JPH01310557A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH01310557A
JPH01310557A JP14218088A JP14218088A JPH01310557A JP H01310557 A JPH01310557 A JP H01310557A JP 14218088 A JP14218088 A JP 14218088A JP 14218088 A JP14218088 A JP 14218088A JP H01310557 A JPH01310557 A JP H01310557A
Authority
JP
Japan
Prior art keywords
oxide film
groove
trench
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14218088A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
茂樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP14218088A priority Critical patent/JPH01310557A/en
Publication of JPH01310557A publication Critical patent/JPH01310557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To remove damage to the surface of a groove, which is caused by Si etching, to eliminate an increase in a collector-substrate parasitic capacity and to contrive the improvement of the operating speed of an element by a method wherein a sacrificial oxide film is provided and after boron ions are implanted in the film, the film is removed. CONSTITUTION:A groove 5 is formed by Si etching and thereafter, the bottom surface and side surface of the groove 5 are sacrificially oxidized and boron ions are implanted beyond this sacrificial oxide film (thermal oxide film) 6. Then, when the film 6 is removed, a thermal oxide film 8 is again formed on the bottom surface and the surface of the groove 5 and moreover, the groove 5 is filled with a poly Si layer 9 to form element isolation regions. Thereby, the contact of a p-type channel stopper layer 7 with an n-type buried layer can be avoided and a collector-substrate parasitic capacity that obstructs the high-speed operation of an element is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の製造方法、特にトレンチ素子
分離の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing semiconductor integrated circuits, and more particularly to a method for trench isolation.

従来の技術 従来のバイポーラ集積回路におけるトレンチ素子分離の
方法を第2図a−dを参照して説明する。
2. Description of the Related Art A conventional method of trench isolation in a bipolar integrated circuit will be described with reference to FIGS. 2a-2d.

第2図乙に示されているように、P型シリコン基板11
中KN型埋め込み層12を形成し、さらにN型エピタキ
シャル層13を成長した後、CVD酸化膜14を成長す
る。次にCVD酸化膜14をパターニングした後、これ
をマスクにしてシリコン基体を異方性エツチングし、溝
15を形成する。
As shown in FIG. 2B, the P-type silicon substrate 11
After forming a medium KN type buried layer 12 and further growing an N type epitaxial layer 13, a CVD oxide film 14 is grown. Next, after patterning the CVD oxide film 14, the silicon substrate is anisotropically etched using this as a mask to form a groove 15.

さらに第2図すのようにCVD酸化膜14をマスクにし
てボロンをイオン注入し、溝15の底面部にP型チャン
ネルストンパ層16を形成する。
Furthermore, as shown in FIG. 2, boron ions are implanted using the CVD oxide film 14 as a mask to form a P-type channel stopper layer 16 at the bottom of the groove 15.

次に、第2図Cのように、CVD酸化膜14を除去した
後熱酸化膜17を形成し、ポリシリコン18を成長させ
、さらに平坦化のだめのエツチング処理を歿して溝16
を埋める。最後に第2図dのように、溝16の上部を選
択的に酸化して選択酸化膜19を成長させることにより
、素子分離領域を形成する。
Next, as shown in FIG. 2C, after removing the CVD oxide film 14, a thermal oxide film 17 is formed, polysilicon 18 is grown, and an etching process for planarization is performed to form the grooves 16.
fill in. Finally, as shown in FIG. 2d, the upper part of the trench 16 is selectively oxidized to grow a selective oxide film 19, thereby forming an element isolation region.

以上のようにして、溝を形成することにより高い集積度
の素子分離が可能である。
By forming the grooves as described above, element isolation with a high degree of integration is possible.

発明が解決しようとする課題 ところでこのような従来の製造方法では、ボロンイオン
注入によりP型チャンネルストツバ層を形成する際に溝
の側面にも若干ボロンが入シ、P型チャンネルストッパ
層とN型埋め込み層が接触し、バイポーラ集積回路にお
けるコレクタ、基板間の寄生容量増加を招くことになシ
、動作速度の低下につながる。また溝形成の際のシリコ
ンエ。
Problems to be Solved by the Invention However, in such a conventional manufacturing method, when a P-type channel stopper layer is formed by boron ion implantation, some boron is also introduced into the side surfaces of the groove, and the P-type channel stopper layer and N The mold burying layer comes into contact with each other, leading to an increase in parasitic capacitance between the collector and the substrate in the bipolar integrated circuit, which leads to a reduction in operating speed. Also, use silicone when forming grooves.

チングに伴うダメージが最後まで残り、素子分離リーク
等の原因ともなる。
Damage caused by tinging remains until the end, causing element isolation leaks and the like.

課題を解決するための手段 以上のような問題点を解決するために本発明の製造方法
では、シリコンエツチングによシ溝を形成した後に溝の
底面および側面を犠牲酸化し、この犠牲酸化膜ごしにボ
ロンイオン注入する。次に犠牲酸化膜を除去した際、再
度溝の底面および表面を酸化し、さらに溝をポリシリコ
ンで埋め込み素子分離領域を形成する。
Means for Solving the Problems In order to solve the above-mentioned problems, in the manufacturing method of the present invention, after forming a trench by silicon etching, the bottom and side surfaces of the trench are sacrificially oxidized, and the sacrificial oxide film is removed. Boron ions are then implanted. Next, when the sacrificial oxide film is removed, the bottom and surface of the trench are oxidized again, and the trench is further filled with polysilicon to form an element isolation region.

作用 本発明の半導体集積回路の製造方法によると、犠牲酸化
膜を除去することにより溝表面のシリコンエツチングに
よるダメージを除去することができ、またP型チャンネ
ルストッパ層を形成する際のボロンイオン注入を酸化膜
ごしに行うので、溝の側面へのボロンイオンの注入が抑
えられる。
According to the method for manufacturing a semiconductor integrated circuit of the present invention, damage caused by silicon etching on the groove surface can be removed by removing the sacrificial oxide film, and boron ion implantation when forming the P-type channel stopper layer can be removed. Since the implantation is performed through the oxide film, boron ion implantation into the side surfaces of the trench can be suppressed.

実施例 第1図a〜eは本発明の製造方法の実施例として、バイ
ポーラ集積回路の素子分離の製造方法を示した工程順断
面図である。
Embodiment FIGS. 1A to 1E are cross-sectional views showing step-by-step cross-sectional views of a method of manufacturing element isolation of a bipolar integrated circuit as an example of the manufacturing method of the present invention.

まず第1図a[示すように、P型シリコン基板1中KN
型埋め込み層2を形成し、さらに、N型エピタキシャル
層3を成長した後CvD酸化膜4を成長する。次にl、
/D酸化膜4をパターニングした後、これをマスクにし
てンリコン基体を異方性エツチングして溝6を形成する
First, in FIG. 1a [as shown, KN in the P-type silicon substrate 1]
After forming a type buried layer 2 and growing an N-type epitaxial layer 3, a CvD oxide film 4 is grown. Then l,
After patterning the /D oxide film 4, the groove 6 is formed by anisotropically etching the silicon substrate using this as a mask.

さらに第1図すに示されているように、溝6の底面およ
び側面の表面に熱酸化膜6を形成した後、CVD酸化膜
4をマスクにボロンイオン注入ヲ行い、溝6の底面にP
型チャンネルヌトソパ層7を形成する。このとき溝5の
側面はイオン注入に対する角度が小さい上に熱酸化膜6
で被覆されているために、ボロンイオンはほとんど注入
されない。
Further, as shown in FIG. 1, after forming a thermal oxide film 6 on the bottom and side surfaces of the trench 6, boron ions are implanted using the CVD oxide film 4 as a mask, and P is injected into the bottom surface of the trench 6.
A mold channel nutsopa layer 7 is formed. At this time, the side surface of the trench 5 has a small angle with respect to the ion implantation, and the thermal oxide film 6
Because it is coated with

この後、第1図CのようにCVD酸化膜4および熱酸化
膜6をエツチング除去し、溝6の内面に与えられたシリ
コンエツチング時のダメージを除去する。
Thereafter, as shown in FIG. 1C, the CVD oxide film 4 and the thermal oxide film 6 are removed by etching, and the damage caused to the inner surface of the trench 6 during silicon etching is removed.

次に、第1図dのように、再度熱酸化膜8を形成した後
、ポリシリコン9層の成長と平坦化エツチングにより溝
5を埋める。最後に、第1図eのように、溝6の上部を
選択的に酸化して選択酸化膜10を成長させることによ
り、素子分離領域を形成する。
Next, as shown in FIG. 1d, after forming a thermal oxide film 8 again, the trench 5 is filled by growing a nine layer of polysilicon and planarizing etching. Finally, as shown in FIG. 1e, the upper part of the trench 6 is selectively oxidized to grow a selective oxide film 10, thereby forming an element isolation region.

発明の詳細 な説明したように本発明の半導体集積回路の製造方法に
よると、Piチャンネルストッパ層とN型埋め込み層の
接触を避けることができ、素子の高速動作を妨げるコレ
クタ、基板間寄生容量を低減できる。また、溝を形成す
るだめのエツチング時のダメージも除去されるため、低
リーク特性を持ち、かつ、高信頼性の素子分離を実現で
きる。
As described in detail, according to the method for manufacturing a semiconductor integrated circuit of the present invention, contact between the Pi channel stopper layer and the N-type buried layer can be avoided, and parasitic capacitance between the collector and the substrate that impedes high-speed operation of the device can be avoided. Can be reduced. Furthermore, since damage caused during etching for forming the grooves is removed, it is possible to realize element isolation with low leakage characteristics and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図azeは本発明の実施例のバイポーラ集積回路の
素子分離の工程順断面構造図、第2図乙〜dは従来例の
工程順断面図である。 1・・・・・・P型シリコン基板、2・・・・・・N型
埋め込み層、3・・・・・・N型エピタキシャル層、4
・・・・・・C’l/D酸化膜、6・・・・・・シリコ
ン溝、6・・・・・熱酸化膜、7・・・・・P型チャン
ネルストッパ層、8・・・・・・熱酸化膜、9・・・・
・・ポリシリコン、1o・・・・・・Locos膜、1
1・・・・・P型シリコン基板、12・・・・・・N型
埋め込ミ層、13・・・・・・N型エピタキシャル層、
14・川・・CvD酸化膜、16・・・・・・シリコン
溝、16・・・・・・P型チャンネルストツバ層、17
・・・・・−熱酸化膜、18・・・・・ポリシリコン、
19・・・・・L OG OS膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
−Pダシリ]ノ基汰 第  2  図                  
      11−  P″−芳ル基“12−Nダニ里
込1 i3−−−〜型rじ0り寺シゲル層 +4−c vDe イy w#:
1A and 1B are cross-sectional structural diagrams in the order of steps for element isolation of a bipolar integrated circuit according to an embodiment of the present invention, and FIGS. 1... P-type silicon substrate, 2... N-type buried layer, 3... N-type epitaxial layer, 4
...C'l/D oxide film, 6...Silicon groove, 6...Thermal oxide film, 7...P-type channel stopper layer, 8... ...Thermal oxide film, 9...
...Polysilicon, 1o...Locos film, 1
1...P-type silicon substrate, 12...N-type buried layer, 13...N-type epitaxial layer,
14. River... CvD oxide film, 16... Silicon groove, 16... P-type channel stopper layer, 17
...-thermal oxide film, 18...polysilicon,
19...LOG OS film. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Figure 2
11-P''-Aroyl group 12-N Dani Rigomi 1 i3-----type rjiorishigeru layer +4-c vDe y w#:

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の絶縁膜を形成する工程と、同第
1の絶縁膜を選択的にエッチング除去する工程と、残存
する第1の絶縁膜をマスクに前記半導体基板を選択的に
エッチングして溝を形成する工程と、形成された溝の内
面を熱酸化する工程と、前記第1の絶縁膜をマスクにし
て前記溝の底面下に不純物層を形成する工程と、前記第
1の絶縁膜および前記溝の内面の熱酸化膜をエッチング
除去する工程と、前記半導体基板上および前記溝の内面
に第2の絶縁膜を形成する工程と、前記溝を半導体膜で
埋め込む工程と、半導体膜で埋め込まれた溝の上部を選
択的に熱酸化する工程を含むことを特徴とする半導体集
積回路の製造方法。
A step of forming a first insulating film on a semiconductor substrate, a step of selectively etching away the first insulating film, and a step of selectively etching the semiconductor substrate using the remaining first insulating film as a mask. a step of thermally oxidizing the inner surface of the formed trench; a step of forming an impurity layer under the bottom surface of the trench using the first insulating film as a mask; a step of etching away a thermal oxide film on the film and the inner surface of the trench; a step of forming a second insulating film on the semiconductor substrate and the inner surface of the trench; a step of burying the trench with a semiconductor film; 1. A method of manufacturing a semiconductor integrated circuit, comprising the step of selectively thermally oxidizing the upper part of a trench filled with.
JP14218088A 1988-06-09 1988-06-09 Manufacture of semiconductor integrated circuit Pending JPH01310557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14218088A JPH01310557A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14218088A JPH01310557A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01310557A true JPH01310557A (en) 1989-12-14

Family

ID=15309233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14218088A Pending JPH01310557A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01310557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004674A (en) * 1999-06-29 2001-01-15 김영환 Manufacturing method for semiconductor device
JP2001036071A (en) * 1999-07-16 2001-02-09 Toshiba Corp Manufacture for semiconductor device
JP2018207061A (en) * 2017-06-09 2018-12-27 ラピスセミコンダクタ株式会社 Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004674A (en) * 1999-06-29 2001-01-15 김영환 Manufacturing method for semiconductor device
JP2001036071A (en) * 1999-07-16 2001-02-09 Toshiba Corp Manufacture for semiconductor device
JP2018207061A (en) * 2017-06-09 2018-12-27 ラピスセミコンダクタ株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP2543224B2 (en) Semiconductor device and manufacturing method thereof
US6900519B2 (en) Diffused extrinsic base and method for fabrication
US5516710A (en) Method of forming a transistor
JP2728671B2 (en) Manufacturing method of bipolar transistor
US5106767A (en) Process for fabricating low capacitance bipolar junction transistor
EP0139165B1 (en) Method of making a trench isolated integrated circuit device
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US4499657A (en) Method of making a semiconductor device having protected edges
US5428243A (en) Bipolar transistor with a self-aligned heavily doped collector region and base link regions.
JPH0279445A (en) Forming method of element isolating region
JPS6159852A (en) Manufacture of semiconductor device
JPH0786296A (en) Manufacture of high-speed bipolar transistor
JPH10326793A (en) Manufacture of semiconductor device
JPH01310557A (en) Manufacture of semiconductor integrated circuit
JPH05283520A (en) Manufacture of semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
JPS60208843A (en) Manufacture of semiconductor device
JPS60137037A (en) Manufacture of semiconductor device
KR100275537B1 (en) Method for fabricating bipolar transistor using over-growth of collector epitaxial layer
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element
JP2674613B2 (en) Method for manufacturing semiconductor device
KR950000139B1 (en) Bipolar transistor and manufacturing method thereof
JPH02152240A (en) Manufacture of semiconductor device