JP2004039552A - Fuel cell power generation system and its operation method - Google Patents

Fuel cell power generation system and its operation method Download PDF

Info

Publication number
JP2004039552A
JP2004039552A JP2002197595A JP2002197595A JP2004039552A JP 2004039552 A JP2004039552 A JP 2004039552A JP 2002197595 A JP2002197595 A JP 2002197595A JP 2002197595 A JP2002197595 A JP 2002197595A JP 2004039552 A JP2004039552 A JP 2004039552A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
power generation
purge gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002197595A
Other languages
Japanese (ja)
Other versions
JP3978778B2 (en
Inventor
Masaharu Hatano
秦野 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002197595A priority Critical patent/JP3978778B2/en
Publication of JP2004039552A publication Critical patent/JP2004039552A/en
Application granted granted Critical
Publication of JP3978778B2 publication Critical patent/JP3978778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system and its operation method, which uses unreformed fuel as fuel gas and controls carbon deposition on a fuel electrode without setting an inert gas tank for purge gas. <P>SOLUTION: When a power generation is processed using unreformed fuel and air at a fuel cell stack 9, the fuel cell power generation system can supply purge gas to a fuel electrode through a purge gas generating equipment 7 by having one or more pair of cell elements for the fuel cell stack 9, adjusting an amount of unmodified fuel by a fuel supplying means, adjusting an amount of air by an air supplying means and switching a supplying path. The unreformed fuel is directly supplied to the fuel cell electrode side when power generation is continued, and, while the power generation is stopped or the temperature of the fuel cell stack is decreased , the supply flow path is switched to supply unreformed fuel and air to the fuel cell electrode side as purge gas in the operation method of the fuel cell power generation system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電システム及びその運転方法に係り、特に固体酸化物型燃料電池(SOFC)又は溶融炭酸塩型燃料電池(MCFC)において、炭化水素系燃料を改質器を用いないで燃料極に直接供給して発電を行う燃料電池発電システム及びその運転方法に関する。
【0002】
【従来の技術】
固体酸化物型燃料電池(SOFC)又は溶融炭酸塩型燃料電池(MCFC)は、作動温度が高温であり、外部改質器無しに燃料を発電スタックに供給して、発電可能な燃料電池である。
これらのタイプの燃料電池では、発電セルの燃料極上に炭素析出が起こり、出力が低下することがあるが、例えば、特開平07−029574号公報や特開平05−067472号公報には、運転条件(作動温度、水蒸気濃度等)を炭素析出の起こりにくい条件に設定すること、又は燃料極の組成・構成を工夫することにより、炭素析出を回避・抑制することが提案されている。
【0003】
しかし、発電停止時においては、発電時に空気極側から燃料極側に供給されていた酸化性のイオン(SOFCの場合は酸素イオン、MCFCの場合は炭酸イオン)が遮断されるために、燃料極上での酸化反応が停止する。例えば、SOFCでは燃料極上に析出した炭素が以下の式1、
C+2O2−→CO+2e …(1)
で表される酸化反応によって除去されなくなり、燃料極上に炭素が析出することがある。
【0004】
このように、燃料極上に炭素が析出した状態では、その後に発電再開しても十分な性能を発揮できない恐れがある。
かかる問題を回避するために、発電停止時に、発電スタックの燃料極側を窒素等の不活性ガスでパージする装置を設けることが提案されている(例えば、田川博章著「固体酸化物燃料電池と地球環境」アグネ承風社、p283)。
【0005】
【発明が解決しようとする課題】
しかしながら、上記発電システムを自動車のような移動体に積載する場合には、不活性ガスを貯める高圧タンクなどを同時に積載するため、大きなスペースが必要となり、自動車の積載性が犠牲となるという問題点がある。また、不活性ガスを定期的に充填しなければならず、利便性が大きく損なわれるという問題点もある。
【0006】
また、発電停止中には、通常燃料電池スタックにガスを流通させないこととなるが、発電を停止した状態で燃料電池スタックを長時間保持しておくと、燃料極側に微量の空気が漏れこみ、燃料極が酸化して性能が劣化する恐れがある。
【0007】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、燃料ガスとして未改質燃料を用い、パージガス用の不活性ガスタンクを設置せずに燃料極上への炭素析出を抑制し得る燃料電池発電システム及びその運転方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、未改質燃料及び空気をパージガス生成器を用いてパージガスに変換することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0009】
【発明の実施の形態】
以下、本発明の燃料電池発電システムについて詳細に説明する。なお、本明細書において「%」は、特記しない限り質量百分率を示す。
【0010】
本発明の燃料電池発電システムは、燃料電池スタックと、該燃料電池スタックに未改質燃料を供給する燃料供給手段及び空気を供給する空気供給手段とを有して成る。
また、上記燃料電池スタックは、燃料極、空気極及び電解質から成る電池要素を1組以上備えて成る。特に2組以上備える場合は、各電池要素は積層構造に限定されず、互いに独立させて設置した電池要素を接続体により電気的に接続することもできる。
更に、上記燃料供給手段は、例えば、燃料供給装置、燃料供給配管及びバルブなどから成り、装置未改質燃料量を調節して燃料電池スタック内の燃料極へ供給する。上記空気供給手段は、例えば、空気供給装置、空気供給配管及びバルブなどから成り、空気量を調節して燃料電池スタック内の空気極へ供給する。
【0011】
また、本発明の燃料電池発電システムでは、供給流路を切換えることにより、上記燃料供給手段及び空気供給手段が燃料電池スタック内の燃料極へパージガスを供給し得るように、パージガス生成器を配設する。
図1に示すように、燃料供給手段側では、例えば、燃料供給装置1と燃料極側ガス入口17とを接続する供給配管12に並列させた供給配管13にパージガス生成器7を設け、更にバルブ3及び4を設けることができる。また、空気供給手段側では、例えば、空気供給装置2と空気極側ガス入口18との間のいずれかの位置に供給配管15を設けてパージガス生成器7と接続し、更にバルブ5及び8を設けることができる。
【0012】
このような構成により、本発明の燃料電池発電システムでは、従来のように改質処理を施した燃料ガス(場合によっては水蒸気)を燃料電池スタックへ供給する必要がなくなり、未改質燃料を直接用いて発電し得る。
かかる未改質燃料としては、例えばガソリン、軽油、メタノール、エタノール及びプロパンガスなどを用いることができる。
【0013】
上記パージガス生成器では、未改質燃料と空気との部分酸化反応によって一酸化炭素と水素が生成される。かかる部分酸化反応は、生成器中の気相反応によっても進行し、この場合は反応を促進するための触媒を生成器中に備えることが好適である。触媒としては、各種遷移金属(Fe、Ni、Co、Pt、Pd、Rh及びRuなど)を高比表面積を持つ担体(アルミナ、シリカ及びシリカアルミナなど)に担持した触媒が挙げられる。
なお、後述するようにパージガスは、主に一酸化炭素及び/又は水素から成る。また、微量のHOや未反応のガソリンなどが含まれることがあるが、所望の炭素析出の起こらないパージガス生成が行える限りは差し支えない。
【0014】
また、燃料電池スタックの燃料極側の排気流路上に、排ガス処理反応器を配設することが好適である。この場合、排ガス処理反応器は完全酸化触媒を備えることが望ましい。例えば、燃焼触媒として各種遷移金属(Co、Cr、Pt及びPdなど)を高比表面積を持つ担体(アルミナ、シリカ及びシリカアルミナなど)に担持した触媒が挙げられる。また、排ガス処理反応器に空気供給手段側から排気流路を接続し、必要に応じて空気を流入できることが望ましい。
【0015】
次に、本発明の燃料電池発電システムの運転方法について、詳細に説明する。かかる運転方法は、上述した燃料電池発電システムを用い、燃料極側に供給するガス成分を発電時と析出した炭素の除去時とで変更することを特徴とする。
即ち、発電を継続するときは、未改質燃料を燃料電池スタック内の燃料極側に直接供給する。そして、発電を停止するとき又は燃料電池スタックの温度が低下したとき(出力が低下したとき)は、供給流路を切換え、未改質燃料及び空気をパージガス生成器に通じ、得られたパージガスを燃料電池スタック内の燃料極側に供給する。
これより、本発明の燃料電池発電システムは、従来のシステムと比較すると、燃料電池スタックの空気極側には同様に空気を供給するが、燃料極側に改質処理された燃料ガス(場合によっては水蒸気)を供給せずに発電できるので有効である。
【0016】
具体的には、例えば図1に示す燃料電池発電システムにおいては、まず、通常の発電時には、未改質燃料を燃料電池スタック9の燃料極側ガス入口17に発電用燃料供給配管12を介して直接供給することによって発電を行う。
また、発電を停止するとき又は燃料電池スタックの温度が低下したときは、燃料極上では、以下の式2、
=nC+m/2H …(2)
で表される炭素析出反応が起こってしまうため、炭素を除去する必要性が生じる。
【0017】
燃料極側にパージガスを供給するには、まず、発電用燃料供給配管12に設けたバルブ4を閉め、パージガス生成用燃料供給配管13に設けたバルブ3を開いて、未改質燃料をパージガス生成器7に送り込む。これとほぼ同時に、発電用空気供給配管14に設けたバルブ8及びパージガス生成用空気供給配管15に設けたバルブ5を調整し、空気極側ガス入口18に供給している空気の一部又は全部を、パージガス生成器7に送り込む。
このとき、パージガス生成器7では、以下の式3、
+n/2O→nCO+m/2H …(3)
で表される部分酸化反応が進行し、主に一酸化炭素及び/又は水素から成るパージガスが生成する。このパージガスを燃料電池スタックの燃料極側に供給することによって、燃料極上で上記炭素析出反応が起こらなくなる。
【0018】
また、上記パージガスは還元性であるため燃料極が酸化しにくく、燃料極を劣化させることがない。例えば、SOFCの場合は、燃料極の主要材料としてニッケルが用いられるが、そのニッケルは以下の式4、
Ni+1/2O→NiO …(4)
で表される反応によって酸化され、性能が劣化することが知られているが、上記パージガスを用いる限り燃料極を酸化させて劣化させることがない。
【0019】
更に、上記パージガスを使用するときは、燃料電池スタック内且つ燃料極近傍に一定期間封入することが好適である。即ち、燃料電池スタック燃料極側にパージした後、パージガスを燃料極側に滞留させることにより、長時間放置して微量の空気が漏れこんだときでも、還元性ガスの存在により燃料極は酸化されることがなく、次の発電開始時まで高い性能を保持することができる。
【0020】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0021】
(実施例1)
本発明の燃料電池発電システムの一例を図1に示す。
このシステムでは、発電時は、燃料が、燃料供給装置1から発電用燃料供給バルブ4、発電用燃料供給配管12を通じて、燃料極側ガス入口17から燃料電池スタック9に供給される。また、空気が、空気供給装置2から発電用空気供給バルブ8、発電用空気供給配管14を通じて、空気極側ガス入口18から燃料電池スタック9に供給される。
【0022】
また、燃料極側の排出ガスは燃料極側ガス排出バルブ10を通じて排出ガス処理反応器11に送り込まれる。排出ガス処理反応器11には、排出ガス処理用空気供給バルブ6と排出ガス処理用空気供給配管16を通じて空気が供給され、排出ガス処理反応器内では燃焼触媒によって燃料極側排ガスが完全に酸化されてCO及びHOとして外部に排出される。
【0023】
一方、発電を停止した場合は、発電用燃料供給バルブ4以降への燃料の供給が停止され、パージガス生成用燃料供給バルブ3、パージガス生成用燃料供給配管13を通じてパージガス生成器7に燃料が供給される。同時に、発電用空気供給バルブ8以降へ空気の供給は停止され、パージガス生成用空気供給バルブ5、パージガス生成用空気供給配管15を通じてパージガス生成器7に供給される。
【0024】
パージガス生成器7中で生成したパージガスは、燃料極側ガス入口17から燃料電池スタック9に供給される。このとき、排ガス処理用空気の供給を続けることによって、排ガス処理反応器内での燃料極側排出ガスの浄化が継続される。
なお、本実施例の構成図に加えて、システム制御のための各種センサー、熱交換器などの付加装置を適宜設けることができる。
【0025】
(実施例2)
図2に示す燃料電池発電システムは、パージガス生成器を燃料電池スタック内部に配置した以外は、実施例1と同様の構成を有する燃料電池発電システムである。システムの運転方法等は実施例1と同様である。
【0026】
(実施例3)
実施例1又は実施例2における操作終了後に燃料と空気の供給を完全に停止すると同時にパージガス生成用燃料供給バルブ3、発電用燃料供給バルブ4及び燃料極側排出ガスバルブ10を閉じ、燃料電池スタックの燃料極側にパージガスを閉じ込める。以上の操作を終了後、そのままシステムを保持する。
【0027】
【発明の効果】
以上説明したように、本発明によれば、未改質燃料及び空気をパージガス生成器を用いてパージガスに変換することとしたため、燃料ガスとして未改質燃料を用い、パージガス用の不活性ガスタンクを設置せずに燃料極上への炭素析出を抑制し得る燃料電池発電システム及びその運転方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池発電システムの一例を示す概略図である。
【図2】本発明の燃料電池発電システムの他の例を示す概略図である。
【符号の説明】
1  燃料供給装置
2  空気供給装置
3  パージガス生成用燃料供給バルブ
4  発電用燃料供給バルブ
5  パージガス生成用空気供給バルブ
6  排ガス処理用空気供給バルブ
7  パージガス生成器
8  発電用空気供給バルブ
9  燃料電池スタック
10  燃料極側排出ガスバルブ
11  排ガス処理反応器
12  発電用燃料供給配管
13  パージガス生成用燃料供給配管
14  発電用空気供給配管
15  パージガス生成用空気供給配管
16  排ガス処理用空気供給配管
17  燃料極側ガス入口1
17’ 燃料極側ガス入口2
18  空気極側ガス入口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell power generation system and a method of operating the fuel cell power generation system, and particularly to a method for converting a hydrocarbon-based fuel into a fuel without using a reformer in a solid oxide fuel cell (SOFC) or a molten carbonate fuel cell (MCFC). The present invention relates to a fuel cell power generation system that generates power by directly supplying power to a pole and an operation method thereof.
[0002]
[Prior art]
A solid oxide fuel cell (SOFC) or a molten carbonate fuel cell (MCFC) is a fuel cell that has a high operating temperature and can generate fuel by supplying fuel to a power generation stack without an external reformer. .
In these types of fuel cells, carbon deposition may occur on the fuel electrode of the power generation cell and the output may decrease. For example, JP-A-07-029574 and JP-A-05-0674772 disclose operating conditions. It has been proposed to set (operating temperature, water vapor concentration, etc.) to a condition in which carbon deposition is unlikely to occur, or to devise or suppress carbon deposition by devising the composition and configuration of the fuel electrode.
[0003]
However, when power generation is stopped, oxidizing ions (oxygen ions in the case of SOFC and carbonate ions in the case of MCFC) supplied from the air electrode side to the fuel electrode side during power generation are cut off. Oxidation reaction stops. For example, in SOFC, carbon deposited on the fuel electrode is expressed by the following formula 1,
C + 2O 2- → CO 2 + 2e (1)
May not be removed by the oxidation reaction represented by, and carbon may be deposited on the fuel electrode.
[0004]
As described above, in a state where carbon is deposited on the fuel electrode, sufficient performance may not be exhibited even if power generation is restarted thereafter.
In order to avoid such a problem, it has been proposed to provide a device for purging the fuel electrode side of the power generation stack with an inert gas such as nitrogen when power generation is stopped (for example, Hiroaki Tagawa, “Solid oxide fuel cell and Global Environment, Agne Shofusha, p. 283).
[0005]
[Problems to be solved by the invention]
However, when the above-mentioned power generation system is mounted on a moving body such as an automobile, a large space is required because a high-pressure tank or the like for storing an inert gas is also loaded at the same time, and the loadability of the automobile is sacrificed. There is. In addition, there is a problem that the inert gas must be periodically filled, and the convenience is greatly impaired.
[0006]
In addition, when power generation is stopped, gas is normally not circulated to the fuel cell stack.However, if the fuel cell stack is held for a long time with power generation stopped, a small amount of air leaks to the fuel electrode side. In addition, the fuel electrode may be oxidized to deteriorate the performance.
[0007]
The present invention has been made in view of such problems of the related art, and an object of the present invention is to use an unreformed fuel as a fuel gas and provide a fuel without installing an inert gas tank for a purge gas. It is an object of the present invention to provide a fuel cell power generation system capable of suppressing carbon deposition on the extreme and an operation method thereof.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by converting unreformed fuel and air into purge gas using a purge gas generator. It was completed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the fuel cell power generation system of the present invention will be described in detail. In this specification, “%” indicates mass percentage unless otherwise specified.
[0010]
The fuel cell power generation system of the present invention includes a fuel cell stack, fuel supply means for supplying unreformed fuel to the fuel cell stack, and air supply means for supplying air.
Further, the fuel cell stack includes one or more sets of cell elements including a fuel electrode, an air electrode, and an electrolyte. In particular, when two or more sets are provided, each battery element is not limited to a laminated structure, and battery elements installed independently of each other can be electrically connected by a connector.
Further, the fuel supply means includes, for example, a fuel supply device, a fuel supply pipe, a valve, and the like, and adjusts the amount of unreformed fuel to supply the fuel to the fuel electrode in the fuel cell stack. The air supply means includes, for example, an air supply device, an air supply pipe, and a valve, and adjusts the amount of air to supply the air to the air electrode in the fuel cell stack.
[0011]
Further, in the fuel cell power generation system of the present invention, a purge gas generator is provided such that the fuel supply means and the air supply means can supply a purge gas to the fuel electrode in the fuel cell stack by switching the supply flow path. I do.
As shown in FIG. 1, on the fuel supply means side, for example, a purge gas generator 7 is provided in a supply pipe 13 arranged in parallel with a supply pipe 12 connecting the fuel supply device 1 and the fuel electrode side gas inlet 17. 3 and 4 can be provided. Further, on the air supply means side, for example, a supply pipe 15 is provided at any position between the air supply device 2 and the air electrode side gas inlet 18 and connected to the purge gas generator 7, and the valves 5 and 8 are further connected. Can be provided.
[0012]
With such a configuration, in the fuel cell power generation system of the present invention, it is not necessary to supply the fuel gas (in some cases, steam) subjected to the reforming treatment to the fuel cell stack as in the related art. Can be used to generate electricity.
As such unreformed fuel, for example, gasoline, light oil, methanol, ethanol, propane gas and the like can be used.
[0013]
In the purge gas generator, carbon monoxide and hydrogen are generated by a partial oxidation reaction between unreformed fuel and air. Such a partial oxidation reaction also proceeds by a gas phase reaction in the generator, and in this case, it is preferable to provide a catalyst in the generator to promote the reaction. Examples of the catalyst include a catalyst in which various transition metals (Fe, Ni, Co, Pt, Pd, Rh, Ru, and the like) are supported on a carrier (alumina, silica, silica-alumina, and the like) having a high specific surface area.
Note that, as described later, the purge gas mainly includes carbon monoxide and / or hydrogen. In addition, a small amount of H 2 O, unreacted gasoline, or the like may be included. However, it is acceptable as long as desired purge gas generation without carbon deposition can be performed.
[0014]
Further, it is preferable to dispose an exhaust gas treatment reactor on the exhaust flow path on the fuel electrode side of the fuel cell stack. In this case, the exhaust gas treatment reactor desirably includes a complete oxidation catalyst. For example, a catalyst in which various transition metals (such as Co, Cr, Pt, and Pd) are supported on a carrier having a high specific surface area (such as alumina, silica, and silica-alumina) is used as the combustion catalyst. Further, it is desirable that an exhaust passage is connected to the exhaust gas treatment reactor from the air supply means side so that air can flow in as needed.
[0015]
Next, an operation method of the fuel cell power generation system of the present invention will be described in detail. Such an operation method is characterized in that the above-described fuel cell power generation system is used, and the gas component supplied to the fuel electrode is changed between power generation and removal of precipitated carbon.
That is, when power generation is continued, the unreformed fuel is directly supplied to the fuel electrode side in the fuel cell stack. When the power generation is stopped or when the temperature of the fuel cell stack decreases (when the output decreases), the supply flow path is switched, the unreformed fuel and air are passed through the purge gas generator, and the obtained purge gas is discharged. The fuel is supplied to the fuel electrode side in the fuel cell stack.
Thus, the fuel cell power generation system of the present invention supplies air to the air electrode side of the fuel cell stack similarly to the conventional system, but the reformed fuel gas (in some cases) is supplied to the fuel electrode side. Is effective because power can be generated without supplying steam.
[0016]
Specifically, for example, in the fuel cell power generation system shown in FIG. 1, first, during normal power generation, unreformed fuel is supplied to the fuel electrode side gas inlet 17 of the fuel cell stack 9 via the fuel supply pipe 12 for power generation. Generate electricity by supplying directly.
When the power generation is stopped or when the temperature of the fuel cell stack decreases, the following equation (2) is obtained on the fuel electrode.
C n H m = nC + m / 2H 2 (2)
Since the carbon precipitation reaction represented by the formula (1) occurs, it becomes necessary to remove carbon.
[0017]
In order to supply the purge gas to the fuel electrode side, first, the valve 4 provided in the fuel supply pipe 12 for power generation is closed, and the valve 3 provided in the fuel supply pipe 13 for generation of purge gas is opened, so that the unreformed fuel is purged. To the vessel 7. Almost at the same time, the valve 8 provided in the power supply air supply pipe 14 and the valve 5 provided in the purge gas generation air supply pipe 15 were adjusted, and a part or all of the air supplied to the air electrode side gas inlet 18 was adjusted. Is sent to the purge gas generator 7.
At this time, in the purge gas generator 7, the following equation 3,
C n H m + n / 2O 2 → nCO + m / 2H 2 (3)
The partial oxidation reaction represented by the formula (1) proceeds, and a purge gas mainly composed of carbon monoxide and / or hydrogen is generated. By supplying this purge gas to the fuel electrode side of the fuel cell stack, the carbon deposition reaction does not occur on the fuel electrode.
[0018]
Further, since the purge gas is reducing, the fuel electrode is not easily oxidized and does not deteriorate the fuel electrode. For example, in the case of an SOFC, nickel is used as a main material of the fuel electrode.
Ni + 1 / 2O 2 → NiO (4)
It is known that the fuel cell is oxidized by the reaction represented by the formula and the performance is deteriorated. However, as long as the purge gas is used, the fuel electrode is not oxidized and deteriorated.
[0019]
Further, when the above-mentioned purge gas is used, it is preferable that the purge gas is sealed in the fuel cell stack and near the fuel electrode for a certain period. That is, after purging the fuel electrode side of the fuel cell stack, the purge gas is retained on the fuel electrode side, so that even when a small amount of air leaks after being left for a long time, the fuel electrode is oxidized by the presence of the reducing gas. High performance can be maintained until the next power generation start.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0021]
(Example 1)
FIG. 1 shows an example of the fuel cell power generation system of the present invention.
In this system, during power generation, fuel is supplied from the fuel supply device 1 to the fuel cell stack 9 from the fuel electrode side gas inlet 17 through the power generation fuel supply valve 4 and the power generation fuel supply pipe 12. Further, air is supplied from the air supply device 2 to the fuel cell stack 9 from the air electrode side gas inlet 18 through the power generation air supply valve 8 and the power generation air supply pipe 14.
[0022]
Further, the exhaust gas on the fuel electrode side is sent to the exhaust gas treatment reactor 11 through the fuel electrode side gas discharge valve 10. Air is supplied to the exhaust gas treatment reactor 11 through an exhaust gas treatment air supply valve 6 and an exhaust gas treatment air supply pipe 16, and in the exhaust gas treatment reactor, the fuel electrode side exhaust gas is completely oxidized by a combustion catalyst. Then, it is discharged to the outside as CO 2 and H 2 O.
[0023]
On the other hand, when the power generation is stopped, the supply of fuel to the power supply fuel supply valve 4 and thereafter is stopped, and the fuel is supplied to the purge gas generator 7 through the purge gas generation fuel supply valve 3 and the purge gas generation fuel supply pipe 13. You. At the same time, the supply of air to the power supply air supply valve 8 and thereafter is stopped, and the air is supplied to the purge gas generator 7 through the purge gas generation air supply valve 5 and the purge gas generation air supply pipe 15.
[0024]
The purge gas generated in the purge gas generator 7 is supplied to the fuel cell stack 9 from the fuel electrode side gas inlet 17. At this time, the purification of the fuel electrode side exhaust gas in the exhaust gas treatment reactor is continued by continuously supplying the exhaust gas treatment air.
Note that, in addition to the configuration diagram of the present embodiment, additional devices such as various sensors for controlling the system and a heat exchanger can be appropriately provided.
[0025]
(Example 2)
The fuel cell power generation system shown in FIG. 2 is a fuel cell power generation system having the same configuration as that of the first embodiment except that a purge gas generator is disposed inside the fuel cell stack. The operation method of the system is the same as that of the first embodiment.
[0026]
(Example 3)
After the operation in Example 1 or Example 2 is completed, the supply of fuel and air is completely stopped, and at the same time, the fuel supply valve 3 for generating purge gas, the fuel supply valve 4 for generating electricity, and the fuel electrode side exhaust gas valve 10 are closed, and the fuel cell stack is closed. The purge gas is trapped on the fuel electrode side. After the above operation is completed, the system is kept as it is.
[0027]
【The invention's effect】
As described above, according to the present invention, since the unreformed fuel and air are converted to the purge gas using the purge gas generator, the unreformed fuel is used as the fuel gas, and the inert gas tank for the purge gas is used. A fuel cell power generation system capable of suppressing carbon deposition on a fuel electrode without installation and a method of operating the fuel cell power generation system can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a fuel cell power generation system according to the present invention.
FIG. 2 is a schematic diagram showing another example of the fuel cell power generation system of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel supply device 2 air supply device 3 purge gas generation fuel supply valve 4 power generation fuel supply valve 5 purge gas generation air supply valve 6 exhaust gas treatment air supply valve 7 purge gas generator 8 power generation air supply valve 9 fuel cell stack 10 Fuel electrode side exhaust gas valve 11 Exhaust gas treatment reactor 12 Power supply fuel supply pipe 13 Purge gas generation fuel supply pipe 14 Power generation air supply pipe 15 Purge gas generation air supply pipe 16 Exhaust gas treatment air supply pipe 17 Fuel electrode side gas inlet 1
17 'Fuel electrode side gas inlet 2
18 Air electrode side gas inlet

Claims (5)

燃料供給手段から供給する未改質燃料と空気供給手段から供給する空気とを用いて燃料電池スタックで発電を行う燃料電池発電システムであって、
該燃料電池スタックは燃料極、空気極及び電解質から成る電池要素を少なくとも1組以上有し、
該燃料供給手段は燃料極へ供給する未改質燃料量を調節し、該空気供給手段は空気極へ供給する空気量を調節し、
供給流路を切換えることにより、上記燃料供給手段及び空気供給手段がパージガス生成器を介して、燃料電池スタック内の燃料極へパージガスを供給し得ることを特徴とする燃料電池発電システム。
A fuel cell power generation system that performs power generation in a fuel cell stack using unreformed fuel supplied from a fuel supply unit and air supplied from an air supply unit,
The fuel cell stack has at least one or more sets of cell elements including a fuel electrode, an air electrode, and an electrolyte,
The fuel supply means adjusts the amount of unreformed fuel supplied to the anode; the air supply means regulates the amount of air supplied to the cathode;
A fuel cell power generation system characterized in that the fuel supply means and the air supply means can supply a purge gas to a fuel electrode in a fuel cell stack via a purge gas generator by switching a supply flow path.
上記パージガス生成器が上記燃料電池スタック内に配設されて成ることを特徴とする請求項1に記載の燃料電池発電システム。2. The fuel cell power generation system according to claim 1, wherein the purge gas generator is provided in the fuel cell stack. 上記燃料電池スタックの燃料極側の排気流路上に排ガス処理反応器が配設されて成ることを特徴とする請求項1又は2に記載の燃料電池発電システム。3. The fuel cell power generation system according to claim 1, wherein an exhaust gas treatment reactor is provided on an exhaust passage on a fuel electrode side of the fuel cell stack. 請求項1〜3記載のいずれか1つの項に記載の燃料電池発電システムの運転方法であって、
発電を継続するときは、未改質燃料を燃料電池スタック内の燃料極側に直接供給し、
発電を停止するとき又は燃料電池スタックの温度が低下したときは、供給流路を切換え、未改質燃料及び空気をパージガス生成器に通じ、得られたパージガスを燃料電池スタック内の燃料極側に供給することを特徴とする燃料電池発電システムの運転方法。
An operating method of the fuel cell power generation system according to any one of claims 1 to 3,
To continue power generation, supply unreformed fuel directly to the fuel electrode side in the fuel cell stack,
When power generation is stopped or when the temperature of the fuel cell stack decreases, the supply flow path is switched, the unreformed fuel and air are passed to the purge gas generator, and the obtained purge gas is supplied to the fuel electrode side in the fuel cell stack. A method for operating a fuel cell power generation system, characterized by supplying.
パージガスを燃料電池スタック内且つ燃料極近傍に一定期間封入することを特徴とする請求項4に記載の燃料電池発電システムの運転方法。The method according to claim 4, wherein the purge gas is sealed in the fuel cell stack and in the vicinity of the fuel electrode for a certain period.
JP2002197595A 2002-07-05 2002-07-05 Fuel cell power generation system and operation method thereof Expired - Lifetime JP3978778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197595A JP3978778B2 (en) 2002-07-05 2002-07-05 Fuel cell power generation system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197595A JP3978778B2 (en) 2002-07-05 2002-07-05 Fuel cell power generation system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004039552A true JP2004039552A (en) 2004-02-05
JP3978778B2 JP3978778B2 (en) 2007-09-19

Family

ID=31705323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197595A Expired - Lifetime JP3978778B2 (en) 2002-07-05 2002-07-05 Fuel cell power generation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP3978778B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347013A (en) * 2004-06-01 2005-12-15 Sumitomo Precision Prod Co Ltd Fuel cell
EP1716611A1 (en) * 2004-02-06 2006-11-02 Fuelcell Energy, Inc. Internal reforming fuel cell assembly with selectively adjustable direct and indirect internal reforming
WO2008099893A1 (en) * 2007-02-16 2008-08-21 Nippon Oil Corporation Reformer system, fuel cell system, and their operation method
JP2009283180A (en) * 2008-05-20 2009-12-03 Honda Motor Co Ltd Solid oxide fuel cell
KR100971745B1 (en) 2007-10-30 2010-07-21 삼성에스디아이 주식회사 Fuel Cell System and Operating Method thereof
JP2014089861A (en) * 2012-10-30 2014-05-15 Jx Nippon Oil & Energy Corp Fuel cell system
JP2017111922A (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system control method and fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1716611A1 (en) * 2004-02-06 2006-11-02 Fuelcell Energy, Inc. Internal reforming fuel cell assembly with selectively adjustable direct and indirect internal reforming
EP1716611A4 (en) * 2004-02-06 2011-03-02 Fuelcell Energy Inc Internal reforming fuel cell assembly with selectively adjustable direct and indirect internal reforming
JP2005347013A (en) * 2004-06-01 2005-12-15 Sumitomo Precision Prod Co Ltd Fuel cell
JP4705762B2 (en) * 2004-06-01 2011-06-22 住友精密工業株式会社 Fuel cell
WO2008099893A1 (en) * 2007-02-16 2008-08-21 Nippon Oil Corporation Reformer system, fuel cell system, and their operation method
JP2008204655A (en) * 2007-02-16 2008-09-04 Nippon Oil Corp Reformer system, fuel cell system, and its operation method
TWI473339B (en) * 2007-02-16 2015-02-11 Nippon Oil Corp A reformer system, a fuel cell system and a method of operation
KR100971745B1 (en) 2007-10-30 2010-07-21 삼성에스디아이 주식회사 Fuel Cell System and Operating Method thereof
US8173310B2 (en) 2007-10-30 2012-05-08 Samsung Sdi Co., Ltd. Fuel cell system and method for operating the same
JP2009283180A (en) * 2008-05-20 2009-12-03 Honda Motor Co Ltd Solid oxide fuel cell
JP2014089861A (en) * 2012-10-30 2014-05-15 Jx Nippon Oil & Energy Corp Fuel cell system
JP2017111922A (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Fuel cell system control method and fuel cell system

Also Published As

Publication number Publication date
JP3978778B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP2056384B1 (en) Fuel cell system and method for operating the same
JP2006012817A (en) Reformer for fuel cell and fuel cell system comprising the same
JP6291372B2 (en) Fuel cell system
JP2020105024A (en) Hydrogen generation system, and operation method
US20070148528A1 (en) Fuel cell generating system
JP2006351292A (en) Solid oxide fuel cell system and shutdown-method for the same
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP2004039552A (en) Fuel cell power generation system and its operation method
JP2017103218A (en) Solid oxide type fuel battery system
JP2001229951A (en) Fuel-cell system for moving object
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JP2007323959A (en) Fuel cell system
JP4507955B2 (en) Hydrogen generator and fuel cell system
JP4956226B2 (en) Method and program for stopping storage of fuel cell power generation system and fuel cell power generation system
JP2007165130A (en) Fuel cell system and control method of fuel cell system
EP3588646A1 (en) Fuel cell system
JP5366066B2 (en) Fuel cell power generation system and power generation start method thereof
JP2007073302A (en) Fuel reforming system
JP4620399B2 (en) Control method of fuel cell power generation system
JP4246053B2 (en) Starting method of fuel cell power generation system
KR101452069B1 (en) Pre-reformer for fuel cell
JP2016162635A (en) Solid oxide fuel cell system
JP2000277138A (en) Fuel cell power generating system
JP4467924B2 (en) Fuel cell power generation system
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070617

R150 Certificate of patent or registration of utility model

Ref document number: 3978778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term