concentration within a short time before the temperature of the hydrogen separation membrane becomes lower than the hydrogen embrittlement temperature. be able to.

【0030】請求項2の発明によれば、請求項1の発明
の効果に加えて、システム停止時に残留水素による余剰
電力をバッテリに充電することにより、システム停止時
に残留水素による発電電力をバッテリに充電ことがで
き、エネルギ効率を高めることができる。
According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, when the system is stopped, surplus power due to residual hydrogen is charged into the battery, so that when the system is stopped, the generated power due to residual hydrogen is stored in the battery. It can be charged and energy efficiency can be increased.

【0031】請求項3の発明によれば、請求項1の発明
の効果に加えて、システム停止時に余剰電力を放電抵抗
回路に放電することにより、残留水素による発電電力を
速やかに消費させることにより残留水素濃度を速やかに
低減することができる。
According to the third aspect of the present invention, in addition to the effect of the first aspect of the present invention, the surplus power is discharged to the discharge resistor circuit when the system is stopped, so that the power generated by the residual hydrogen is quickly consumed. The residual hydrogen concentration can be promptly reduced.

【0032】請求項4の発明によれば、請求項1の発明
の効果に加えて、システム停止時にバッテリの充電状態
に応じて残留水素による余剰電力のバッテリへの充電と
放電抵抗回路への放電とを切り替えることができ、エネ
ルギ効率の改善し、かつ残留水素濃度を速やかに低減す
ることができる。
According to the fourth aspect of the present invention, in addition to the effects of the first aspect of the present invention, when the system is stopped, surplus power is charged to the battery by residual hydrogen and discharged to the discharge resistor circuit according to the state of charge of the battery. Can be switched, energy efficiency can be improved, and the residual hydrogen concentration can be rapidly reduced.

【0033】請求項5の発明によれば、請求項1の発明
の効果に加えて、システム停止時に残留水素濃度が水素
分離膜に影響を与えない程度まで低減するのに必要な一
定時間だけ水素の電気化学的輸送を行うことにより、バ
ッテリのエネルギロスを最低限度に抑えることができ
る。
According to the fifth aspect of the present invention, in addition to the effect of the first aspect of the present invention, the hydrogen for a certain period of time required to reduce the residual hydrogen concentration to a level that does not affect the hydrogen separation membrane when the system is stopped. By performing the electrochemical transport of the battery, the energy loss of the battery can be minimized.

【0034】請求項6の発明によれば、請求項1又は5
の発明の効果に加えて、システム停止時に、燃料電池の
電流電圧特性から水素循環系の残留水素濃度が所望の濃
度以下になったことを判断したときにバッテリから燃料
電池への電圧印加を停止し、水素の電気化学的輸送を停
止することにより、バッテリのエネルギロスを最低限度
に抑えることができる。
According to the invention of claim 6, according to claim 1 or 5,
In addition to the effects of the invention, when the system is stopped, the application of voltage from the battery to the fuel cell is stopped when it is determined from the current-voltage characteristics of the fuel cell that the residual hydrogen concentration in the hydrogen circulation system has become lower than the desired concentration. By stopping the electrochemical transport of hydrogen, the energy loss of the battery can be minimized.

【0035】請求項7の発明によれば、請求項1〜6の
発明の効果に加えて、システム停止時に燃料電池の燃料
極側の閉じた空間である水素循環系と燃料電池の空気極
側が共に水蒸気で満たされて閉じた空間として保持で
き、システムの温度が低下して水蒸気が凝縮した際に、
燃料電池の燃料極側も空気極側も同程度の減圧状態とな
り、燃料電池のイオン伝導膜への差圧の発生を抑えるこ
とができる。
According to the seventh aspect of the invention, in addition to the effects of the first to sixth aspects, when the system is stopped, the hydrogen circulation system, which is a closed space on the fuel electrode side of the fuel cell, and the air electrode side of the fuel cell are closed. Both are filled with steam and can be kept as a closed space, and when the temperature of the system decreases and the steam condenses,
The fuel electrode side and the air electrode side of the fuel cell are in the same reduced pressure state, and it is possible to suppress the generation of the differential pressure on the ion conductive membrane of the fuel cell.

【0036】請求項8の発明によれば、請求項1の発明
の効果に加えて、システム停止時にシステムの温度が低
下して水蒸気が凝縮しても燃料電池の燃料極並びに空気
極側の圧力がほぼ空気圧のまま保持することができ、燃
料電池のイオン伝導膜への差圧の発生を抑えることがで
きる。
According to the eighth aspect of the present invention, in addition to the effect of the first aspect, even if the temperature of the system decreases when the system is stopped and water vapor condenses, the pressure on the fuel electrode and the air electrode side of the fuel cell is reduced. Can be maintained substantially at the air pressure, and the generation of a differential pressure on the ion conductive membrane of the fuel cell can be suppressed.

【0037】請求項9及び10発明によれば、請求項1
〜8の発明の効果に加えて、システム停止時に従来のよ
うに外部の窒素供給装置から窒素を供給してこの部分の
水素をパージする必要がなく、移動体用のシステムとし
て小型化が図れる。
According to the ninth and tenth aspects, according to the first aspect,
In addition to the effects of the inventions of (1) to (8), it is not necessary to supply nitrogen from an external nitrogen supply device to purge hydrogen in this part when the system is stopped, which makes it possible to reduce the size of the system for a mobile body.

【0038】[0038]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。図1は本発明の第1の実施の形態の
構成を示している。第1の実施の形態の移動体用燃料電
池システムは、図5に示した従来例と同様の基本的な構
成を備えている。したがって、以下、図5に示した従来
例と共通する要素には同一の符号を付すことにより、重
複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the configuration of the first embodiment of the present invention. The mobile fuel cell system according to the first embodiment has the same basic configuration as that of the conventional example shown in FIG. Therefore, hereinafter, the same reference numerals are given to elements common to the conventional example shown in FIG.

【0039】第1の実施の形態の特徴は、従来例におけ
る窒素ガスにより水素をパージする窒素パージ系統の要
素であるバルブ300〜303を削除し、これに代え
て、システム停止時に余剰水素による余剰発電電力を放
電消費させるための放電抵抗回路400、電力調整器4
02、そして水素分離器105の改質ガス側の入口及び
出口を遮断する遮断弁410,411を設けた点にあ
る。
A feature of the first embodiment is that the valves 300 to 303, which are elements of the nitrogen purge system for purging hydrogen with nitrogen gas in the conventional example, are omitted, and instead, the excess Discharge resistor circuit 400 for discharging and consuming generated power, power regulator 4
02 and the provision of shut-off valves 410 and 411 for shutting off the inlet and outlet of the hydrogen separator 105 on the reformed gas side.

【0040】電力調整器402は燃料電池100の発電
電力、バッテリ401の充電並びに放電、移動体の走行
用モータの走行電力あるいは回生電力、放電抵抗回路4
00への余剰電力の放電などの電力配分を最適に制御す
る。
The power regulator 402 includes a power generated by the fuel cell 100, charging and discharging of the battery 401, a running power or a regenerative power of a running motor of the moving body, and a discharge resistance circuit 4.
The power distribution such as the discharge of surplus power to 00 is optimally controlled.

【0041】次に、上記の構成の移動体用燃料電池シス
テムのシステム停止時の動作について、図1のブロック
図及び図2のシーケンス図を用いて説明する。水素分離
膜106の1次側(I)では、システムが停止すると
(ステップS0)、メタノールの蒸発器109への供給
が停止する。すると水蒸気によって、蒸発器109、改
質器101、水素分離器105における水素分離膜10
6の1次側(I)が順に水蒸気でパージされ、水素やメ
タノールが追い出される(ステップS11)。
Next, the operation of the mobile fuel cell system having the above configuration when the system is stopped will be described with reference to the block diagram of FIG. 1 and the sequence diagram of FIG. On the primary side (I) of the hydrogen separation membrane 106, when the system stops (step S0), the supply of methanol to the evaporator 109 stops. Then, the water vapor causes the hydrogen separation membrane 10 in the evaporator 109, the reformer 101, and the hydrogen separator 105.
The primary side (I) of No. 6 is sequentially purged with water vapor to expel hydrogen and methanol (step S11).

【0042】水蒸気によるパージが充分なされたところ
で、蒸発器109への水の供給を停止して水蒸気パージ
を停止し(ステップS12)、この後、水素分離器10
5の入口、出口それぞれに設けられた遮断弁410、4
11を遮断し、水素分離膜106の1次側(I)を水蒸
気で置換された状態で閉じ込める(ステップS13)。
When the purge with water vapor is sufficient, the supply of water to the evaporator 109 is stopped to stop the water vapor purge (step S12).
Shut-off valves 410, 4 provided at the inlet and outlet of 5
11 is shut off, and the primary side (I) of the hydrogen separation membrane 106 is confined while being replaced with water vapor (step S13).

【0043】これと並行して、水素分離膜106の2次
側(II)、すなわち水素循環系HLPでは、次のように
して不活性ガスパージが行われる。水素分離膜106の
2次側の水素循環系HLPを運転しながら、水素循環系
の余剰水素を用いて燃料電池100で余剰電力を発電す
る。電力調整器402は、余剰電力がバッテリ401に
充電可能な程度の電圧であり、かつバッテリ401が過
充電にならない条件下では、余剰電力をバッテリ401
に充電し、バッテリ401が満充電の場合又は余剰電力
が充電可能なほどの電圧ではない条件下では、放電抵抗
回路400に余剰電力を放電させる(ステップS2
1)。
In parallel with this, in the secondary side (II) of the hydrogen separation membrane 106, that is, in the hydrogen circulation system HLP, an inert gas purge is performed as follows. While operating the hydrogen circulation system HLP on the secondary side of the hydrogen separation membrane 106, surplus power is generated by the fuel cell 100 using excess hydrogen in the hydrogen circulation system. The power adjuster 402 outputs the surplus power to the battery 401 under the condition that the surplus power can charge the battery 401 and the battery 401 is not overcharged.
When the battery 401 is fully charged, or under conditions where the surplus power is not at a voltage that allows charging, the surplus power is discharged to the discharge resistance circuit 400 (step S2).
1).

【0044】水素循環系HLPの残留水素は徐々に低下
していき、ある程度低下したところで電力調整器402
がバッテリ401の電圧を、燃料電池100の燃料極側
から空気極側に水素を電気化学的に輸送するように印加
すると、速やかに極めて低い水素濃度にまで低減される
(ステップS22)。なお、この電気化学的ポンピング
の技術については、例えば、米国特許明細書第4,67
1,080に、またその改良案として、特開平5−24
2850号公報に記載された技術を採用している。この
技術の原理は、電解質膜にバッテリ401から電圧を印
加して、余剰水素により燃料極に発生した水素イオンを
電解質膜を通して空気極側に移動させ、空気極側で触媒
の介在下に酸素と反応させて消費させるものである。
The residual hydrogen in the hydrogen circulating system HLP gradually decreases.
When the voltage of the battery 401 is applied so as to electrochemically transport hydrogen from the fuel electrode side of the fuel cell 100 to the air electrode side, the hydrogen concentration is immediately reduced to an extremely low hydrogen concentration (step S22). The technique of electrochemical pumping is described, for example, in US Pat.
1,080, and as an improvement thereof,
The technology described in Japanese Patent Publication No. 2850 is adopted. The principle of this technology is that a voltage is applied from the battery 401 to the electrolyte membrane, hydrogen ions generated in the fuel electrode by excess hydrogen are moved to the air electrode side through the electrolyte membrane, and oxygen is generated on the air electrode side with the intervention of a catalyst. It is made to react and consume.

【0045】こうして水素分離膜106の1次側(I)
並びに2次側(II)の水素濃度が充分に低減した後、循
環ポンプ112を停止させ、またシステムの全要素を停
止させる。これにより水素分離膜106の温度が水素脆
化温度以下に降温する。この際、水素分離膜106の1
次側並びに2次側は共に水蒸気が閉じ込められた閉じた
空間であるため、温度が下がり水蒸気が凝縮する際には
同様の減圧状態となり、差圧の発生が抑えられ、差圧に
よる水素分離膜106の損傷が防止される。
Thus, the primary side (I) of the hydrogen separation membrane 106
Also, after the hydrogen concentration on the secondary side (II) is sufficiently reduced, the circulation pump 112 is stopped, and all elements of the system are stopped. As a result, the temperature of the hydrogen separation membrane 106 is lowered to the hydrogen embrittlement temperature or lower. At this time, one of the hydrogen separation membranes 106
Both the secondary side and the secondary side are closed spaces in which water vapor is confined. Therefore, when the temperature decreases and the water vapor condenses, the pressure is reduced in the same manner, and the generation of the differential pressure is suppressed. 106 is prevented from being damaged.

【0046】なお、水素循環系HLPの残留水素濃度が
どの程度低減したかは、余剰電力を発電している際には
燃料電池100の電流電圧特性から、また電気化学的に
水素を輸送している際には電気化学的水素ポンプとして
の電流電圧特性から推定することが可能である。そこ
で、上記の実施の形態では以上の操作をあらかじめ設定
した一定時間行わせる仕組みにしているが、水素濃度に
対応した電流電圧特性を実験的に決定し、そのデータを
ルックアップデータテーブルにしてコントローラに組み
込んでおき、実際の電流電圧特性を計測し、このデータ
テーブルを参照して対応する水素濃度を推定し、それが
所定値以下になればシステムを最終的に停止させる仕組
みにしてもよい。
The degree of reduction of the residual hydrogen concentration in the hydrogen circulating system HLP is determined by the current-voltage characteristics of the fuel cell 100 when surplus power is being generated and by electrochemically transporting hydrogen. Can be estimated from the current-voltage characteristics of the electrochemical hydrogen pump. Therefore, in the above-described embodiment, the above operation is performed for a predetermined period of time. However, the current-voltage characteristic corresponding to the hydrogen concentration is experimentally determined, and the data is converted into a look-up data table to the controller. A mechanism may be adopted in which the actual current-voltage characteristics are measured, the corresponding hydrogen concentration is estimated with reference to this data table, and the system is finally stopped when the hydrogen concentration falls below a predetermined value.

【0047】このようにして、第1の実施の形態の移動
体用燃料電池システムでは、窒素のような不活性ガスを
流して水素等のガスを不活性ガスで置換していた従来の
不活性ガスパージに対して、水素分離膜の2次側におい
ては水蒸気を循環させながら水素を消費させ、また選択
的電気化学的に輸送する方法を採用することによって同
様の効果を得ることができる。したがって、従来のよう
に大量に不活性ガスが充填されたボンベを移動体に搭載
する必要はなくなり、不活性ガスボンベの交換といった
保守も不要となる。
As described above, in the fuel cell system for a mobile unit according to the first embodiment, a conventional inert gas in which an inert gas such as nitrogen is supplied to replace a gas such as hydrogen with an inert gas is used. The same effect can be obtained by employing a method of consuming hydrogen while circulating water vapor on the secondary side of the hydrogen separation membrane and selectively transporting it electrochemically with respect to the gas purge. Therefore, there is no need to mount a cylinder filled with a large amount of inert gas on the moving body as in the related art, and maintenance such as replacement of the inert gas cylinder is not required.

【0048】次に、本発明の第2の実施の形態につい
て、図3に基づいて説明する。第2の実施の形態では、
図1に示した第1の実施の形態の構成に加え、燃料電池
100の空気極の入口並びに出口に遮断弁500、50
1を設けたことを特徴とする。その他の構成は、図1に
示した第1の実施の形態と共通する。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment,
In addition to the configuration of the first embodiment shown in FIG. 1, shutoff valves 500 and 50 are provided at the inlet and outlet of the air electrode of the fuel cell 100.
1 is provided. Other configurations are the same as those of the first embodiment shown in FIG.

【0049】第2の実施の形態の移動体用燃料電池シス
テムでは、システム停止時に、図2に示したシーケンス
に従い、水素循環系HLPの余剰水素による余剰発電が
終了した後、あるいは燃料電池100による水素の電気
化学的輸送が終了した後、コンプレッサ120を停止
し、燃料電池100の空気極を加湿器122を用いて水
蒸気でパージした後、遮断弁500,501を閉じて燃
料電池100の空気極に水蒸気を閉じ込める。
In the mobile fuel cell system according to the second embodiment, when the system is stopped, after the surplus power generation by the surplus hydrogen of the hydrogen circulating system HLP is completed or by the fuel cell 100 according to the sequence shown in FIG. After the electrochemical transport of hydrogen is completed, the compressor 120 is stopped, the air electrode of the fuel cell 100 is purged with steam using the humidifier 122, and the shut-off valves 500 and 501 are closed to close the air electrode of the fuel cell 100. Trap water vapor in the air.

【0050】このようにしてシステムを停止すると、燃
料電池100の燃料極側の閉じた空間である水素循環系
HLPと、燃料電池100の空気極側が共に水蒸気で満
たされて閉じた空間として保持されるため、システムの
温度が低下し水蒸気が凝縮した際に、燃料電池100の
燃料極側も空気極側も同程度の減圧状態となり、燃料電
池100のイオン伝導膜への差圧の発生を抑え、その差
圧による損傷を防止することができる。
When the system is stopped in this manner, the hydrogen circulation system HLP, which is a closed space on the fuel electrode side of the fuel cell 100, and the air electrode side of the fuel cell 100 are both filled with water vapor and held as a closed space. Therefore, when the temperature of the system decreases and the water vapor condenses, the fuel electrode 100 and the air electrode side of the fuel cell 100 are in the same pressure reduction state, and the generation of the differential pressure on the ion conductive membrane of the fuel cell 100 is suppressed. , Can be prevented from being damaged by the pressure difference.

【0051】次に第3の実施例について、図4に従って
説明する。第3の実施の形態の移動体用燃料電池システ
ムは、図1に示した第1の実施の形態の構成に加え、水
素分離器105の2次側(II)の入口並びに出口に遮断
弁600、601を設け、また燃料電池100の水素循
環系HLPと空気極とを接続する開放弁602を設けた
ことを特徴とする。その他の構成は、図1に示した第1
の実施の形態と共通する。
Next, a third embodiment will be described with reference to FIG. The mobile fuel cell system according to the third embodiment has a shut-off valve 600 at the inlet and outlet of the secondary side (II) of the hydrogen separator 105 in addition to the configuration of the first embodiment shown in FIG. , 601 and an open valve 602 for connecting the hydrogen circulation system HLP of the fuel cell 100 to the air electrode. Other configurations are similar to those of the first configuration shown in FIG.
This embodiment is common to the above embodiments.

【0052】この第3の実施の形態では、システム停止
時に、図2に示したシーケンスに従い燃料電池100に
よる水素の電気化学的輸送が終了した後、遮断弁60
0、601を閉じる。そして循環ポンプ112を停止
し、システム要素の停止が終了した後、開放弁602を
開いて燃料電池100の燃料極側を空気極側に接続し、
空気極側配管を通じて大気開放する。
In the third embodiment, when the system is stopped, after the electrochemical transport of hydrogen by the fuel cell 100 is completed in accordance with the sequence shown in FIG.
0, 601 is closed. Then, after stopping the circulation pump 112 and stopping the system elements, the opening valve 602 is opened to connect the fuel electrode side of the fuel cell 100 to the air electrode side,
Release to atmosphere through air side piping.

【0053】これにより、システムの温度が低下して水
蒸気が凝縮しても、燃料電池100の燃料極並びに空気
極側の圧力は大気圧のまま保持され、差圧が発生しなく
なる。
As a result, even if the temperature of the system decreases and water vapor condenses, the pressure on the fuel electrode side and the air electrode side of the fuel cell 100 is maintained at the atmospheric pressure, and no differential pressure is generated.

【0054】なお、上記の各実施の形態において、各構
成要素は次のように変更することが可能である。全ての
実施の形態において、水とメタノールを例に説明した
が、これに限定される訳ではなく、メタノールの他、メ
タン、ガソリン、ジメチルエーテルなど、改質によって
水素リッチなガスを生成し得る燃料であればよく、また
液体でも気体でもかまわないし、水やこれらの燃料から
なる混合物であってもよい。また水蒸気改質を例に説明
したが、部分酸化でもこれらを同時に行うオートサーマ
ルであっても、これらを状況に応じて使い分ける併用型
であつてもよい。
In each of the above embodiments, each component can be changed as follows. In all the embodiments, water and methanol have been described as examples.However, the present invention is not limited to this. In addition to methanol, methane, gasoline, dimethyl ether, and other fuels capable of producing a hydrogen-rich gas by reforming can be used. It may be any liquid or gas, and may be water or a mixture of these fuels. In addition, the steam reforming has been described as an example, but a partial oxidation, an autothermal that simultaneously performs these, or a combination type that uses these depending on the situation may be used.

【0055】また全ての実施の形態において、水素分離
膜106の1次側を閉じた空間として遮断する遮断弁4
10を改質器101と水素分離器105との間に設けた
が、これに限定される訳ではなく、蒸発器109と改質
器101との間に設けてもよいし、燃料ポンプ132,
133と蒸発器109との間に設けてもよい。そして燃
料ポンプ132,133と蒸発器109との間に遮断弁
410を設ける場合、ポンプを逆回転させるなどによ
り、蒸発器109より水やメタノールの液体をタンク1
30,131側に回収してから遮断するようにしてもよ
い。
In all the embodiments, the shutoff valve 4 for shutting off the primary side of the hydrogen separation membrane 106 as a closed space.
10 is provided between the reformer 101 and the hydrogen separator 105, but is not limited to this, and may be provided between the evaporator 109 and the reformer 101.
133 and the evaporator 109 may be provided. When the shut-off valve 410 is provided between the fuel pumps 132 and 133 and the evaporator 109, the water or methanol liquid is supplied from the evaporator 109 to the tank 1 by rotating the pump in reverse.
It is also possible to shut off after collecting on the 30, 131 side.

【0056】また第3の実施の形態において、燃料電池
100の燃料極側を、開放弁602を開いて空気極側に
接続して大気開放するようにしたが、これに限定される
訳ではなく、例えば、空気極側配管の大気開放部に絞り
を設けてもよい。また燃料極側を空気極側に接続せず
に、開放弁602で直接大気開放してもよいし、さらに
絞りを併用してもよい。また燃料極側を空気極側に接続
し、かつ空気極側を大気開放せずに遮断弁で閉じ込めて
もよい。さらにまた、燃料極側を空気極側に接続する開
放弁602の位置は、燃料電池100の燃料極出口に設
ける例を説明したが、水素分離膜106を遮断する遮断
弁600,601で切り離された水素循環系HLPのど
こであってもよいし、また接続される空気極側も燃料電
池100の空気極に空間的に繋がっている場所であれば
どこでもよい。
In the third embodiment, the fuel electrode side of the fuel cell 100 is connected to the air electrode side by opening the release valve 602 to open to the atmosphere. However, the present invention is not limited to this. For example, a throttle may be provided at an air opening portion of the air electrode side pipe. Further, the fuel electrode side may not be connected to the air electrode side and may be directly opened to the atmosphere by the opening valve 602, or a throttle may be used in combination. Alternatively, the fuel electrode side may be connected to the air electrode side, and the air electrode side may be closed by a shutoff valve without opening to the atmosphere. Furthermore, the example in which the position of the open valve 602 for connecting the fuel electrode side to the air electrode side is provided at the fuel electrode outlet of the fuel cell 100 has been described, but is separated by the shutoff valves 600 and 601 for shutting off the hydrogen separation membrane 106. Any location of the hydrogen circulation system HLP may be used, and the air electrode side to be connected may be anywhere as long as it is spatially connected to the air electrode of the fuel cell 100.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の構成を示すブロッ
ク図。
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.

【図2】上記の実施の形態のシステム停止時の動作のシ
ーケンス図。
FIG. 2 is a sequence diagram of an operation when the system is stopped according to the embodiment.

【図3】本発明の第2の実施の形態の構成を示すブロッ
ク図。
FIG. 3 is a block diagram showing a configuration according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態の構成を示すブロッ
ク図。
FIG. 4 is a block diagram showing a configuration according to a third embodiment of the present invention.

【図5】従来例の構成を示すブロック図。FIG. 5 is a block diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

100 燃料電池 101 改質器 105 水素分離器 106 水素分離膜 108 燃焼器 109 蒸発器 400 放電抵抗回路 401 バッテリ 402 電力調整器 410 遮断弁 411 遮断弁 501 遮断弁 502 遮断弁 600 遮断弁 601 遮断弁 602 開放弁 REFERENCE SIGNS LIST 100 fuel cell 101 reformer 105 hydrogen separator 106 hydrogen separation membrane 108 combustor 109 evaporator 400 discharge resistance circuit 401 battery 402 power regulator 410 shutoff valve 411 shutoff valve 501 shutoff valve 502 shutoff valve 600 shutoff valve 601 shutoff valve 602 Release valve

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃料を改質して水素リッチなガスを生成
する改質器と、 前記改質器によって生成した水素リッチなガスから水素
を分離する水素分離器と、 前記水素分離器で分離された水素と酸素を含むガスとを
用いて発電する燃料電池と、 前記燃料電池によって発電された電力を貯蔵するバッテ
リと、 前記燃料電池によって発電された電力と前記バッテリに
貯蔵されている電力を制御する電力制御器と、 前記水素分離器と前記燃料電池とから構成される水素循
環系の循環ポンプと、 当該システム停止時に、前記水素循環系に水蒸気を循環
させながら当該水素循環系内の残留水素による発電を行
った後、当該水素循環系に水蒸気を循環させながら前記
バッテリから前記燃料電池に電圧を印加して当該水素循
環系の残留水素を前記燃料電池の燃料極側から空気極側
に電気化学的に輸送することにより、前記水素循環系内
の残留水素濃度を低減する残留水素パージ手段を備えて
成る移動体用燃料電池システム。
A reformer configured to reform a fuel to generate a hydrogen-rich gas; a hydrogen separator configured to separate hydrogen from the hydrogen-rich gas generated by the reformer; A fuel cell that generates power using the gas containing hydrogen and oxygen, a battery that stores power generated by the fuel cell, and a power that is generated by the fuel cell and a power stored in the battery. A power controller for controlling; a circulating pump for a hydrogen circulating system including the hydrogen separator and the fuel cell; and, when the system is stopped, remaining water in the hydrogen circulating system while circulating steam in the hydrogen circulating system. After performing power generation with hydrogen, a voltage is applied from the battery to the fuel cell while circulating water vapor through the hydrogen circulation system, and residual hydrogen in the hydrogen circulation system is discharged from the fuel cell. A fuel cell system for a moving body, comprising: a residual hydrogen purging means for reducing a residual hydrogen concentration in the hydrogen circulating system by electrochemically transporting the residual hydrogen from the cathode side to the air electrode side.
【請求項2】 前記残留水素パージ手段は、前記残留水
素による発電電力を前記バッテリに充電することを特徴
とする請求項1に記載の移動体用燃料電池システム。
2. The mobile fuel cell system according to claim 1, wherein the residual hydrogen purging unit charges the battery with electric power generated by the residual hydrogen.
【請求項3】 余剰電力を放電する放電抵抗回路を備
え、前記残留水素パージ手段は、前記残留水素による発
電電力を前記放電抵抗回路に放電することを特徴とする
請求項1に記載の移動体用燃料電池システム。
3. The moving body according to claim 1, further comprising a discharge resistor circuit for discharging surplus power, wherein said residual hydrogen purging means discharges the power generated by said residual hydrogen to said discharge resistor circuit. For fuel cell system.
【請求項4】 余剰電力を放電する放電抵抗回路を備
え、前記残留水素パージ手段は、前記バッテリの充電状
態に応じて、前記残留水素による発電電力の当該バッテ
リへの充電と前記放電抵抗回路への放電とを切り替える
ことを特徴とする請求項1に記載の移動体用燃料電池シ
ステム。
4. A discharge resistor circuit for discharging surplus power, wherein the residual hydrogen purging means charges the battery with the generated power by the residual hydrogen and charges the discharge resistor circuit according to a charge state of the battery. The fuel cell system for a mobile body according to claim 1, wherein the fuel cell system switches between the discharging and the discharging.
【請求項5】 前記残留水素パージ手段は、前記バッテ
リから前記燃料電池に電圧を印加させ、水素の電気化学
的輸送を一定時間行うことを特徴とする請求項1に記載
の移動体用燃料電池システム。
5. The fuel cell according to claim 1, wherein the residual hydrogen purging unit applies a voltage from the battery to the fuel cell to perform electrochemical transport of hydrogen for a predetermined time. system.
【請求項6】 前記残留水素パージ手段は、前記燃料電
池の電流電圧特性から前記水素循環系の残留水素濃度が
所望の濃度以下になったことを判断したときに、前記バ
ッテリから前記燃料電池への電圧印加を停止し、水素の
電気化学的輸送を停止することを特徴とする請求項1又
は5に記載の移動体用燃料電池システム。
6. The fuel cell system according to claim 6, wherein the residual hydrogen purging means is configured to switch the battery from the fuel cell to the fuel cell when it is determined from the current-voltage characteristics of the fuel cell that the residual hydrogen concentration in the hydrogen circulation system has become lower than a desired concentration. 6. The fuel cell system for a mobile body according to claim 1, wherein the application of the voltage is stopped to stop the electrochemical transport of hydrogen.
【請求項7】 前記空気極の入口側及び出口側それぞれ
に遮断手段を備え、前記残留水素パージ手段は、前記水
素循環系の残留水素濃度を低減させた後、前記燃料電池
の空気極を水蒸気でパージし、しかる後に前記空気極の
入口側並びに出口側を前記遮断手段により遮断すること
を特徴とする請求項1〜6のいずれかに記載の移動体用
燃料電池システム。
7. A fuel cell system further comprising: shutoff means on each of an inlet side and an outlet side of the air electrode, wherein the residual hydrogen purging means reduces the residual hydrogen concentration in the hydrogen circulating system, and then causes the air electrode of the fuel cell to emit steam. 7. The fuel cell system for a mobile body according to claim 1, wherein the air electrode is purged, and then the inlet and outlet sides of the air electrode are shut off by the shut-off means.
【請求項8】 前記水素分離器の入口側並びに出口側を
遮断する遮断手段と、前記燃料電池の燃料極側を大気開
放する開放手段とを備え、前記残留水素パージ手段は、
前記水素循環系の残留水素の電気化学的輸送が終了した
後、前記水素循環系の前記水素分離器の入口側並びに出
口側を前記遮断手段により遮断し、前記燃料電池の燃料
極を前記大気開放手段により大気開放することを特徴と
する請求項1に記載の移動体用燃料電池システム。
8. A fuel cell system comprising: a shutoff unit that shuts off an inlet side and an outlet side of the hydrogen separator; and an opening unit that opens a fuel electrode side of the fuel cell to the atmosphere.
After the electrochemical transport of the residual hydrogen in the hydrogen circulation system is completed, the inlet side and the outlet side of the hydrogen separator of the hydrogen circulation system are shut off by the shut-off means, and the fuel electrode of the fuel cell is opened to the atmosphere. 2. The fuel cell system for a mobile body according to claim 1, wherein the fuel cell system is opened to the atmosphere by means.
【請求項9】 前記水素分離器の改質ガス側の入口側及
び出口側を遮断する遮断手段を備え、前記残留水素パー
ジ手段は、当該システムの停止時に前記遮断手段により
前記水素分離器の改質ガス側の入口側並びに出口側を遮
断することを特徴とする請求項1〜8のいずれかに記載
の移動体用燃料電池システム。
9. A shutoff means for shutting off an inlet side and an outlet side on the reformed gas side of the hydrogen separator, wherein the residual hydrogen purging means is provided with a means for changing the hydrogen separator by the shutoff means when the system is stopped. The fuel cell system for a mobile body according to any one of claims 1 to 8, wherein the inlet side and the outlet side of the raw gas side are shut off.
【請求項10】 前記残留水素パージ手段は、前記水素
分離器の改質ガス側の入口側並びに出口側を遮断する前
に、前記水素分離器の改質ガス側を水蒸気でパージする
ことを特徴とする請求項9に記載の移動体用燃料電池シ
ステム。
10. The apparatus according to claim 1, wherein the residual hydrogen purging means purges the reformed gas side of the hydrogen separator with steam before shutting off an inlet side and an outlet side of the hydrogen separator on the reformed gas side. The fuel cell system for a mobile body according to claim 9, wherein
JP2000038405A 2000-02-16 2000-02-16 Mobile fuel cell system Expired - Fee Related JP3928319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038405A JP3928319B2 (en) 2000-02-16 2000-02-16 Mobile fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038405A JP3928319B2 (en) 2000-02-16 2000-02-16 Mobile fuel cell system

Publications (2)

Publication Number Publication Date
JP2001229951A true JP2001229951A (en) 2001-08-24
JP3928319B2 JP3928319B2 (en) 2007-06-13

Family

ID=18562146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038405A Expired - Fee Related JP3928319B2 (en) 2000-02-16 2000-02-16 Mobile fuel cell system

Country Status (1)

Country Link
JP (1) JP3928319B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896982B2 (en) 2002-05-30 2005-05-24 Ballard Power Systems Inc. Conditioning method for fuel cells
JP2005228481A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Fuel cell
WO2005078844A1 (en) * 2004-02-12 2005-08-25 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for removing residual fuel gas
JP2007073241A (en) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd Fuel cell system and its operation method
JP2007073325A (en) * 2005-09-07 2007-03-22 Honda Motor Co Ltd Fuel cell system and method of controlling discharge power therein
JPWO2005043663A1 (en) * 2003-11-04 2007-05-10 トヨタ自動車株式会社 Fuel cell system and moving body
JP5073737B2 (en) * 2007-03-16 2012-11-14 日立マクセルエナジー株式会社 Fuel cell power generation system
US8542026B2 (en) 2009-05-08 2013-09-24 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating fuel-cell hydrogen concentration and fuel cell system
JP5429163B2 (en) * 2009-05-20 2014-02-26 トヨタ自動車株式会社 Fuel cell system
JP2016091644A (en) * 2014-10-30 2016-05-23 三菱日立パワーシステムズ株式会社 Composite power generation system, and controller, method, and program for the same
CN113506898A (en) * 2021-09-09 2021-10-15 潍柴动力股份有限公司 Safety protection maintenance device and method for hydrogen fuel cell engine
JP2022073358A (en) * 2020-10-30 2022-05-17 三菱重工業株式会社 Fuel cell power generation system and control method of fuel cell power generation system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896982B2 (en) 2002-05-30 2005-05-24 Ballard Power Systems Inc. Conditioning method for fuel cells
JP5109255B2 (en) * 2003-11-04 2012-12-26 トヨタ自動車株式会社 Power supply system, moving body, and fuel cell system stopping method
JPWO2005043663A1 (en) * 2003-11-04 2007-05-10 トヨタ自動車株式会社 Fuel cell system and moving body
JP2005228481A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Fuel cell
WO2005078844A1 (en) * 2004-02-12 2005-08-25 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for removing residual fuel gas
JPWO2005078844A1 (en) * 2004-02-12 2007-08-02 トヨタ自動車株式会社 Fuel cell system and method for removing residual fuel gas
JP2007073241A (en) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd Fuel cell system and its operation method
JP2007073325A (en) * 2005-09-07 2007-03-22 Honda Motor Co Ltd Fuel cell system and method of controlling discharge power therein
JP5073737B2 (en) * 2007-03-16 2012-11-14 日立マクセルエナジー株式会社 Fuel cell power generation system
US8542026B2 (en) 2009-05-08 2013-09-24 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating fuel-cell hydrogen concentration and fuel cell system
JP5338903B2 (en) * 2009-05-08 2013-11-13 トヨタ自動車株式会社 Fuel cell hydrogen concentration estimation device, fuel cell system
JP5429163B2 (en) * 2009-05-20 2014-02-26 トヨタ自動車株式会社 Fuel cell system
JP2016091644A (en) * 2014-10-30 2016-05-23 三菱日立パワーシステムズ株式会社 Composite power generation system, and controller, method, and program for the same
JP2022073358A (en) * 2020-10-30 2022-05-17 三菱重工業株式会社 Fuel cell power generation system and control method of fuel cell power generation system
CN113506898A (en) * 2021-09-09 2021-10-15 潍柴动力股份有限公司 Safety protection maintenance device and method for hydrogen fuel cell engine
CN113506898B (en) * 2021-09-09 2021-12-21 潍柴动力股份有限公司 Safety protection maintenance device and method for hydrogen fuel cell engine

Also Published As

Publication number Publication date
JP3928319B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
KR100856016B1 (en) A method for retaining a power generation-suspended state of a fuel cell power generation system, a computer-readable medium recorded with a program for retaining a power generation-suspended state of a fuel cell power generation system, and a fuel cell power generation system
JP4644064B2 (en) Fuel cell system
US9093679B2 (en) Method of shutting down fuel cell system
US6800387B2 (en) Fuel cell system and method for operating the same
JP5512101B2 (en) Method for shutting down a fuel cell supplied with pure oxygen
KR100456300B1 (en) Fuel cell vehicle
CN101325263A (en) Recovery of inert gas from a fuel cell exhaust stream
JP2013191430A (en) Fuel cell system
JP2007323954A (en) Fuel cell system, and control method thereof
JP4742444B2 (en) Fuel cell device
JP2001229951A (en) Fuel-cell system for moving object
JP2001243961A (en) Fuel cell system
JP2004253220A (en) Control device of fuel cell vehicle
GB2268322A (en) A hydrocarbon fuelled fuel cell power system
JP2007323959A (en) Fuel cell system
JP5098191B2 (en) Fuel cell system
JP2008181768A (en) Fuel cell system
JP2004039552A (en) Fuel cell power generation system and its operation method
JP2013232407A (en) Fuel cell system and fuel cell system purge control method
JP4564347B2 (en) Fuel cell system
JP5485930B2 (en) Control method of fuel cell system
JPH11339820A (en) Hybrid fuel cell system
JP2000277138A (en) Fuel cell power generating system
JP5480086B2 (en) Method for stopping operation of fuel cell system
JP2005293959A (en) Hydrogen gas manufacturing power generation system and its operation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees