JPH01308757A - Magnet-type closed container - Google Patents

Magnet-type closed container

Info

Publication number
JPH01308757A
JPH01308757A JP63140968A JP14096888A JPH01308757A JP H01308757 A JPH01308757 A JP H01308757A JP 63140968 A JP63140968 A JP 63140968A JP 14096888 A JP14096888 A JP 14096888A JP H01308757 A JPH01308757 A JP H01308757A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
magnetic
rare earth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63140968A
Other languages
Japanese (ja)
Inventor
Takeshi Seto
毅 瀬戸
Michio Yanagisawa
通雄 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63140968A priority Critical patent/JPH01308757A/en
Publication of JPH01308757A publication Critical patent/JPH01308757A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2313/00Connecting or fastening means
    • B65D2313/04Connecting or fastening means of magnetic type

Landscapes

  • Closures For Containers (AREA)

Abstract

PURPOSE:To improve a productivity and a volume-efficiency of a hermetically closed container and enhance a magnetic suction force of a magnet used therein, by employing a magnet of rare earth metal which is produced by coating a cast ingot with a ferromagnetic material, hot-machining the coated ingot at a particular temperature and then subjecting the machined product to heat-treatment. CONSTITUTION:A hermetically closed container is composed of a container body 2 containing a permanent magnet therein and a lid member which encloses ferromagnetic substance at a position aligned with that of the permanent magnet 1. A magnetic attraction force created between the permanent magnet 1 and the ferromagnetic substance serves to produce a hermetic seal between the container body 2 and the lid. The permanent magnet 1 is produced as follows. Rare earth metal such as yttrium and boron are weighed in a given procedure. The mixture is melted and cast to obtain a cast ingot which is then sheathed with pure iron. The sheathed ingot is subjected to hot-elongation at a temperature of 500 deg.C to 950 deg.C, where a machining rate is about 80%. The elongated product is heat-treated at a temperature of 250 deg.C to 1,000 deg.C for 24hr and cut and ground to produce the magnet fittable to the container body 2. Thus, the permanent magnet 1 suitable for the hermetically closed container and having a sufficient coercive force is obtainable only by subjecting to heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は食品、薬品、工業材料等の貯蔵、運搬時に使用
される磁石式密閉容器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic sealed container used for storing and transporting foods, medicines, industrial materials, and the like.

[従来の技術] 従来実公昭59−1963に記載され第2図に示すよう
に一方向着磁されたフェライト磁石を多数固着してその
吸引力によってシールを行う磁石式密閉容器が知られて
いた。
[Prior Art] As described in Japanese Utility Model Publication No. 59-1963 and shown in Fig. 2, a magnetic sealed container was known in which a large number of unidirectionally magnetized ferrite magnets were fixed and the container was sealed by its attractive force. .

[発明が解決しようとする課M] しかし従来の磁石式密閉容器は、一般に永久磁石として
フェライト磁石を使用しているために吸引力が十分でな
いため密閉性が悪く、十分な吸引力を得ようとすると磁
気回路部の形状が大きくなり従って容器の容量に対して
容器全体の形状が大きくなってしまう結果になっていた
[Problem M to be solved by the invention] However, conventional magnetic airtight containers generally use ferrite magnets as permanent magnets, so they do not have sufficient suction force, resulting in poor airtightness. In this case, the shape of the magnetic circuit section becomes large, resulting in the overall shape of the container becoming large relative to the capacity of the container.

一方、磁石式密閉容器にエネルギー積が大きく十分な吸
引力のでて原料コストの安・い希土類鉄ボロン系の焼結
磁石やボンド磁石等の希土類磁石を用いた場合について
説明する。焼結法により製造されるR−TM−B系希土
類磁石は、合金を粉末にする工程が必須であるが、R−
T M−B系合金は酸素に対して非常に活性であり、そ
のため粉末にする工程を経ると表面積が増え、酸化が激
しくなり焼結体中の酸素濃度番まどうしても高くなって
しまう、また、粉末を成形するときに、例えばステアリ
ン酸亜鉛のような成形助材を使用しなければならない、
これは焼結工程以前に取り除かれるのではあるが、数割
は磁石の中に炭素の形で歿ってしまう。
On the other hand, a case will be described in which a rare earth magnet such as a rare earth iron boron sintered magnet or a bonded magnet, which has a large energy product, has a sufficient attractive force, and has a low raw material cost, is used in a magnetic sealed container. R-TM-B rare earth magnets manufactured by the sintering method require a process of turning the alloy into powder;
TMB alloys are very active against oxygen, so when they are made into powder, their surface area increases and oxidation becomes intense, which inevitably increases the oxygen concentration in the sintered body. When molding the powder, molding aids such as zinc stearate must be used,
Although this is removed before the sintering process, several percent remains in the magnet in the form of carbon.

この炭素はR−TM−E系磁石の磁気性能を低下させて
しまい好ましくない。
This carbon is undesirable because it deteriorates the magnetic performance of the R-TM-E magnet.

成形助材を加えてプレス成形した後の成形体はグリーン
体と言われる。これは大変脆く、ハンドリングが難しい
、従って、焼結炉にきれいに並べて入れるのは相当の手
間がかかることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle, and therefore, it is a major drawback that it takes considerable effort to neatly arrange them in the sintering furnace.

また、異方性の磁石を得るために・は磁場中でプレス成
形しなければならず、磁場電源、コイル等の大きな装置
が必要となる。
Furthermore, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, which requires large equipment such as a magnetic field power source and a coil.

以上の欠点があるので、一般的に言って、R−TM−B
系の焼結磁石の製造には高価な設備が必要になるばかり
でなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう、従って、比較的原料の安いR−T M−
B系磁石の長所を生かすことが出来るとは言いがたい。
Because of the above drawbacks, generally speaking, R-TM-B
Not only does the production of sintered magnets require expensive equipment, but production efficiency also deteriorates and the manufacturing cost of the magnets increases.
It is difficult to say that it is possible to take advantage of the advantages of B-series magnets.

ボンド磁石を製造するためには、真空メルトスピニング
装置を使用するが、真空メルトスピン法は大変生産性が
悪く、現在この装置は高価でもある。
In order to manufacture bonded magnets, a vacuum melt spinning device is used, but the vacuum melt spinning method has very poor productivity, and this device is currently expensive.

また、真空メルトスピン法では、原理的に等方性である
ので、低いエネルギー積であり、ヒステリシスループの
角形性もよくないので温度特性にたいしても、磁気回路
構成の制約においても不利である。
Further, since the vacuum melt spin method is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and restrictions on the magnetic circuit configuration.

真空メルトスピン装置により製造されたアモルファス状
態の磁粉をホットプレスしバルク化した物を再度ホット
プレスすることによ・り異方性の磁・石が得られるが、
ホットプレスを2段階に使うので、実際にffi産を考
えると大変に非効率°になることは否めないであろう、
また、この方法では高温、例えば800℃以上では結晶
粒の粗大化が著しく、それによって保磁力が極端に低下
し、実用的な永久磁石にはならない。
Anisotropic magnets and stones can be obtained by hot pressing amorphous magnetic powder produced using a vacuum melt spin device and then hot pressing the bulk material again.
Since the hot press is used in two stages, it is undeniable that it will be extremely inefficient when considering actual FFI production.
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force, making it impossible to produce a practical permanent magnet.

以上述べたように、磁石が高価になってしまうために密
閉容器自体のコストもアップしてしまい、極限られた製
品に使用されるに留まっていた。
As mentioned above, since magnets are expensive, the cost of the sealed container itself has also increased, and it has been used in only a limited number of products.

そこで本発明は、このような課題を解決するもので、そ
の目的とするところは溶解・鋳造することを基本工程と
し、熱間加工及び熱処理を併用した高性能且つ低コスト
なR−T M−B系永久磁石を使用することによって強
い吸引力を持ちかつ低コストの磁石式密閉容器を提供す
るところにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to create a high-performance, low-cost R-T M- which uses melting and casting as the basic process, and also uses hot working and heat treatment. By using B-based permanent magnets, it is possible to provide a magnetic sealed container that has a strong attractive force and is low in cost.

[課題を解決するための手段] 上記課題を解決する為に、本発明の磁石式密閉容器は、
永久磁石として希土類元素(但しイツトリウムを含む)
と遷移金属、及びボ・ロンを基本成分とする合金を溶解
、鋳造する工程、ついで鋳造インゴットを軟磁性体で覆
い、500℃以上で熱間加工を施し、その後250℃以
上の温度で熱処理を行い製造された希土類磁石を使用し
たことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the magnetic sealed container of the present invention has the following features:
Rare earth elements (including yttrium) as permanent magnets
A process of melting and casting an alloy whose basic components are , transition metals, and boron, followed by covering the cast ingot with a soft magnetic material, hot working at a temperature of 500°C or higher, and then heat treatment at a temperature of 250°C or higher. It is characterized by the use of rare earth magnets produced by

また、本発明の磁石式密閉容器は、永久磁石として、希
土類元素(但しイツトリウムを含む)と遷移金属、及び
ボロンを基本成分とする合金を溶解し、軟磁性体、また
は磁石と接合して使う材料でできた鋳型に鋳造する工程
、鋳造インゴットを鋳型ごと500℃以上で熱間加工を
施し、その後250℃以上の温度で熱処理を行い製造さ
れた希土類磁石を使用したことを特徴とする。
In addition, the magnetic sealed container of the present invention is used as a permanent magnet by melting an alloy whose basic components are rare earth elements (including yttrium), transition metals, and boron, and bonding it with a soft magnetic material or a magnet. It is characterized by using a rare earth magnet manufactured by performing a process of casting into a mold made of the material, hot working the cast ingot together with the mold at a temperature of 500°C or higher, and then heat treatment at a temperature of 250°C or higher.

[実施例コ 第1図に本発明による磁石式密閉容器の一実施例の斜視
図を示す、希土類、遷移金属およびボロンを主成分とす
る永久磁石1を密閉容器本体2に封入した例である。密
閉容器蓋部には密閉容器本体に封入された永久磁石に対
応する・位置に軟磁性材料が封入され永久磁石との間に
磁気的吸引力を発生し密閉容器本体と蓋部の密閉を行な
う、 第1表に本発明で作製した合金の組成を示す。
[Example 1] Fig. 1 shows a perspective view of an embodiment of a magnetic sealed container according to the present invention. This is an example in which a permanent magnet 1 whose main components are rare earths, transition metals, and boron is enclosed in a sealed container body 2. . A soft magnetic material is sealed in the sealed container lid at a position corresponding to the permanent magnet sealed in the sealed container body, which generates a magnetic attraction force between the permanent magnet and the sealed container body and the lid. Table 1 shows the composition of the alloy produced according to the present invention.

第1表 ただし、磁石の組成としては表1に示した組成に限らず
、希土類金属としては、Y、  La、  Ce。
Table 1 However, the composition of the magnet is not limited to those shown in Table 1, and the rare earth metals include Y, La, and Ce.

Pr、  Nd13m% Eu% Gd、  Tb% 
DV。
Pr, Nd13m% Eu% Gd, Tb%
DV.

Ho、Er、Tm、Yb、Luが候補として挙げられ、
これらの内1種類、あるいは2種類以上を組み合わせて
用いられる。最も高い磁気特性はPrで得られる。従っ
て実用的には、Pr、Pr−Nd、Ce−Pr−Nd合
金等が用いられる。
Ho, Er, Tm, Yb, Lu are listed as candidates,
One or a combination of two or more of these may be used. The highest magnetic properties are obtained with Pr. Practically, therefore, Pr, Pr-Nd, Ce-Pr-Nd alloys, etc. are used.

遷移金属としてはFe% C01Ni% Cu、  等
が候補として挙げられ、これらの内1・種類、あるいは
2種類以上を組み合わせて用いられる。また、小量の添
加元素、例えば重希土類のDy、Tb等や、Al、  
Si、Mo、Ga等は保磁力の向上に有効である。
Candidates for the transition metal include Fe% CO1Ni% Cu, etc., and one or more of these may be used, or a combination of two or more of these may be used. In addition, small amounts of additive elements such as heavy rare earths Dy, Tb, etc., Al,
Si, Mo, Ga, etc. are effective in improving coercive force.

R−TM−E系永久磁石の主相はR2T M + 4B
化合物相である。従ってRが8j!子%未満ではもはや
上・配化合物を形成せず、高い磁気性能は得られない、
一方、Rが30原子%を越えると非磁性のRリッチ相が
多くなり磁気特性は著しく低下する。
The main phase of R-TM-E permanent magnet is R2TM + 4B
It is a compound phase. Therefore, R is 8j! If it is less than %, it will no longer form a superposition compound and high magnetic performance will not be obtained.
On the other hand, when R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly.

従ってRの範囲は8〜3(l子%が適当である。Therefore, the range of R is 8 to 3 (l% is appropriate).

しかし、鋳造磁石とするため、好ましくは8〜25原子
%が適当である。
However, in order to form a cast magnet, it is preferably 8 to 25 atomic %.

BはR2T M Ia B化合物相を形成するための必
須元素であり、2原子%以下では菱面体のR−TM系に
なるために高い保磁力は望めない、また、28原子%を
越えるとBを含む非磁性相が多くなり、残留磁束密度は
著しく低下してくる。しかし、鋳造磁石としては好まし
くはBは8j!子%以下がよく、それ以上では特殊な冷
却を施さない限り微細なR2T M 14 B化合物相
を得ることが出来ず、適切な保磁力が得られない。
B is an essential element for forming the R2TM Ia B compound phase, and if it is less than 2 atom%, it becomes a rhombohedral R-TM system, so a high coercive force cannot be expected, and if it exceeds 28 atom%, B The amount of non-magnetic phase containing increases, and the residual magnetic flux density decreases significantly. However, as a cast magnet, B is preferably 8j! If it exceeds this value, a fine R2T M 14 B compound phase cannot be obtained unless special cooling is performed, and an appropriate coercive force cannot be obtained.

A1.Ga等は保磁力増大の効果を示す、しかしながら
、A1やGaは非磁性元素であるため、その添加量を増
すと残留磁束密度が低下し、A1では15原子%を越え
ると、Gaでは6原子%を越えるとハードフェライト以
下の残留磁束密度になってしまうので希土類磁石として
の目的を果たし得ない、よってA1の添加量は15原子
%以下、Gaは6原子%以下がよい。
A1. Ga etc. show the effect of increasing the coercive force. However, since A1 and Ga are non-magnetic elements, increasing the amount of addition decreases the residual magnetic flux density. %, the residual magnetic flux density becomes lower than that of hard ferrite, and the purpose of the rare earth magnet cannot be achieved. Therefore, the amount of A1 added is preferably 15 atomic % or less, and the amount of Ga is 6 atomic % or less.

第1表の組成となるように、希土類、遷移金属およびボ
ロンを秤量し、誘導加熱炉で溶解鋳造しし、鋳造インゴ
ットを純鉄のシースで覆う、これを950℃で熱間圧延
を施した。加゛工率は約80%である。その後1000
℃、24時間の熱処理を施し、切削研磨を行い磁石式密
閉容器用の磁石を製造した。第2表に本実施例で製造し
た永久磁石の磁気特性示す。
Rare earths, transition metals, and boron were weighed to have the composition shown in Table 1, melted and cast in an induction heating furnace, the cast ingot was covered with a sheath of pure iron, and this was hot rolled at 950°C. . The machining rate is about 80%. then 1000
℃ for 24 hours, cutting and polishing were performed to produce a magnet for a magnetic closed container. Table 2 shows the magnetic properties of the permanent magnet manufactured in this example.

第2表 (実施例2) 込み、冷却後上部に蓋を溶接し、950℃に加熱し、静
水圧押出を行なった。ついで熱処理及び切削研磨を行な
った例である。
Table 2 (Example 2) After cooling, a lid was welded to the top, heated to 950° C., and hydrostatic extrusion was performed. This is an example in which heat treatment and cutting and polishing were then performed.

このヨーク一体型磁石の磁気特性を第3表に示す。Table 3 shows the magnetic properties of this yoke-integrated magnet.

[発明の効果] 以上述べたように、本発明の磁石密閉容器は永久磁石と
して、鋳造インゴットを粉砕・焼結という工程を経るこ
となく熱処理を施すだけで十分な保磁力が得られ、永久
磁石の生産工程・を大幅に削減することができ、永久磁
石の生産性を高めることができるため、磁石式密閉容器
としての生産性も大幅に向上できる。
[Effects of the Invention] As described above, the sealed magnet container of the present invention can be used as a permanent magnet by simply heat-treating a cast ingot without going through the steps of crushing and sintering, and can be used as a permanent magnet. Since the production process can be significantly reduced and the productivity of permanent magnets can be increased, the productivity of magnetic sealed containers can also be greatly improved.

さらに、磁気特性としても最大エネルギー積が実施例1
では、23〜24 (MGOe)と従来のフェライト磁
石に比べ約10倍の磁気特性を持つため吸引力が強く体
積効率のよいの磁石式密閉容器を実現することが可能と
なる。
Furthermore, as a magnetic property, the maximum energy product of Example 1
Since it has a magnetic property of 23-24 (MGOe), about 10 times that of conventional ferrite magnets, it is possible to realize a magnetic sealed container with strong attractive force and good volumetric efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁石式密閉容器の斜視図。 第2図は従来の磁石式密閉容器の斜視図。 1・・・希土類磁石 2・・・密閉容器本体 3・・・シール材 以上 出願人 セイコーエプソン株式会社 FIG. 1 is a perspective view of a magnetic sealed container according to the present invention. FIG. 2 is a perspective view of a conventional magnetic sealed container. 1...Rare earth magnet 2... Airtight container body 3...Sealing material that's all Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)容器本体の縁部もしくは蓋部の縁部のどちらか一
方に永久磁石を封入し、他の一方には磁性材料を封入し
た磁石式密閉容器において、前記永久磁石として、希土
類元素(但しイットリウムを含む)と遷移金属、及びボ
ロンを基本成分とする合金を溶解、鋳造する工程、つい
で鋳造インゴットを軟磁性体で覆い、500℃以上で熱
間加工を施し、その後250℃以上の温度で熱処理を行
い製造された希土類磁石を使用したことを特徴とする磁
石式密閉容器。
(1) In a magnetic sealed container in which a permanent magnet is enclosed in either the edge of the container body or the edge of the lid, and a magnetic material is enclosed in the other, the permanent magnet is a rare earth element (however, A process of melting and casting an alloy whose basic components are yttrium (including yttrium), transition metals, and boron, then covering the cast ingot with a soft magnetic material, hot working at a temperature of 500°C or higher, and then hot working at a temperature of 250°C or higher. A magnetic sealed container characterized by using a rare earth magnet manufactured through heat treatment.
(2)容器本体の縁部もしくは蓋部の縁部のどちらか一
方に永久磁石を封入し、他の一方には磁性材料を封入し
た磁石式密閉容器において、前記永久磁石として、希土
類元素(但しイットリウムを含む)と遷移金属、及びボ
ロンを基本成分とする合金を溶解し、軟磁性体、または
磁石と接合して使う材料でできた鋳型に鋳造する工程、
鋳造インゴットを鋳型ごと500℃以上で熱間加工を施
し、その後250℃以上の温度で熱処理を行い製造され
た希土類磁石を使用したことを特徴とする磁石式密閉容
器。
(2) In a magnetic sealed container in which a permanent magnet is enclosed in either the edge of the container body or the edge of the lid, and a magnetic material is enclosed in the other, the permanent magnet is a rare earth element (however, The process of melting an alloy whose basic components are yttrium (including yttrium), transition metals, and boron, and casting it into a mold made of a soft magnetic material or a material used in conjunction with a magnet;
A magnetic closed container characterized by using a rare earth magnet produced by hot working a cast ingot together with the mold at a temperature of 500°C or higher, and then heat treating it at a temperature of 250°C or higher.
JP63140968A 1988-06-08 1988-06-08 Magnet-type closed container Pending JPH01308757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140968A JPH01308757A (en) 1988-06-08 1988-06-08 Magnet-type closed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140968A JPH01308757A (en) 1988-06-08 1988-06-08 Magnet-type closed container

Publications (1)

Publication Number Publication Date
JPH01308757A true JPH01308757A (en) 1989-12-13

Family

ID=15281015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140968A Pending JPH01308757A (en) 1988-06-08 1988-06-08 Magnet-type closed container

Country Status (1)

Country Link
JP (1) JPH01308757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680761A1 (en) * 1991-09-04 1993-03-05 Reboul Smt Tubular package with magnetic closure
KR20170087539A (en) * 2008-08-11 2017-07-28 엠티에이치 맥그리드 테크놀로지스 홀딩 리미티드 Self-actuating closure mechanisms for closable articles
JP2018529435A (en) * 2015-09-25 2018-10-11 イーエルシー マネージメント エルエルシー Magnetic closure system for containers having rod-shaped applicator and wiper
CN115044965A (en) * 2022-07-19 2022-09-13 宁夏中晶半导体材料有限公司 Doping device for crystal pulling by CZ method and using method thereof
FR3126404A1 (en) * 2021-08-30 2023-03-03 Ecs France Magnet Engineering CONTAINER WITH AUTOMATIC MAGNETIC LOCKING LID

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680761A1 (en) * 1991-09-04 1993-03-05 Reboul Smt Tubular package with magnetic closure
KR20170087539A (en) * 2008-08-11 2017-07-28 엠티에이치 맥그리드 테크놀로지스 홀딩 리미티드 Self-actuating closure mechanisms for closable articles
JP2018529435A (en) * 2015-09-25 2018-10-11 イーエルシー マネージメント エルエルシー Magnetic closure system for containers having rod-shaped applicator and wiper
FR3126404A1 (en) * 2021-08-30 2023-03-03 Ecs France Magnet Engineering CONTAINER WITH AUTOMATIC MAGNETIC LOCKING LID
CN115044965A (en) * 2022-07-19 2022-09-13 宁夏中晶半导体材料有限公司 Doping device for crystal pulling by CZ method and using method thereof
CN115044965B (en) * 2022-07-19 2023-11-03 宁夏中晶半导体材料有限公司 Doping device for CZ method crystal pulling and application method thereof

Similar Documents

Publication Publication Date Title
JP6419812B2 (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH01308757A (en) Magnet-type closed container
JPS62198103A (en) Rare earth-iron permanent magnet
KR101878078B1 (en) MAGNETIC SUBSTANCES BASED ON Fe-Mn-Bi, FABRICATION METHOD THEREOF, SINTERED MAGNET BASED ON Fe-Mn-Bi AND ITS FABRICATION METHOD
Saito Production of bulk materials of an Nd/sub 4/Fe/sub 77.5/B/sub 18.5/alloy and their magnetic properties
JP3622550B2 (en) Anisotropic exchange spring magnet powder and method for producing the same
JPH07176418A (en) High-performance hot-pressed magnet
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH058562B2 (en)
JPS62281403A (en) Permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH0142338B2 (en)
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH04187722A (en) Production of permanent magnet
JPH044384B2 (en)
JPH023203A (en) Permanent magnet and its manufacture
KR20240030497A (en) METHOD OF PREPARING Fe-BASED PERMANENT MAGNET AND Fe-BASED PERMANENT MAGNET THEREFROM
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPS63114105A (en) Permanent magnet and manufacture thereof
JPH0422105A (en) Method of manufacturing permanent magnet
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy