JPH01304400A - Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray - Google Patents

Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray

Info

Publication number
JPH01304400A
JPH01304400A JP13458588A JP13458588A JPH01304400A JP H01304400 A JPH01304400 A JP H01304400A JP 13458588 A JP13458588 A JP 13458588A JP 13458588 A JP13458588 A JP 13458588A JP H01304400 A JPH01304400 A JP H01304400A
Authority
JP
Japan
Prior art keywords
substrate
layer
rays
reflecting mirror
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13458588A
Other languages
Japanese (ja)
Inventor
Masami Hayashida
林田 雅美
Yoshiaki Fukuda
福田 恵明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13458588A priority Critical patent/JPH01304400A/en
Publication of JPH01304400A publication Critical patent/JPH01304400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To produce the reflecting mirror having high reflectivity to X-rays and vacuum UV rays by setting the rate of forming multilayered film at about from 0.1Angstrom /S to 5Angstrom /S. CONSTITUTION:A silicon substrate (2''phi, 10mmt) worked to surface accuracy lambda/20 (lambda=6,328Angstrom ) is polished by diamond paste. The material 1 of the same lot as the material 1 with which the surface roughness is measured is then mounted to an ion beam sputtering device which can make evacuation to 8X10<-7>Torr ultimate vacuum degree by using a substrate holder in which 18 deg.C cooling water passes on the rear surface of the substrate 1. The alternate layers of Mo and Si are formed to 41 layers at 0.2Angstrom /S vapor deposition rate under the conditions of 1kV acceleration voltage of an ion beam, 20mA ion current and 2X10<-4>Torr gaseous argon pressure. The layer right above the substrate 1 and the extreme surface layer are formed of the Mo and the respective film thicknesses are specified to 27Angstrom of the Mo and 36Angstrom of the Si to obtain the reflecting mirror. The reflecting mirror having the high reflectivity is produced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学装置、特にX線から真空紫外線と称される
波長200nm以下の光を対象とし、入射角が鏡面に対
し垂直に近い正入射反射鏡の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to optical devices, particularly to light from X-rays to vacuum ultraviolet light with a wavelength of 200 nm or less, and whose incident angle is normal incidence close to perpendicular to a mirror surface. The present invention relates to a method for manufacturing a reflecting mirror.

〔従来の技術〕[Conventional technology]

従来、真空紫外と称される領域より短波長の光に対して
、面に垂直もしくはそれに近い角度で入射したときに高
い反射率を有するよな反射鏡は存在せず、垂直入射に近
い入射角でも1%以下の反射率しか得られていなかった
Conventionally, there has been no reflector that has a high reflectance for light with a wavelength shorter than the vacuum ultraviolet region when it is incident at or near normal incidence to the surface; However, the reflectance was only 1% or less.

一方、比較的高い反射率を有する斜入射反射鏡でさえも
入射角を鏡面から1°以下もしくは2〜3°の範囲に調
整する必要があった。そしてこれでも光束を面に対し小
さい角度で入射させるために細い光束に対しても非常に
大きな反射面を必要とし、その装置の使用は困難かつ限
定されるものであった。
On the other hand, even with a grazing incidence reflector having a relatively high reflectance, it is necessary to adjust the incident angle to 1° or less or within a range of 2 to 3° from the mirror surface. Even with this, a very large reflecting surface is required even for a narrow beam in order to make the beam incident on the surface at a small angle, making the use of this device difficult and limited.

また、斜入射鏡では光学系構成の自由度が少なく、反射
鏡の作製に関しても大面積にわたり高精度の平面度が要
求され実際の使用にあたっても制限が多かった。なお、
可視域から2000人の波長域では多層薄膜の干渉を利
用した多層膜の反射鏡が提案されている。例えば第2図
に反射率特性を示したように2000Å以上の可視域て
はMgF2とZnSなどを初めとする2つの誘電体の組
合せで多層交互層を形成させてほぼ80〜100%の反
射率が正入射て得られている。
In addition, in the case of an oblique incidence mirror, there is little freedom in the configuration of the optical system, and when manufacturing a reflecting mirror, highly accurate flatness is required over a large area, which has many limitations in actual use. In addition,
In the visible to 2000 wavelength range, a multilayer reflector that utilizes the interference of multilayer thin films has been proposed. For example, as shown in Figure 2, the reflectance characteristics are approximately 80-100% reflectance in the visible range of 2000 Å or more by forming a multilayer alternating layer of a combination of two dielectric materials such as MgF2 and ZnS. is obtained at normal incidence.

しかしながら誘電体交互層の場合には2000Å以下の
波長域では吸収が急激に増加し1000Å以下では反射
鏡として使用できる材料の組合せはほとんと存在しなく
なる。またAA、Au、Pt等の金属単層膜でも700
人より短い波長ではλ4に比例して急激に反射率が減少
し、500人さらに200人より短い波長域では1%以
下の反射率しか正入射ては得られない。
However, in the case of alternating dielectric layers, absorption increases rapidly in a wavelength range of 2000 Å or less, and there are almost no combinations of materials that can be used as a reflecting mirror in wavelengths of 1000 Å or less. Also, even metal single layer films such as AA, Au, Pt etc.
At wavelengths shorter than a person's wavelength, the reflectance decreases rapidly in proportion to λ4, and at wavelengths shorter than 500 people and even shorter than 200 people, only a reflectance of 1% or less can be obtained at normal incidence.

一方、異なる複素屈折率をもつ2つの金属材料を交互に
積層した金属多層膜反射鏡が試みられるようになってい
るが、X線および真空紫外光の領域ではほとんどの物質
についてその反射率は吸収を表わす虚数部分Kをもつ複
素屈折率(n + i k、以下屈折率と呼ぶ)で表わ
され、実数部分nはほぼ]、、0(n=1−δ、δ= 
I O−’ 〜l 0−3)となるため真空と物質薄膜
との境界におけるフレネルの反射率は非常に小さく0.
1%以下のオーダーである。また異種材料の積層薄膜の
境界においても反射率は単一の境界面あたり数%を越え
ることが無い。
On the other hand, attempts have been made to create a metal multilayer reflector in which two metal materials with different complex refractive indexes are alternately laminated, but in the X-ray and vacuum ultraviolet light regions, most materials have an absorption coefficient. It is expressed as a complex refractive index (n + i k, hereinafter referred to as refractive index) with an imaginary part K representing
I O-' ~ l 0-3), so the Fresnel reflectance at the boundary between the vacuum and the material thin film is very small and 0.
It is on the order of 1% or less. Further, even at the boundary between laminated thin films of different materials, the reflectance does not exceed several percent per single boundary surface.

しかるに、異種材料を交互に多層積層構造とし、各々の
層境界からの反則光が干渉により強め合い、多層膜全体
としての反射率が最大となるような膜厚構成をとること
により、高い反射率を得ることが可能となる。さらに隣
接する眉間での屈折率の差が大きくなるよな異種材料の
組合せを選択し、先の膜厚構成と合せて反射率の高い反
射鏡が実現できることが知られている。
However, by creating a multilayered structure in which different materials are alternately stacked, and by adopting a film thickness configuration that maximizes the reflectance of the multilayer film as a whole by reinforcing the reflected light from each layer boundary through interference, a high reflectance can be achieved. It becomes possible to obtain. Furthermore, it is known that by selecting a combination of different materials that increases the difference in refractive index between adjacent glabellar areas, and by combining this with the above-mentioned film thickness configuration, it is possible to realize a reflecting mirror with a high reflectance.

現在までに多層膜の構成につき知られている4月料の組
合せとしては、低屈折率材料として遷移金属があり、高
屈折率材料としての多くは炭素、シリコン等の半導体元
素を用いたものであった。代表例な例をあげると、タン
グステン(W)と炭素(C)との組合せやモリ7デン(
M o )とシリコン(Sl)の組合ぜ等がある。
The combinations of materials known to date for the composition of multilayer films include transition metals as low refractive index materials, and most of the high refractive index materials use semiconductor elements such as carbon and silicon. there were. Typical examples include the combination of tungsten (W) and carbon (C), and the combination of tungsten (W) and carbon (C).
There are combinations of M o ) and silicon (Sl), etc.

この種の多層膜反射鏡において高い反射率を得るために
は、基板表面と、作成された多層膜反射鏡の各層とそれ
に隣接する層の界面及び作製された多層膜反射鏡の表面
の而荒さを小さくすることが重要である。
In order to obtain a high reflectance in this type of multilayer reflector, it is necessary to have roughness on the substrate surface, the interface between each layer of the multilayer reflector and its adjacent layer, and the surface roughness of the multilayer reflector. It is important to reduce the

一般に多層膜の各層とそれに隣接する層の境界に荒れが
ある場合の反射率は、理想的な界面をもつ場合の反射率
に対して次式により与えられる。
Generally, the reflectance when there is roughness at the boundary between each layer of a multilayer film and its adjacent layer is given by the following equation relative to the reflectance when the interface is ideal.

IS/I7 =eXp [−(2yr m σ/d)2
]ここに ■8・界面に荒れがある場合の反射率、IT  界面に
荒れがない場合の反射率、m3反射次数、 σ 界面の粗さ(y m s値)、 d:周期膜厚。
IS/I7 = eXp [-(2yr m σ/d)2
]Here ■8・Reflectance when the interface is rough, IT Reflectance when the interface is not rough, m3 Reflection order, σ Roughness of the interface (y m s value), d: Periodic film thickness.

図2にσ/dに対するIS/I0を示す。これによれば
m = 1ではa / dが0.]のとき、■8は■1
の70%弱に、0.2では20%にまで減少してしまう
FIG. 2 shows IS/I0 versus σ/d. According to this, when m = 1, a/d is 0. ], ■8 becomes ■1
At 0.2, it decreases to just under 70%, and to 20% at 0.2.

従って界面の荒れ(粗さで表示)σを可能な限り小さく
することが必要である。
Therefore, it is necessary to minimize the roughness (expressed as roughness) of the interface σ.

面荒れを測定評価する手段としては、例えばヘテロダイ
ン干渉式面粗さ計等の広い領域(数平方μm)の荒さを
平均する方式の面粗さ#1によって基板上に作製された
多層膜反射鏡の表面の面粗さを測定し間接的に界面の荒
れを判断する方式がとられている。この方式では広い領
域での平均化された情報しか得られないばかりでなく、
多層膜反射鏡の各層とそれに隣接する眉の界面の面粗さ
については直接には全く知ることができない。特に各層
とそれに隣接する層の界面及び表面の面に平行な方向に
数A以上数千Å以下の大きさを持つ凹凸は回折したX線
・真空紫外線の位相ずれをひきおこし、干渉的に反射率
の低減をまね(が、」1記のような面粗さの測定方法で
はこれらの情報は間接的には全く知ることができなかっ
た。従って各層とそれに隣接する層の界面及び表面の面
に平行に数人以」二数千Å以下の大きさをもつ凹凸につ
いては名慮が払われず、従ってそのような凹凸の発生ず
る原因の追及やそれらを抑えるための工夫もされていな
かった。
As a means of measuring and evaluating surface roughness, for example, a multilayer film reflecting mirror fabricated on a substrate with surface roughness #1 of a method that averages roughness over a wide area (several μm) such as a heterodyne interferometric surface roughness meter is used. A method is used to indirectly determine the roughness of the interface by measuring the surface roughness of the surface. This method not only provides information averaged over a wide area, but also
It is impossible to directly know the surface roughness of the interface between each layer of the multilayer reflector and the eyebrows adjacent to it. In particular, unevenness with a size of several amps or more and several thousand angstroms or less in the interface between each layer and the adjacent layer and in the direction parallel to the surface plane causes a phase shift of diffracted X-rays and vacuum ultraviolet rays, and interferes with the reflectance. However, with the surface roughness measurement method described in Section 1, it was not possible to obtain this information indirectly. No consideration was given to irregularities with a size of less than 2,000 angstroms, which could be caused by several people parallel to each other, and therefore no efforts were made to investigate the causes of such irregularities or to suppress them.

〔発明が解決しようとしている問題点〕近年透過電子顕
微鏡による断面観察が薄膜の有力な解析手段となってい
るが、X線・真空紫外線用多層膜反射鏡についても透過
電子顕微鏡観察を行えば、反n=1率の低かった試料で
は界面の凹凸が下層から上層へ伝搬し、柱状構造を形成
している様子が観察された。これは蒸着粒子が基板に付
着した後に凝集して島状構造を形成し、次層が蒸着され
るとその島の上に島を形成する形で成長してゆくためと
考えられる。このため界面に荒れが発生ずるばかりでは
なく、荒れが−に層へ行くほど拡大されてい(という結
果になる。またこのような現象のおきた試料では、電子
線回折で結晶性を評価すると島状構造をとっている層が
結晶化している場合か多かった。つまり、下地とのイ」
着エネルギーよりもbl集エネルギーの大きい物質を蒸
着した場合、蒸着粒子は基板上で凝集して島状横状を形
成し、その際に結晶化をおこすといえる。また島状構造
を形成しなくても結晶化がおこった場合には、必ず結晶
粒界が形成されるが、その結晶粒界の境界には凹凸が発
生ずる。
[Problem to be solved by the invention] In recent years, cross-sectional observation using a transmission electron microscope has become an effective means of analyzing thin films. In the sample with a low anti-n=1 ratio, it was observed that the unevenness at the interface propagated from the lower layer to the upper layer, forming a columnar structure. This is thought to be because the deposited particles aggregate to form an island-like structure after adhering to the substrate, and when the next layer is deposited, they grow to form islands on top of the next layer. As a result, not only does a roughness occur at the interface, but the roughness is also expanded toward the layer.Furthermore, in samples where this phenomenon occurs, when the crystallinity is evaluated by electron beam diffraction, the roughness is In many cases, the layer with a similar structure was crystallized.In other words, the layer had a similar structure to the base.
When a substance having a larger BL concentration energy than the deposition energy is deposited, the deposited particles aggregate on the substrate to form horizontal islands, and crystallization occurs at this time. Further, when crystallization occurs even without the formation of an island structure, grain boundaries are always formed, but irregularities occur at the boundaries of the grain boundaries.

従って高い反射率を有する反射鏡を作製するためには蒸
着粒子の凝集を抑え、島状構造や結晶粒界による、各層
とそれに隣接する層の界面の凹凸を低減させる必要があ
る。特に積層成膜された各薄膜層の表面及びその境界面
は、すでに本出願人により出願されている特許出願(特
願昭62−249696及び特願昭62−249697
 )に示されるように、その面粗さのr m s値が使
用波長の1/8以下であることが、反射光の位相の乱れ
を抑えるために必要である。
Therefore, in order to produce a reflecting mirror with high reflectance, it is necessary to suppress aggregation of deposited particles and reduce irregularities at the interface between each layer and its adjacent layer due to island structures and crystal grain boundaries. In particular, the surfaces of the laminated thin film layers and their interfaces are known from the patent applications already filed by the present applicant (Japanese Patent Application No. 62-249696 and Japanese Patent Application No. 62-249697).
), it is necessary that the r m s value of the surface roughness be 1/8 or less of the wavelength used in order to suppress the phase disturbance of the reflected light.

従来はこのような滑らかな薄膜表面の形成について特別
な考慮が払われておらず、またその形成方法についても
詳細に検問されたことはなかった。
Conventionally, no special consideration has been given to the formation of such a smooth thin film surface, and the method for forming it has never been examined in detail.

本発明ではこれらの凹凸を低減させる方法を提案し、X
線・真空紫外線に対して高い反射率をもつ多層膜反射鏡
の製造方法を提供することが目的である。
In the present invention, we propose a method to reduce these unevenness, and
The purpose of this invention is to provide a method for manufacturing a multilayer reflector that has high reflectance for line and vacuum ultraviolet rays.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によれば、互いに異なる屈折率の物質の交互層よ
りなる多層構造の反射鏡を基板」二に有するX線・真空
紫外線用多層膜反射鏡の製法において、その多層膜の形
成がイオン・ビーム・スパッタリング法を用いて行われ
、かつその膜の生成速度が01λ/Sから5Å/Sの程
度に設定することにより実現できる。
According to the present invention, in the method for manufacturing a multilayer reflector for X-rays and vacuum ultraviolet light, which has a reflector with a multilayer structure consisting of alternating layers of substances having different refractive indexes on a substrate, the formation of the multilayer film is performed using ion beams. This can be achieved by using a beam sputtering method and setting the film formation rate to about 01 λ/S to 5 Å/S.

すなわぢ、イオン・ビーム・スパッタリング装置におい
ては、スパッタリングに必要なイオンを生成する部分と
イオン・ビームが照射せられるべきターゲット及びター
ゲットより飛来する原子または分子の41着する基板と
が置かれている部分とが分離されており、基板が直接イ
オン化のためのプラズマに曝されることがない。また、
プラズマ領域から直接飛来するイオン化粒子の数は少な
(、プラズマからの熱輻射による基板加熱も少なく、結
果として基板温度が」1昇することが少ない。従ってス
パッタリングされたターゲットからの原子または分子の
単位時間あたりに飛来する量のみを制御することにより
、付着粒子の凝集を抑えることが可能であり基板上に非
晶質膜を形成することができる。イオン・ビーム・スパ
ッタリングによる成膜にあっては上述の如く基板の温度
上昇が大きくないため通常は水冷等により室温イ」近に
保持すれば十分であるが、より加熱の影響を除去するた
めには、他の冷媒あるいは冷却装置等を用いて、室温以
下に冷却すればよい。
In other words, in an ion beam sputtering device, a part that generates the ions necessary for sputtering, a target to be irradiated with the ion beam, and a substrate on which atoms or molecules flying from the target are placed are placed. The substrate is not directly exposed to plasma for ionization. Also,
The number of ionized particles that fly directly from the plasma region is small (there is also less heating of the substrate by thermal radiation from the plasma, and as a result, the substrate temperature is less likely to rise).Therefore, there are fewer atomic or molecular units from the sputtered target. By controlling only the amount of flying particles per hour, it is possible to suppress the agglomeration of adhered particles and form an amorphous film on the substrate.For film formation by ion beam sputtering, As mentioned above, since the temperature rise of the board is not large, it is usually sufficient to maintain it near room temperature by water cooling, etc., but in order to further eliminate the influence of heating, it is necessary to use other refrigerants or cooling devices. , it may be cooled to below room temperature.

また、成膜方法として電子ビーム蒸着法を用いることも
可能である。これによるときは、通常蒸着物質を熔融す
るためのるつぼが基板の下方に遮蔽物なく配置されてお
り、蒸着時には基板が常にるつぼを望むようになってい
る。さらに、X線・真空紫外線用多層膜反射鏡は、光源
としてシンクロトロン放射光のように強度の大きい光源
を用いることが多く、その際に損傷を防ぐ意味からも膜
材料として高融点金属または化合物を使用することが多
い。そのためるつぼの温度は2000度を越えることも
稀ではなく、るつぼからの黒体輻射により基板が著しく
加熱されるのが通常である。例えばモリブデンを電子ビ
ーム蒸着をすると、るつぼから〜60cm離れて配置し
である基板は容易に〜50℃まで上昇する。従って局所
的な結晶化を防ぎ島状構造の発生を抑制して非晶質膜を
得るためには基板を冷却することにより、基板温度をマ
イナス200℃乃至マイナス50℃の程度に保って成膜
すれば目的は達せられる。電子ビーム蒸着法においても
蒸着の速度が大きくなってゆくと島状に成長する確率が
増えてしまうため5Å/S程度を越えない方が望ましい
。特に多層膜の厚さが20〜30人であるため堅い速度
で成膜すると十分に正確かつ精密な膜厚制御が困難とな
り膜質は好ましいものが得られたとしても、実質的には
使用不可能な膜厚となってしまうことがある。
Further, it is also possible to use an electron beam evaporation method as a film forming method. In this case, a crucible for melting the vapor deposition material is usually placed below the substrate without any obstruction, and the substrate always faces the crucible during vapor deposition. Furthermore, multilayer reflectors for X-rays and vacuum ultraviolet rays often use high-intensity light sources such as synchrotron radiation, and in order to prevent damage, high-melting point metals or compounds are used as the film material. is often used. Therefore, it is not uncommon for the temperature of the crucible to exceed 2000 degrees Celsius, and the substrate is usually significantly heated by blackbody radiation from the crucible. For example, when e-beam evaporating molybdenum, a substrate placed ~60 cm from the crucible can easily reach ~50°C. Therefore, in order to prevent local crystallization and suppress the formation of island-like structures to obtain an amorphous film, the substrate temperature must be maintained at about -200°C to -50°C by cooling the substrate. If you do, you will achieve your goal. Even in the electron beam evaporation method, as the evaporation rate increases, the probability of island-like growth increases, so it is preferable not to exceed about 5 Å/S. In particular, since the thickness of a multilayer film is 20 to 30 layers, it is difficult to control the film thickness sufficiently accurately and precisely if the film is formed at a rigid speed, and even if a desirable film quality is obtained, it is practically unusable. This may result in a thick film.

従来例における問題点を解決するためには行われる上記
成膜方法によれば、蒸着物質の凝集を防ぎ、島状構造あ
るいは微結晶粒界の形成を抑制し境界面における凹凸を
抑えることが可能となる。各層の形成時に蒸着物質が凝
集せずに均一に非晶質状態で積層されてゆけば、これら
の凹凸は発生せず、平滑な界面を形成することができる
According to the above film formation method, which is used to solve the problems in the conventional method, it is possible to prevent the agglomeration of the deposited material, suppress the formation of island structures or microcrystalline boundaries, and suppress unevenness at the interface. becomes. If the vapor deposited substances do not aggregate during the formation of each layer and are uniformly laminated in an amorphous state, these unevenness will not occur and a smooth interface can be formed.

以下本発明を図面を参照しつつ詳細に説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明のX線・真空紫外線用多層膜反射鏡の断
面の模式図である。ここでは、基板lの上に互いに屈折
率の異なる第1の物質の層2,4.・・および第2の物
質の層3,5.・・・が交互に厚さをそれぞれd2.d
4.・・・およびd3.d5.・・・とじて積層されて
いる。本発明の反射鏡においては、界面の荒れをできる
だけ小さ(抑えるために多層膜を構成している層がすべ
て非晶質であることが望ましい。しかし構成している層
のうちの1つでも非晶質であれば、各層間の界面の荒れ
を低減させることができる。界面の荒れは、しばしば」
二層へ伝搬する性質を持っているので、非晶質の層が入
ることによってその伝搬を妨げるからである。
FIG. 1 is a schematic cross-sectional view of a multilayer reflector for X-rays and vacuum ultraviolet rays according to the present invention. Here, layers 2, 4 . . . of first materials having mutually different refractive indexes are formed on a substrate l. ... and second material layers 3, 5 . ... alternately increase the thickness by d2. d
4. ...and d3. d5. ...They are stacked together. In the reflective mirror of the present invention, it is desirable that all the layers constituting the multilayer film be amorphous in order to minimize the roughness of the interface. However, even if one of the constituting layers is amorphous, If it is crystalline, it is possible to reduce the roughness of the interface between each layer.The roughness of the interface often occurs.
This is because the amorphous layer has the property of propagating to two layers, so the introduction of the amorphous layer prevents the propagation.

多層膜を構成する膜を非晶質とするためには、構成物質
の選択、成膜方法の選択、蒸着材料の高純度化、非晶質
膜形成を促進する材料の添加等の方法があるが、イオン
・ビーム・スパッタリング法を用い、低い蒸着速度で成
膜するか、または電子ビーム蒸着法を用い、十分に基板
を冷却して成膜することが特に有効な手段である。
In order to make the films constituting the multilayer film amorphous, there are methods such as selection of constituent materials, selection of film formation method, high purity of vapor deposition materials, and addition of materials that promote amorphous film formation. However, particularly effective means are to use ion beam sputtering to form a film at a low deposition rate, or to use electron beam evaporation to sufficiently cool the substrate.

また多層膜を積層するための基板1の表面は、製作され
た鏡面の組み込まれた光学器械の用途に応じて、平面・
凸面・凹面・非球面形状に加工され、ダイヤモンド・ペ
ーストによる研磨を経た後、フローティング研磨法、化
学研磨法、超高真空中において基板材料の融点よりわず
かに低い温度における長時間加熱、またはフラッシュ加
熱などにより充分な面粗さにおさまるまで繰り返し研磨
する。
The surface of the substrate 1 on which the multilayer film is laminated may be flat or
After processing into convex, concave, or aspherical shapes and polishing with diamond paste, floating polishing, chemical polishing, long-term heating in an ultra-high vacuum at a temperature slightly lower than the melting point of the substrate material, or flash heating Repeat polishing until the surface has a sufficient roughness.

この過程では基板表面に何着した不純物も除去される。In this process, any impurities deposited on the substrate surface are also removed.

また、基板表面の荒れが多層膜に影響を与えないように
、基板表面と多層膜との間に緩衝層を設けることも有効
である。
It is also effective to provide a buffer layer between the substrate surface and the multilayer film so that the roughness of the substrate surface does not affect the multilayer film.

本発明のX線・真空紫外線用多層膜反射鏡が発現する反
則率は、交互層を形成する屈折率の異なる2種の物質の
屈折率の差、各層の吸収率、積層される層の数、照射す
る光の波長等によって異なるが、その屈折率の差は例え
ば層数を100層対とすると実用的には少な(とも0.
01以上あることが望ましい。
The fouling rate exhibited by the multilayer reflector for X-rays and vacuum ultraviolet rays of the present invention is determined by the difference in refractive index of two materials with different refractive indexes forming alternating layers, the absorption rate of each layer, and the number of laminated layers. The difference in refractive index varies depending on the wavelength of the irradiated light, etc., but the difference in refractive index is practically small when the number of layers is, for example, 100 (0.
It is desirable that the number is 01 or more.

交互層の各層に屈折率の差をもたせるためには本発明て
対象とするX線・真空紫外線の領域の光に対して高屈折
率の物質と低屈折率の物質とを用いて交互層を形成すれ
ばよい。
In order to provide each layer of the alternating layers with a difference in refractive index, the alternating layers are made of a material with a high refractive index and a material with a low refractive index for light in the X-ray/vacuum ultraviolet region, which is the object of the present invention. Just form it.

各々の層の平均化した膜厚d2.d3.・・・は対象と
なる波長のほぼ1/4であり、交互に同一の膜質よりな
る積層膜であって、その膜厚は各層間の境界における反
射光がすべて強め合うように干渉する条件を満たすか、
もしくは、各層内における吸収損と位相ずれによる反射
率低下を比較したときに多層膜全体としての反射率の低
下がより少なくなる条件を満たずかのいずれかあるいは
両方により決まるものとする。その際、膜厚は同一材料
層についてはすべて等しくしても良いし各層毎に変化さ
せ反射率が最大となるような必ずしも等しくはない厚さ
としても良い。
Average film thickness d2 of each layer. d3. ... is approximately 1/4 of the target wavelength, and is a laminated film made of the same film quality alternately, and the film thickness is set to satisfy the condition that all reflected light at the boundary between each layer interferes constructively. Satisfy or
Alternatively, it is determined by either or both of satisfying the condition that the decrease in reflectance of the multilayer film as a whole is smaller when comparing absorption loss in each layer and decrease in reflectance due to phase shift. In this case, the film thickness may be the same for all layers of the same material, or may be changed for each layer so that the thickness is not necessarily equal so as to maximize the reflectance.

積層の構成としては、基体または真空に接する層である
最終層の屈折率と基体または真空の屈折率との差が大き
くなる材料を選択することが望ましい。また基板と基板
に接する層との屈折率の差が太き(なるようにすること
も好ましい。
For the laminated structure, it is desirable to select a material that provides a large difference in the refractive index of the final layer that is in contact with the substrate or vacuum and the refractive index of the substrate or vacuum. It is also preferable that the difference in refractive index between the substrate and the layer in contact with the substrate is large.

また交互層の層数が多いほど反射率は増大するための層
数は5層対以上あることが好ましいが、あまり多くなる
と吸収層の影響が顕著となるため、作製の容易さも考慮
して200層対程度までが良い。また、最終層の」二に
は吸収の小さい安定な材料による保護層を設けてもよい
In addition, the reflectance increases as the number of alternating layers increases, so it is preferable that the number of layers be 5 or more, but if the number is too large, the influence of the absorbing layer will become significant, so considering the ease of fabrication, It's good up to the layer level. Further, a protective layer made of a stable material with low absorption may be provided as the final layer.

〔実施例〕〔Example〕

実施例1 面積度ス/20(λ−6328人)に加工したシリコン
基板(2“ φ、] Om m t )を、ダイヤモー
ド・ペーストにより研磨した。ヘテロダイン干渉式面粗
さ計で面粗さを測定したところr m s値て3.05
人であった。
Example 1 A silicon substrate (2"φ,] Om m t ) processed to an area density of S/20 (λ-6328) was polished using a diamond mode paste. The surface roughness was measured using a heterodyne interferometric surface roughness meter. When measured, the r m s value was 3.05.
It was a person.

面粗さを測定した基板と同一ロットの基板を到達真空度
8X10’torrに排気可能なイオン・ビーム・スパ
ッタリング装置に、基板の裏面が]8℃の冷却水を通水
した基板ホルダーを用いて基板を装着した。イオン・ビ
ームの加速電圧はI K V 、イオン電流20 m 
A 、アルゴン・ガス圧力2X10”torrの条件下
、蒸着速度0.2Å/SてMoとSiの交互層を41層
形成した。基板の直上の層及び最表面の層はMoとし、
それぞれの膜圧はMoが27人、Slが36人として反
射鏡Aを得た。
A substrate from the same lot as the substrate whose surface roughness was measured was placed in an ion beam sputtering device capable of evacuation to an ultimate vacuum of 8 x 10' torr, using a substrate holder with cooling water at 8°C passed through the back side of the substrate. I installed the board. The accelerating voltage of the ion beam is I K V and the ion current is 20 m
A, 41 alternating layers of Mo and Si were formed at a deposition rate of 0.2 Å/S under conditions of argon gas pressure of 2×10” torr. The layer directly above the substrate and the outermost layer were Mo;
Reflector A was obtained with a film thickness of 27 for Mo and 36 for Sl.

また実施例1と同様の基板上に反射鏡Aと同じ構造でR
Fマク゛ネトロン・スパッタリング装置を到達真空度]
、 X ] ]0−6torr、アルゴンガス圧力1×
1O−3torr、入射電力100W、反射電力5Wて
、MoとSiの多層膜反射鏡Bを作製した。このときの
成膜速度はMo、Si共0.2人であった。これらの反
射鏡A、Bについて透過電子顕微鏡でそれぞれの断面観
察を行った。反射鏡Aでは、Mo層、Si層が共に非晶
質であり、界面の粗さはr m s値で3.2人であっ
た。一方反射鏡BではSi層は非晶質であったが、Mo
層が島状構造は形成していないものの結晶化していた。
Also, on the same substrate as in Example 1, with the same structure as the reflecting mirror A,
Vacuum achieved by F-machinetron sputtering equipment]
, X] ]0-6 torr, argon gas pressure 1×
A multilayer reflective mirror B of Mo and Si was prepared at 10-3 torr, incident power of 100 W, and reflected power of 5 W. The film formation rate at this time was 0.2 for both Mo and Si. Each cross section of these reflecting mirrors A and B was observed using a transmission electron microscope. In reflecting mirror A, both the Mo layer and the Si layer were amorphous, and the roughness of the interface was 3.2 in r m s value. On the other hand, in reflecting mirror B, the Si layer was amorphous, but the Mo
Although the layers did not form an island structure, they were crystallized.

そして層面と平行な方向では100人程度、層面と垂直
な方向では膜厚程度(約25人)の結晶粒界を形成して
いた。このため界面の粗さはrms値で4.5人であっ
た。反射鏡A、  Bの結晶性はX線回折、電子線回折
によっても確認された。
In addition, grain boundaries were formed that were about 100 grains thick in the direction parallel to the layer plane and about 25 grains thick in the direction perpendicular to the layer plane. Therefore, the roughness of the interface was 4.5 in rms value. The crystallinity of reflecting mirrors A and B was also confirmed by X-ray diffraction and electron beam diffraction.

それぞれの多層膜反射鏡に波長124人の軟X線を面法
線から10’ の傾きて入射したところ、反射鏡Aては
65.2%の反射率が得られ、反射鏡Bに対しては、5
8.3%の反射率が得られた。この反射率の差は製法の
違いによる界面の粗さの差が原因であった。
When soft X-rays of 124 wavelengths were incident on each multilayer reflector at an angle of 10' from the surface normal, a reflectance of 65.2% was obtained for reflector A, and a reflectance of 65.2% for reflector B. 5
A reflectance of 8.3% was obtained. This difference in reflectance was caused by the difference in interface roughness due to the difference in manufacturing method.

実施例2 実施例1と同様な面精度、面粗さをもつ基板をイオン・
ビーム・スパッタリング装置にてイオン電流、蒸着速度
以外は全て同一条件でMo、Siを用いた多層膜反射鏡
を作製した。Mo、Siそれぞれの膜厚は27人および
36Aとした。イオン電流は30mA、蒸着速度は1Å
/Sとなるように制御した。
Example 2 A substrate with the same surface precision and roughness as Example 1 was ion-treated.
A multilayer reflector using Mo and Si was fabricated using a beam sputtering device under the same conditions except for the ion current and deposition rate. The film thicknesses of Mo and Si were 27 Å and 36 Å, respectively. Ion current is 30mA, deposition rate is 1Å
/S.

作製した反射鏡をX線回折装置にて評価したところ、M
o、Si層ともに結晶化を示すピークは観察されなかっ
た。透過電子顕微鏡による断面観察を行ったところ、界
面の凹凸は小さく粗さ値(rms値)で2.8Aであっ
た。この値は使用波長(設計波長)124人の1/16
よりも十分小さかった。実施例1と同様にシンクロトロ
ン放射光を分光して】24人の波長の軟X線を面法線か
ら1.2°の角度で入射したところ59.1%の反射率
を得た。
When the manufactured reflecting mirror was evaluated using an X-ray diffraction device, it was found that M
No peak indicating crystallization was observed in either the Si layer or the Si layer. When the cross section was observed using a transmission electron microscope, the unevenness of the interface was small and the roughness value (rms value) was 2.8A. This value is 1/16 of the wavelength used (design wavelength) of 124 people.
It was much smaller than. Synchrotron radiation was spectrally analyzed in the same manner as in Example 1, and soft X-rays of 24 wavelengths were incident at an angle of 1.2° from the normal to the surface, and a reflectance of 59.1% was obtained.

実施例3 実施例1と同様の面精度、面粗さをもつ熔融石英基板(
10mmt) 」二にイオン・ビーム・スパッタリング
法により多層膜を形成した。イオン・ビーム加速電圧I
KV、イオン電流100 m A、 、到達真空度8X
10=torr、  アルゴン・ガス圧力lXl0−3
torrの条件下でMo、Si多層膜を作製した。Mo
層。
Example 3 A fused silica substrate (
Second, a multilayer film was formed by ion beam sputtering. Ion beam acceleration voltage I
KV, ion current 100 mA, ultimate vacuum 8X
10=torr, argon gas pressure lXl0-3
A Mo, Si multilayer film was produced under torr conditions. Mo
layer.

Si層はそれぞれ21層および20層でその厚さはそれ
ぞれ26.9人および36人とした。作製した反射鏡を
透過電子顕微鏡にて観察したところ層界面の粗さはr 
m s値で5.3人であった。ヘテロダイン干渉式面粗
さ討て多層膜表面を測定したところrms値で5人であ
り使用波長の1/16より小さかった。
The Si layers were 21 layers and 20 layers, respectively, and their thicknesses were 26.9 and 36 layers, respectively. When the prepared reflecting mirror was observed with a transmission electron microscope, the roughness of the layer interface was r
The ms value was 5.3 people. When the surface roughness of the multilayer film was measured using the heterodyne interference method, the rms value was 5, which was smaller than 1/16 of the wavelength used.

同じイオン・ビーム・スパッタリング装置にて加速電圧
I K V、イオン電流150mA、到達真空度8X1
0−’torr、アルゴン・ガス圧力を3X10−3t
orrの条件下、蒸着速度10Å/SてMo、Siの交
互層41層を形成した。作製した反射鏡を電子線回折を
行ったところ、線状のMoの配向を示すパターンが観察
され、面内の様子を透過電子顕微鏡にて観察したところ
島状の構造が見られた。島の大きさはおよそ300 A
であり、而粗さはrms値で20人であった。反射特性
を評価するためにシンクロトロン放射光を分光し124
人の軟X線を面法線より10°の入射角にて入射し反則
率を測定した結果8.8%の値を得た。この値は設計値
65%に対して著しく低下しており、この低い値は面粗
さによるためてあった。
Using the same ion beam sputtering device, acceleration voltage IKV, ion current 150mA, ultimate vacuum 8X1
0-'torr, argon gas pressure 3X10-3t
41 alternating layers of Mo and Si were formed at a deposition rate of 10 Å/S under the conditions of When the prepared reflecting mirror was subjected to electron beam diffraction, a pattern indicating a linear Mo orientation was observed, and when the in-plane state was observed using a transmission electron microscope, an island-like structure was observed. The size of the island is approximately 300 A.
The roughness was 20 people in terms of rms value. In order to evaluate the reflection characteristics, we analyzed the synchrotron radiation light124
When human soft X-rays were incident at an incident angle of 10° from the surface normal, the fouling rate was measured and a value of 8.8% was obtained. This value was significantly lower than the design value of 65%, and this low value was due to surface roughness.

実施例4 実施例1と同様に準備したシリコン基板を第3図に示し
た超高真空電子ビーム蒸着装置の基板ホルダーのヒータ
面にセツトシ、あらかじめ蒸着に先立って1200℃ま
で加熱(2時間)した。その後放置により室温まで冷却
し、次に液体窒素シュラウドから出ている銅製の爪に基
板を5時間液しておき熱電対式の温度計で基板温度を測
定したところ一1800Cになっていた。
Example 4 A silicon substrate prepared in the same manner as in Example 1 was set on the heater surface of the substrate holder of the ultra-high vacuum electron beam evaporation apparatus shown in Fig. 3, and heated to 1200°C (2 hours) prior to evaporation. . Thereafter, the substrate was left to cool to room temperature, and then the substrate was soaked in a copper claw protruding from the liquid nitrogen shroud for 5 hours. When the substrate temperature was measured with a thermocouple thermometer, it was -1800C.

第3図に示した装置には電子ビームの蒸着源が2台基板
に対して対称な位置になるように配置され、各々の電子
銃ハースに99.99%のモリブデン(以下M o )
と99,999%のケイ素(以下Si)をあらかじめセ
ツトシておいた。真空度が3X10−10torrに到
達するまで待った後、蒸着を開始した。
In the apparatus shown in FIG. 3, two electron beam evaporation sources are arranged symmetrically with respect to the substrate, and 99.99% molybdenum (hereinafter referred to as M o ) is placed in each electron gun hearth.
and 99,999% silicon (hereinafter referred to as Si) were set in advance. After waiting until the degree of vacuum reached 3×10 −10 torr, deposition was started.

Mo、Si共にあらかじめ電子ビームで予備加熱をして
おき(各ハース上のシャッター及びメインシャッターは
閉じた状態としてお()、30分から1時間予備加熱後
、各々の蒸着レートが1人/ m i n、3 A /
 m i nになるように各ハース近傍に設置した水晶
振動子式膜厚計(図には示していない)で上記した蒸着
レートが保持されるようフィードバックした。その後8
X10−10torrの真空度を保持しながら蒸着を行
った。第1図に示したように第1物質をM o 、第2
物質をSiとして、それぞれの膜厚を27人、36人と
じ全部で41層の成膜を行った。基板の」二の層及び最
表面の層はMOとして反射鏡Cを得た。作製した多層膜
反射鏡に波長124人の軟X線を面法線から10° の
傾きて入射したところ、反射率552%が得られた。こ
の反射率は基板を何ら冷却することなく上記実施例と同
じ膜厚だけ蒸着して得た多層膜反射鏡りについての波長
124人の軟X線の反射率(7,8%)に対して約7倍
の反射率となった。
Both Mo and Si were preheated with an electron beam in advance (with the shutters on each hearth and the main shutter closed ()), and after preheating for 30 minutes to 1 hour, the evaporation rate of each was 1 person/m i n, 3 A/
A crystal oscillator type film thickness meter (not shown in the figure) installed near each hearth provided feedback so that the above-mentioned deposition rate was maintained. then 8
Vapor deposition was performed while maintaining a vacuum level of X10-10 torr. As shown in FIG. 1, the first substance is M o and the second substance is Mo.
Using Si as the material, a total of 41 layers were formed by 27 and 36 people, respectively. A reflecting mirror C was obtained by using MO as the second layer and the outermost layer of the substrate. When soft X-rays of 124 wavelengths were incident on the fabricated multilayer reflector at an angle of 10° from the surface normal, a reflectance of 552% was obtained. This reflectance is compared to the reflectance (7.8%) of soft X-rays of 124 wavelengths for a multilayer film reflecting mirror obtained by depositing the same film thickness as in the above example without cooling the substrate. The reflectance was approximately 7 times higher.

これらの反射鏡C,Dについて透過電子顕微鏡で、それ
ぞれの断面を観察したところ、反射鏡CではMo層、S
i層が共に非晶質であり、透過電子顕微鏡像のネカ写真
フィルムから界面の粗さを測定したところr m s 
4直で4.8人であった。(ネガフィルムをマイクロデ
ンシトメートにより層面に垂直な方向に測定して、その
濃度を基板表面からの関数として平滑化し、濃度の最も
高い点と低い点の中間の濃度の点を界面とし、界面の粗
さはその界面が層面と垂直な方向にどの程度ばらつ(か
によって求めた。)また反射鏡ではSi層は非晶質であ
ったが、Mo層が結晶化しており、層面と平行な方向に
150人程度、層面と垂直な方向では、膜厚程度(約2
5人程度)の大きさの結晶粒界を形成していた。その結
晶粒界が島状構造をしており界面の荒れが下層から上層
へ伝搬して柱状構造を成し上層で荒れが拡大している様
子が観察された。界面の荒れは最上層とその下の層との
界面てr m s値て16.7人あった。反射鏡C,D
の結晶性は制限視野電子線回折によっても確認された。
When we observed the cross sections of these reflecting mirrors C and D using a transmission electron microscope, we found that in reflecting mirror C, there was a Mo layer, an S
Both i-layers are amorphous, and when the roughness of the interface was measured from a transmission electron microscope image of a photographic film, r m s
There were 4.8 people in 4 shifts. (The negative film is measured in the direction perpendicular to the layer surface using a microdensitomate, and the concentration is smoothed as a function from the substrate surface. The point with the concentration between the highest and lowest concentration points is defined as the interface. The roughness of the surface was determined based on how much the interface varied in the direction perpendicular to the layer plane.Also, in the reflector, the Si layer was amorphous, but the Mo layer was crystallized, and the surface was parallel to the layer plane. In the direction perpendicular to the layer surface, the film thickness is approximately 2
A grain boundary with a size of about 5 people) was formed. It was observed that the grain boundaries had an island-like structure, and the roughness at the interface propagated from the lower layer to the upper layer to form a columnar structure, with the roughness expanding in the upper layer. The roughness of the interface between the top layer and the layer below had an rms value of 16.7. Reflector C, D
The crystallinity of was also confirmed by selected area electron diffraction.

以上より反射率で大きな差が生じた原因は試料Cては基
板温度を下げることによりMo層の結晶化及び島状構造
の発生を抑制可能となり界面の荒れを抑えることが可能
となったためである。
From the above, the reason for the large difference in reflectance is that in sample C, by lowering the substrate temperature, it was possible to suppress the crystallization of the Mo layer and the generation of island-like structures, making it possible to suppress the roughness of the interface. .

実施例5 面精度λ/20(λ=6328 A)に加工した100
μm厚のシリコンカーバイト(以下5iC)がコーティ
ングされているシリコン基板(2″  φ、10 m 
m t )を、ダイヤモンドペーストにより研磨し、そ
の後フローティング研磨を行った。ヘテロダイン干渉式
面荒さ計て面荒さを測定したところr m s値で2.
3人であり、使用波長124人の1/16より小さかっ
た。厚さ約500人の透過電子顕微鏡用の試料を作り透
過電子顕微鏡により像の写真をとり面荒さを測定したと
ころ面の荒れはほとんどみられなかった。
Example 5 100 processed to surface accuracy λ/20 (λ=6328 A)
A silicon substrate (2″φ, 10 m) coated with μm-thick silicon carbide (hereinafter referred to as 5iC)
m t ) was polished with diamond paste, and then floating polishing was performed. When the surface roughness was measured using a heterodyne interference type surface roughness meter, the r m s value was 2.
3 people, which was smaller than 1/16 of the wavelength used by 124 people. A sample for transmission electron microscopy with a thickness of about 500 people was prepared, and a photograph of the image was taken using a transmission electron microscope to measure the surface roughness, and almost no surface roughness was observed.

これを、第4図に示した装置の基板ホルダーのヒーター
面にセツトシ、真空度を]、 X ] 0 ”torr
とした。
Set this on the heater surface of the substrate holder of the device shown in Figure 4, and set the vacuum to
And so.

あらかじめ蒸着に先だって1400℃まで加熱(2時間
)した。その後放置して室温まで冷却し、次に液体窒素
シュラウドから出ている銅製の爪に基板を3時間接して
おき、熱電対式の温度計て基板温度を測定したところ一
50℃になっていた。
Prior to vapor deposition, it was heated to 1400°C (2 hours). After that, I left it to cool down to room temperature, then I left the board in contact with the copper claws coming out of the liquid nitrogen shroud for 3 hours, and when I measured the board temperature with a thermocouple thermometer, it was -50°C. .

第4図に示した装置には電子ビームの蒸発源が2台基板
に対して対称な位置になるよう配置され、各々の電子銃
ハースに99.9%のルテニウムウ(以下Ru)と99
.999%のケイ素(以下Si)をセットしておいた。
In the apparatus shown in Fig. 4, two electron beam evaporation sources are arranged at symmetrical positions with respect to the substrate, and 99.9% ruthenium (hereinafter referred to as Ru) and 99.9% ruthenium are placed in each electron gun hearth.
.. 999% silicon (hereinafter referred to as Si) was set.

真空度が3 X 10−”torrに回復するまで待っ
た後、蒸着を開始した。
After waiting until the vacuum level was restored to 3 x 10-'' torr, deposition was started.

Ru、  Si共にあらかじめ電子ビームで予備加熱を
しておき(各ハース上のシャッター及びメインシャッタ
ー閉)、30分から1時間予熱後、各々の蒸着レートが
3人/min、5人/ m i nになるよう各ハース
近傍に設置した水晶振動子(図には示していない)で上
記した蒸着レートが保持てきるよフィールドハックした
。この後各ハースのシャッターを交互に開け、第1図の
第J物質をRu、第2物質を81としてそれぞれの膜厚
を27.2人。
Both Ru and Si were preheated with an electron beam in advance (the shutters on each hearth and the main shutter were closed), and after preheating for 30 minutes to 1 hour, the evaporation rate for each was reduced to 3 people/min and 5 people/min. A field hack was conducted to ensure that the above deposition rate could be maintained using a crystal oscillator (not shown in the figure) installed near each hearth. After this, the shutters of each hearth were opened alternately, and the J material in FIG.

36.2人とし、かつ全部で41層の成膜を行った。成
膜中の真空度は8X]、0−10torrを保持した。
The number of people was 36.2, and a total of 41 layers were formed. The degree of vacuum during film formation was maintained at 8X] and 0-10 torr.

このようにして得られた多層膜反射鏡に、波長124人
の軟X線を面に対して垂直な軸から10°の傾きで入射
したところ反射率612%が得られた。
When soft X-rays of 124 wavelengths were incident on the multilayer mirror thus obtained at an angle of 10° from an axis perpendicular to the surface, a reflectance of 612% was obtained.

この値は市販のシリコンウェハーを基板とし、その基板
を何ら冷却することな(」1記実施例と同じ膜厚だけ蒸
着した時の軟X線の反射率(]、11.9%に比較して
約5倍の反射率となった。この結果は基板の面荒さが小
さかったと同時に、蒸着時に基板を冷却しておいたため
、蒸着された原子が蒸着面内において動きまわりその結
果島状構造を生成するという機構を抑え、アモルファス
膜となり界面の荒れを抑制したことによる。
This value is compared to the soft X-ray reflectance (11.9%) when a commercially available silicon wafer is used as a substrate and the same film thickness as in Example 1 is deposited (without cooling the substrate in any way). The reflectance was about 5 times higher than that of the previous one.This result was due to the fact that the surface roughness of the substrate was small, and at the same time, the substrate was cooled during the deposition, so the deposited atoms moved around within the deposition surface, resulting in an island-like structure. This is because the mechanism of generation is suppressed, and the interface becomes an amorphous film and roughness is suppressed.

本発明の方法で作製された多層膜反射鏡を、ヘテロダイ
ン干渉式面荒さ計て表面を測定したところrms値で2
.6人であり、使用波長の1/16より充分に小さかっ
た。厚さ約500人の透過電子顕微鏡用の試料を作り透
過電子顕微鏡により像の写真をとり面荒さを測定したと
ころ界面の荒さは」二層にいくほど大きかったが、最上
層とその下の層との界面でもrms値で9.8人であっ
た。また、表面の荒さもr m s値で9.8人であり
、どちらも使用波長の1/8より小さかった。
When the surface of the multilayer reflector manufactured by the method of the present invention was measured using a heterodyne interference surface roughness meter, the rms value was 2.
.. There were 6 people, which was sufficiently smaller than 1/16 of the wavelength used. We made a sample for transmission electron microscopy with a thickness of about 500 people, took a photograph of the image using a transmission electron microscope, and measured the surface roughness.The roughness of the interface was larger as it went to the second layer, but between the top layer and the layer below it. The rms value was 9.8 at the interface. Furthermore, the surface roughness was 9.8 in r m s value, both of which were smaller than 1/8 of the wavelength used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のX線・真空紫外線用多層膜反射鏡の断
面の模式図、第2図は多層膜反射鏡において界面の荒れ
に対しての反射率の低下を示す図。第3図は本発明の実
施に用い得る超高真空電子ビーム蒸着装置を示す図であ
る。 lは基板、 2.4は第1物質、 3.5は第2物質、 6、7.8.9. 10はそれぞれm=]−、2,3,
4,。 5の場合の界面の荒れに対する反射率の比、11は液体
窒素ンユラウド、 12は基板ホルダー、13は基板、 14は基板冷却用の爪、 15はメイン・シャッター、 16はシャッター、 17.19はそれぞれ電子銃ハースてあり、17にMo
を、19にSiをセットシである。 20は水晶振動子式膜厚計である。 手続ネ甫正書(方式) 昭和63年 9月29日 1、事件の表示 昭和63年特許願第134585号 2 発明の名称 X線・真空紫外線用多層膜反射鏡の製造方法3、補正を
する者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−26、補正の対象 明細書及び図面 7、補正の内容 (1)願書に最初に添付した明細書及び図面の浄書・別
紙のとおり(内容に変更なし)
FIG. 1 is a schematic cross-sectional view of a multilayer reflector for X-rays and vacuum ultraviolet rays according to the present invention, and FIG. 2 is a diagram showing a decrease in reflectance due to interface roughness in the multilayer reflector. FIG. 3 is a diagram showing an ultra-high vacuum electron beam evaporation apparatus that can be used to implement the present invention. l is the substrate, 2.4 is the first material, 3.5 is the second material, 6, 7.8.9. 10 are respectively m=]-, 2, 3,
4,. 11 is the liquid nitrogen cloud, 12 is the substrate holder, 13 is the substrate, 14 is the substrate cooling claw, 15 is the main shutter, 16 is the shutter, 17.19 is the ratio of reflectance to the roughness of the interface in case 5. Each has an electron gun hearth, and 17 has an Mo
, Si is set at 19. 20 is a crystal resonator type film thickness meter. Procedural formalities (formula) September 29, 1988 1. Case description 1988 Patent Application No. 134585 2. Name of the invention Method for manufacturing a multilayer reflector for X-rays and vacuum ultraviolet rays 3. Make amendments. Patent applicant address: 3-30-26 Shimomaruko, Ota-ku, Tokyo, specification and drawing 7 to be amended, content of amendment (1) Engraving and attachment of the specification and drawings originally attached to the application As per (no change in content)

Claims (2)

【特許請求の範囲】[Claims] (1)互いに異なる屈折率の物質の交互層よりなる多層
構造の反射鏡を基板上に有するX線・真空紫外線用多層
膜反射鏡の製法において、その多層膜の形成がイオン・
ビーム・スパッタリング法を用いて行われ、かつその膜
の生成速度が0.1Å/Sから5Å/Sの範囲にあるこ
とを特徴とするX線・真空紫外線用多層膜反射鏡の製造
方法。
(1) In a method for manufacturing a multilayer film reflector for X-rays and vacuum ultraviolet light, which has a multilayer reflector on a substrate, which is made up of alternating layers of substances with different refractive indexes, the formation of the multilayer film is performed using ion beams.
A method for manufacturing a multilayer film reflecting mirror for X-rays and vacuum ultraviolet rays, characterized in that the method is carried out using a beam sputtering method, and the film formation rate is in the range of 0.1 Å/S to 5 Å/S.
(2)互いに異なる屈折率の物質の交互層よりなる多層
構造の反射鏡を基板上に有するX線・真空紫外線用多層
膜反射鏡の製法において、その多層膜の形成が電子ビー
ム蒸着法を用いて行われ、かつ成膜時の基板温度が−2
00℃から−50℃の温度の範囲に保たれることを特徴
とするX線・真空紫外線用多層膜反射鏡の製造方法。
(2) In a method for manufacturing a multilayer reflector for X-rays and vacuum ultraviolet light, which has a multilayer structure reflector made of alternating layers of materials with different refractive indexes on a substrate, the multilayer film is formed using an electron beam evaporation method. was carried out, and the substrate temperature during film formation was -2
A method for producing a multilayer reflector for X-rays and vacuum ultraviolet rays, characterized in that the temperature is maintained in the range of 00°C to -50°C.
JP13458588A 1988-05-31 1988-05-31 Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray Pending JPH01304400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13458588A JPH01304400A (en) 1988-05-31 1988-05-31 Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13458588A JPH01304400A (en) 1988-05-31 1988-05-31 Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray

Publications (1)

Publication Number Publication Date
JPH01304400A true JPH01304400A (en) 1989-12-07

Family

ID=15131813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13458588A Pending JPH01304400A (en) 1988-05-31 1988-05-31 Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray

Country Status (1)

Country Link
JP (1) JPH01304400A (en)

Similar Documents

Publication Publication Date Title
TWI417647B (en) Reflective mask blank for euv lithography and substrate with functional film for the same
JP2648599B2 (en) Method of making multilayer reflector for X-ray or vacuum ultraviolet
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
JP2008026093A (en) Multilayer film reflection mirror and method for manufacturing it
JP2692881B2 (en) Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element
JP5916821B2 (en) Hafnium oxide coating
JPH01304400A (en) Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray
JPS63106703A (en) Optical element
JP2535037B2 (en) Multi-layer film mirror for X-ray / VUV
US11934093B2 (en) Reflective mask blank for EUV lithography and substrate with conductive film
JP7556497B1 (en) Reflective mask blank for EUV lithography and substrate with conductive film
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
Sudoh et al. Soft x-ray multilayers fabricated by electron-beam deposition
WO2024195577A1 (en) Reflective mask blank for euv lithography and substrate equipped with conductive film
Yamamoto et al. Reflectance degradation of soft X-ray multilayer filters upon exposure to synchrotron radiation
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
JPH04259900A (en) Manufacturing of multi-layered film reflecting mirror
JPH01309000A (en) X-ray reflector
Arbaoui et al. Performance Of Sputter Deposited Multi Layer X-Ray Mirrors
JPS63266398A (en) X-ray reflecting mirror
JPS63266400A (en) Multi-layered x-ray reflecting
Jianda et al. Sputtering Deposited Ta/Si Soft X-ray Multilayer Mirror
JPS63266399A (en) X-ray reflecting mirror
Ishii et al. Thermal stability of Mo-based multilayer x-ray mirrors