JP2832371B2 - Organic solvent vapor recovery method - Google Patents
Organic solvent vapor recovery methodInfo
- Publication number
- JP2832371B2 JP2832371B2 JP19323989A JP19323989A JP2832371B2 JP 2832371 B2 JP2832371 B2 JP 2832371B2 JP 19323989 A JP19323989 A JP 19323989A JP 19323989 A JP19323989 A JP 19323989A JP 2832371 B2 JP2832371 B2 JP 2832371B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- organic solvent
- solvent vapor
- vapor
- membrane module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は有機溶剤蒸気を含む気体から、膜を用いて有
機溶剤を効率よく回収し、排出気体の溶剤濃度を極めて
低濃度にする方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for efficiently recovering an organic solvent from a gas containing an organic solvent vapor by using a membrane to make the solvent concentration of an exhaust gas extremely low. Things.
<従来の技術> 合成繊維、合成フィルム、プラスチック、印刷イン
ク、塗料等を製造又は使用する場合に発生する有機溶剤
蒸気を回収処理するのに、有機溶剤蒸気を含む空気を有
機蒸気に対し選択透過性を有する膜モジュールに通して
有機蒸気を優先的に通過させることにより膜モジュール
の透過側に有機蒸気に富んだ空気を形成させ、次に透過
側の有機溶剤蒸気濃縮気体を圧縮及び凝縮して有機蒸気
を液相にして回収し、凝縮されなかった非凝縮有機溶剤
蒸気含有気体を膜モジュールの供給側に戻すことが公知
である(特開昭61−42319号公報)。<Conventional technology> Air containing organic solvent vapor is selectively permeated to organic vapor for recovery processing of organic solvent vapor generated when manufacturing or using synthetic fibers, synthetic films, plastics, printing inks, paints, etc. The organic vapor is preferentially passed through the membrane module having a property, thereby forming air rich in organic vapor on the permeate side of the membrane module, and then compressing and condensing the organic solvent vapor concentrated gas on the permeate side. It is known that an organic vapor is recovered in a liquid phase, and a non-condensed organic solvent vapor-containing gas that has not been condensed is returned to the supply side of the membrane module (JP-A-61-42319).
<発明が解決しようとする課題> しかしながら、この方法では有機溶剤蒸気を空気との
混合気体として膜モジュールに供給しており、ガス爆発
の危険を排除するために2v/v%以下という低濃度で有機
溶剤蒸気を供給する必要が有り、また非透明気体の凝縮
に加圧が必要であって凝縮処理が厄介である。<Problem to be Solved by the Invention> However, in this method, the organic solvent vapor is supplied to the membrane module as a gaseous mixture with air, and in order to eliminate the danger of gas explosion, the concentration is as low as 2 v / v% or less. It is necessary to supply an organic solvent vapor, and pressurization is required to condense the non-transparent gas, which makes the condensing process troublesome.
本発明の目的は、有機溶剤蒸気を高濃度で膜モジュー
ルに供給して安全に処理でき、かつ非透過気体の凝縮を
簡単に行い得る有機溶剤蒸気の回収処理方法を提供する
ことにある。An object of the present invention is to provide an organic solvent vapor recovery method capable of safely supplying an organic solvent vapor to a membrane module at a high concentration and safely condensing a non-permeate gas.
<課題を解決するための手段> 本発明に係る有機溶剤蒸気の回収処理方法は、有機溶
剤蒸気を含む混合気体を選択透過性膜モジュールに供給
して透過側で有機溶剤蒸気濃縮気体を得、この有機溶剤
蒸気濃縮気体を凝縮器で冷却・凝縮して有機溶剤を液晶
で回収し、凝縮器を通過した非凝縮有機溶剤蒸気含有気
体を膜モジュールの供給側に戻し、膜モジュールの非透
過気体を排出する方法であり、上記有機溶剤蒸気を含む
混合気体を不活性ガス例えば窒素ガスとの混合気体と
し、上記非凝縮有機溶剤蒸気含有気体の有機溶剤濃度を
5〜50v/v%とし、上記非透過気体の有機溶剤濃度を0
〜2v/v%とすることを特徴とする構成である。<Means for Solving the Problems> In the method for recovering organic solvent vapor according to the present invention, a mixed gas containing organic solvent vapor is supplied to a selectively permeable membrane module to obtain an organic solvent vapor concentrated gas on the permeation side, The organic solvent vapor-enriched gas is cooled and condensed in a condenser to recover the organic solvent as liquid crystal, and the non-condensed organic solvent vapor-containing gas that has passed through the condenser is returned to the supply side of the membrane module. The mixed gas containing the organic solvent vapor is a mixed gas with an inert gas such as nitrogen gas, the organic solvent concentration of the non-condensed organic solvent vapor-containing gas is 5 to 50 v / v%, Reduce the organic solvent concentration of the non-permeate gas to 0
22 v / v%.
本発明において回収処理の対象とされる有機溶剤蒸気
としては、飽和又は不飽和の脂肪族炭化水素類、脂環式
炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素
類、ケトン類、アルコール類、カルボン酸エステル類等
がある。The organic solvent vapor to be subjected to the recovery treatment in the present invention includes saturated or unsaturated aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ketones, alcohols And carboxylic acid esters.
選択透過性膜は溶剤に応じて選定され、例えば、ポリ
イミド、ポリスルホン、セルロースナイトレートまたは
セルロースアセテート等の多孔質支持膜とシリコーン樹
脂、ポリアクリロニトリル−ブタジエン等の半導膜との
複合膜等を使用できる。The permselective membrane is selected according to the solvent.For example, a composite membrane of a porous support membrane such as polyimide, polysulfone, cellulose nitrate or cellulose acetate and a semiconducting membrane such as silicone resin and polyacrylonitrile-butadiene is used. it can.
<実施例の説明> 以下、図面により本発明の実施例を説明する。<Description of Example> Hereinafter, an example of the present invention will be described with reference to the drawings.
図面は本発明において使用する回収処理装置の一例を
示している。図において、1は選択透過性複合膜モジュ
ールであり、11は一次側を、12は二次側をそれぞれ示し
ている。2は一次側に設けた非透過気体排出管であり、
圧力調節弁3を設けてある。4は膜モジュールに処理す
べき気体を供給するための送風機または圧縮機である。
5は凝縮機であり、熱交換器6を備えている。7は熱交
換器に冷液または冷凍液を循環させるためのパイプであ
る。8は膜モジュール二次側の透過気体を凝縮機に送入
する真空吸引機または送風機であり、モジュールへの気
体供給手段4として送風機を用いる場合、8には真空吸
引機を用い、同気体供給手段4として圧縮機を用いる場
合、8には送風機、真空吸引機の何れを用いてもよい。
9は凝縮液回収タンク、10は非凝縮気体を原気体供給側
に戻すための帰還パイプである。The drawing shows an example of a recovery processing apparatus used in the present invention. In the figure, 1 is a permselective composite membrane module, 11 is a primary side, and 12 is a secondary side. 2 is a non-permeate gas discharge pipe provided on the primary side,
A pressure control valve 3 is provided. 4 is a blower or a compressor for supplying a gas to be processed to the membrane module.
Reference numeral 5 denotes a condenser, which includes a heat exchanger 6. Reference numeral 7 denotes a pipe for circulating a cold liquid or a frozen liquid through the heat exchanger. Reference numeral 8 denotes a vacuum suction device or a blower that feeds the permeated gas on the secondary side of the membrane module to the condenser. When a blower is used as the gas supply means 4 for the module, the vacuum suction device is used for the gas supply device 8. When a compressor is used as the means 4, any of a blower and a vacuum suction device may be used as the means 8.
9 is a condensate recovery tank, and 10 is a return pipe for returning non-condensed gas to the raw gas supply side.
本発明によって、有機溶剤蒸気を含む気体、例えばN2
ガスを処理するには、送風機(または圧縮機)により原
気体を選択透過性複合膜モジュールの一次側に供給す
る。膜モジュールの一次側と二次側との間には、送風機
(または圧縮機)4と真空吸引機(または送風機)8と
の相互作用のために圧力差Vが存在し、二次側の圧力を
V′とすれば、一次側の圧力はV+V′とする必要があ
り、この圧力は上記圧力調節弁3の操作によって設定す
る。かかる差圧下、膜の選択透過性のために有機溶剤蒸
気はよく膜を透過し、N2ガスは透過し難いために、モジ
ュール1の二次側に透過した気体の有機溶剤濃度は濃
く、N2ガス濃度は稀薄であり、二次側に溶剤濃縮N2ガス
が現われる。一次側の不透過気体の溶剤濃度は稀薄であ
り、N2ガス濃度は濃く、従って、溶剤稀薄N2ガスであ
る。モジュール二次側の溶剤濃縮N2ガスは真空吸引機ま
たは送風機8によって凝縮器5に送入され、冷液または
冷凍液循環の熱交換器6によって冷却され、その冷却温
度での有機溶剤飽和蒸気圧になるまで凝縮が続けられ、
凝縮有機溶剤が溶剤回収タンク9に回収される。一方、
非凝縮の気体は上記飽和蒸気圧の有機溶剤蒸気を含んで
おり、帰還パイプ10により原気体供給側に戻され、供給
されてくる原気体に混合して再度膜モジュールに送られ
る。According to the present invention, a gas containing an organic solvent vapor, for example, N 2
To process the gas, the raw gas is supplied to the primary side of the permselective composite membrane module by a blower (or a compressor). A pressure difference V exists between the primary side and the secondary side of the membrane module due to the interaction between the blower (or compressor) 4 and the vacuum suction machine (or blower) 8, and the pressure on the secondary side Is V ′, the pressure on the primary side needs to be V + V ′, and this pressure is set by operating the pressure control valve 3. Under such a differential pressure, the organic solvent vapor permeates the membrane well due to the selective permeability of the membrane, and the N 2 gas is difficult to permeate. The concentration of the two gases is low, and solvent-concentrated N 2 gas appears on the secondary side. The solvent concentration of the non-permeate gas on the primary side is lean, and the N 2 gas concentration is high, and therefore, the solvent is a lean N 2 gas. The solvent-enriched N 2 gas on the secondary side of the module is sent to the condenser 5 by a vacuum suction device or a blower 8 and cooled by a heat exchanger 6 for circulating a cold liquid or a frozen liquid. Condensation continues until pressure is reached,
The condensed organic solvent is recovered in the solvent recovery tank 9. on the other hand,
The non-condensed gas contains the organic solvent vapor having the above-mentioned saturated vapor pressure, is returned to the raw gas supply side by the return pipe 10, is mixed with the supplied raw gas, and is sent to the membrane module again.
上記において、凝縮処理はほぼ常圧下で行なわれ、高
圧下での凝縮の場合に較べて、非凝縮気体の溶剤濃度が
大であるが、この非凝縮気体は大気中に排出されずにモ
ジュールに戻される。大気に排出される気体はモジュー
ル一次側の非透過気体のみであり、この気体の有機溶剤
濃度は0〜2v/v%と著しく低いから、環境汚染問題等の
排ガス規制への抑制効果を期待できる。また、排出有機
溶剤量の低減により、有機溶剤を効率よく回収でき、経
済的に有利である。In the above, the condensing process is performed under substantially normal pressure, and the solvent concentration of the non-condensed gas is higher than that in the case of condensing under high pressure, but this non-condensed gas is not discharged to the atmosphere but is discharged to the module. Will be returned. The gas discharged into the atmosphere is only the non-permeated gas on the primary side of the module. Since the concentration of the organic solvent in this gas is extremely low at 0 to 2 v / v%, it can be expected to have the effect of suppressing exhaust gas regulations such as environmental pollution. . Further, by reducing the amount of the discharged organic solvent, the organic solvent can be efficiently recovered, which is economically advantageous.
このことは、次の実施例と比較例との対比からも明ら
かであり、従来方法(比較例)では、溶剤回収率(回収
溶剤量/供給溶剤量×100%)が95%以下であるのに対
し、本発明によれば95%〜99.9%に向上させることが可
能である。This is clear from the comparison between the following Examples and Comparative Examples. In the conventional method (Comparative Example), the solvent recovery rate (recovered solvent amount / supplied solvent amount × 100%) is 95% or less. On the other hand, according to the present invention, it can be increased to 95% to 99.9%.
実施例 被処理気体には、その飽和蒸気圧が25℃で160mmgであ
るn−ヘキサンの蒸気を濃度21v/v%で含有するN2ガス
を使用した。処理装置には図示のものを使用した。モジ
ュールにはスパイラル膜モジュールを使用し、モジュー
ル1の選択透過性複合膜には、ポリイミドまたはポリス
ルホン多孔質支持膜上に、シリコーン樹脂をコートし架
橋してなる活性薄膜を形成したものを使用した。送風機
4を500〜1000mmH2Oゲージ圧で、真空ポンプ8を50〜15
0torr絶対圧でそれぞれ常温操作し、ガス供給量12m3/hr
とした。凝縮機5の熱交換器循環水には10℃の冷水を使
用した。かかる条件下で被処理気体を処理し、モジュー
ル1の非透過ガスの溶剤濃度を測定したところ0.5v/v%
であり、溶剤回収率を測定したところ98v/v%であっ
た。Example As the gas to be treated, N 2 gas containing vapor of n-hexane having a saturated vapor pressure of 160 mmg at 25 ° C. at a concentration of 21 v / v% was used. The processing apparatus shown was used. A spiral membrane module was used as the module, and a permselective composite membrane of the module 1 was formed by forming an active thin film formed by coating a silicone resin on a polyimide or polysulfone porous support membrane and crosslinking the same. The blower 4 is operated at a pressure of 500 to 1000 mmH 2 O gauge, and the vacuum pump 8 is operated at a pressure of 50 to 15 mm.
Operate at room temperature at 0 torr absolute pressure, gas supply rate 12m 3 / hr
And Cold water of 10 ° C. was used as heat exchanger circulating water of the condenser 5. The gas to be treated was treated under such conditions, and the solvent concentration of the non-permeated gas of the module 1 was measured to be 0.5 v / v%
It was 98v / v% when the solvent recovery was measured.
比較例 凝縮器からの非凝縮気体をモジュールに戻すことなく
大気に放出し、これ以外は実施例と同一条件とした。排
ガス中の溶剤濃度は非凝縮気体中の溶剤濃度が高いため
に全体としての排ガス中の溶剤濃度は実施例に較べて相
当に高く、溶剤回収率は92%に低下した。Comparative Example The non-condensed gas from the condenser was released to the atmosphere without returning to the module, and the other conditions were the same as in the example. Since the solvent concentration in the exhaust gas was high in the non-condensed gas, the solvent concentration in the exhaust gas as a whole was considerably higher than that in the example, and the solvent recovery rate was reduced to 92%.
<発明の効果> 本発明に係る有機溶剤蒸気の回数処理方法においは、
有機溶剤蒸気を不活性ガスとの混合気体として膜モジュ
ールに供給しているから、21v/v%というような高濃度
としても、ガス爆発の危険がなく、また膜モジュールの
非透過気体を有機蒸気濃度2v/v%未満として大気に放出
しているので、この点においてもガス爆発の危険がな
く、更に凝縮器を通過した非凝縮有機溶剤蒸気含有気体
の有機蒸気濃度を5〜50v/v%と高濃度にしているが、
空気に接触させずに膜モジュールの供給側に戻している
ので、この点においてもガス爆発の危険がなく、結局、
高濃度で有機溶剤蒸気を供給処理できる。<Effect of the Invention> In the method for treating the number of times of the organic solvent vapor according to the present invention,
Since the organic solvent vapor is supplied to the membrane module as a mixed gas with the inert gas, there is no danger of gas explosion even if the concentration is as high as 21 v / v%. Since it is released to the atmosphere at a concentration of less than 2 v / v%, there is no danger of gas explosion at this point, and the organic vapor concentration of the non-condensable organic solvent vapor-containing gas that has passed through the condenser is 5 to 50 v / v%. And high concentration,
Since it is returned to the supply side of the membrane module without contacting with air, there is no danger of gas explosion at this point, and eventually,
Organic solvent vapor can be supplied at a high concentration.
更に、凝縮器を通過した有機溶剤蒸気濃縮気体の有機
溶剤蒸気濃度を5〜50v/v%すればよく、ほぼ常圧で凝
縮でき、凝縮を簡単に行い得る。Further, the concentration of the organic solvent vapor concentrated gas having passed through the condenser may be 5 to 50 v / v%, and the gas can be condensed at almost normal pressure, and the condensation can be easily performed.
しかも、かかる簡単な凝縮処理にもかかわらず、溶剤
を95〜99.9%という高回収率で回収できる利点もある。Moreover, there is an advantage that the solvent can be recovered at a high recovery rate of 95 to 99.9% despite the simple condensation treatment.
図面は本発明において使用する有機溶剤蒸気の回収処理
装置を示す説明図である。 1……膜モジュール 2……非透過気体排出管 4……圧縮機または送風機、5……凝縮機 6……熱交換器 8……送風機または真空吸引機 9……溶剤回収タンク、10……帰還パイプThe drawing is an explanatory view showing an organic solvent vapor recovery processing device used in the present invention. DESCRIPTION OF SYMBOLS 1 ... Membrane module 2 ... Non-permeate gas discharge pipe 4 ... Compressor or blower 5 ... Condenser 6 ... Heat exchanger 8 ... Blower or vacuum suction machine 9 ... Solvent recovery tank, 10 ... Return pipe
フロントページの続き (56)参考文献 特開 昭61−42319(JP,A) 特開 昭63−278522(JP,A) 特開 平3−56114(JP,A) 特開 平2−268808(JP,A) 特開 平1−155928(JP,A) 特開 昭60−202705(JP,A)Continuation of front page (56) References JP-A-61-42319 (JP, A) JP-A-63-278522 (JP, A) JP-A-3-56114 (JP, A) JP-A-2-268808 (JP) JP-A-1-155528 (JP, A) JP-A-60-202705 (JP, A)
Claims (4)
膜モジュールに供給して透過側で有機溶剤蒸気濃縮気体
を得、この有機溶剤蒸気濃縮気体を凝縮器で冷却・凝縮
して有機溶剤を液相で回収し、凝縮器を通過した非凝縮
有機溶剤蒸気含有気体を膜モジュールの供給側に戻し、
膜モジュールの非透過気体を排出する方法であり、上記
有機溶剤蒸気を含む混合気体を不活性ガスとの混合気体
とし、上記非凝縮有機溶剤蒸気含有気体の有機溶剤濃度
を5〜50v/v%とし、上記非透過気体の有機溶剤濃度を
0〜2v/v%とすることを特徴とする有機溶剤蒸気の回収
処理方法。1. A gas mixture containing an organic solvent vapor is supplied to a permselective membrane module to obtain an organic solvent vapor concentrated gas on the permeation side, and the organic solvent vapor concentrated gas is cooled and condensed by a condenser to form an organic solvent vapor. In the liquid phase, returning the non-condensable organic solvent vapor-containing gas that has passed through the condenser to the supply side of the membrane module,
This is a method of discharging non-permeate gas of the membrane module, wherein the mixed gas containing the organic solvent vapor is mixed with an inert gas, and the organic solvent concentration of the non-condensed organic solvent vapor-containing gas is 5 to 50 v / v%. Wherein the organic solvent concentration of the non-permeating gas is 0 to 2 v / v%.
囲(1)記載の有機溶剤蒸気の回収処理方法。2. The method according to claim 1, wherein the inert gas is nitrogen gas.
求の範囲(1)または(2)記載の有機溶剤蒸気の回収
処理方法。3. The method for recovering organic solvent vapor according to claim 1, wherein the organic solvent vapor is hexane vapor.
範囲(1)〜(3)何れか記載の有機溶剤蒸気の回収処
理方法。4. The method according to claim 1, wherein the solvent recovery rate is 95 to 99.9%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19323989A JP2832371B2 (en) | 1989-07-25 | 1989-07-25 | Organic solvent vapor recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19323989A JP2832371B2 (en) | 1989-07-25 | 1989-07-25 | Organic solvent vapor recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0356113A JPH0356113A (en) | 1991-03-11 |
JP2832371B2 true JP2832371B2 (en) | 1998-12-09 |
Family
ID=16304647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19323989A Expired - Lifetime JP2832371B2 (en) | 1989-07-25 | 1989-07-25 | Organic solvent vapor recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2832371B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5803494B2 (en) * | 2011-09-26 | 2015-11-04 | 富士電機株式会社 | Device to remove air mixed in working medium of power generator |
US9358498B2 (en) | 2011-10-19 | 2016-06-07 | Fuji Electric Co., Ltd. | Mixed air removal device and power generator including the same |
US20220281187A1 (en) * | 2019-07-30 | 2022-09-08 | Hewlett-Packard Development Company, L.P. | Treatment chamber |
-
1989
- 1989-07-25 JP JP19323989A patent/JP2832371B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0356113A (en) | 1991-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0701857A1 (en) | Membrane dehydration of vaporous feeds by countercurrent condensable sweep | |
US5256295A (en) | Two-stage membrane process and apparatus | |
US5843209A (en) | Vapor permeation system | |
EP0657205B1 (en) | Pervaporation by countercurrent condensable sweep | |
AU690723B2 (en) | Organic and inorganic vapor permeation by countercurrent condensable sweep | |
US5236474A (en) | Membrane-based removal of condensable vapors | |
US4978430A (en) | Method for dehydration and concentration of aqueous solution containing organic compound | |
US5069686A (en) | Process for reducing emissions from industrial sterilizers | |
US5256296A (en) | Membrane process and apparatus for removing a component from a fluid stream | |
US6273937B1 (en) | Membrane pervaporation and vapor permeation system | |
WO1992011918A1 (en) | Membrane process and apparatus for removing a component from a fluid stream | |
JPH0311806B2 (en) | ||
US5129921A (en) | Membrane gas separation process and apparatus | |
JP2007275690A (en) | Method for separating and recovering organic liquid from organic liquid aqueous solution | |
Baker | Pervaporation | |
US5427687A (en) | Bubble reaction using vapor permeation | |
US5147550A (en) | Membrane process and apparatus for removing a component from a fluid stream | |
JP2832371B2 (en) | Organic solvent vapor recovery method | |
EP0792185A1 (en) | Very high purity nitrogen by membrane separation | |
Shalygin et al. | Vapor-phase membrane concentration of bioethanol and biobutanol using hydrophobic membranes based on glassy polymers | |
JP3727552B2 (en) | Perfluoro compound gas separation and recovery equipment | |
JPH04180811A (en) | Treatment of exhaust gas containing organic vapor | |
BR112016012491B1 (en) | METHOD TO SEPARATE AND PURIFY A FERMENTATION PRODUCT FROM A RESIDUAL FERMENTER GAS | |
JPH05226A (en) | Dehydration and concentration of aqueous solution of organic matter | |
JPH0386210A (en) | Treatment of gaseous mixture containing organic solvent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |