JPH01309000A - X-ray reflector - Google Patents

X-ray reflector

Info

Publication number
JPH01309000A
JPH01309000A JP13970688A JP13970688A JPH01309000A JP H01309000 A JPH01309000 A JP H01309000A JP 13970688 A JP13970688 A JP 13970688A JP 13970688 A JP13970688 A JP 13970688A JP H01309000 A JPH01309000 A JP H01309000A
Authority
JP
Japan
Prior art keywords
layer
ray
reflectance
vapor deposition
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13970688A
Other languages
Japanese (ja)
Inventor
Kunio Nakajima
邦雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP13970688A priority Critical patent/JPH01309000A/en
Publication of JPH01309000A publication Critical patent/JPH01309000A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher X-ray reflectance and a broader service wavelength range by arranging one layer containing SiC and the other layer composed of metal material in layer pairs formed by laminating multiple pairs of layers each having an X-ray dispersion characteristic one upon another. CONSTITUTION:An SiC layer 1d and a metal layer 1c (containing at least one or more of Ni, Cr, Co, Mo, Pd, Ag, Hf, Ta, W, Re, Ir, Pt and Au) are laminated alternately on a substrate made of glass, silicon or graphite. The manufacture thereof employs a physical vapor deposition by sputtering or chemical vapor deposition (CVD). The size of the layers is controlled by using a shutter or moving the substrate to a material source. The thickness of each layer is controlled by monitoring an X-ray reflectance of a film or a crystal resonator film thickness meter where the vapor deposition is conducted. As a result, a subject X-ray wavelength area can be made 0.1-200Angstrom and an X-ray reflectance be made to 5-80%, thereby reducing scattering and absorption in the interface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対象波長領域が0.1八から200AのX線
の反射率を改良したX線反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an X-ray reflecting mirror with improved reflectance for X-rays in a target wavelength range of 0.18 to 200 A.

本発明は、X線波長が0.1人から20OAの範囲のX
線の反射と分散を必要とするほぼすべての分野に対ルて
、例えば、分光結晶、モノクロメータ、X線顕微鏡、X
線望遠鏡あるいはX線リソグラフィー装置など広範な応
用を有する。
The present invention provides X-rays with X-ray wavelengths in the range of 0.1 to 20OA.
For almost all fields that require reflection and dispersion of radiation, e.g. spectroscopic crystals, monochromators, X-ray microscopes,
It has a wide range of applications such as ray telescopes and X-ray lithography equipment.

〔発明の概要〕[Summary of the invention]

本発明のX線反射鏡においては、ガラス、シリコンある
いはグラファイトなどの基板上に炭化ケイ素(SiC)
と金属層(Ni、Cr、Co、Mo、、Pd、Ag、H
f、Ta、W、Re、I r、ptおよびAuの中から
少なくとも一種以上の元素を含む)を交互に積層させる
ことにより形成されている。このX線反射鏡は、結晶性
の拘束を受けず制御された反射率を有し、また1次およ
び高次波の反射率が改良され、あるいは、特別な用途に
対しては、1次の反射を増加させ、高次の反射を実質的
にゼロにすることができる。さらに、耐食性、耐熱性ま
た熱伝導性に優れた炭化ケイ素(SiC)を層対の一方
に用いることにより、各層の安定性が改善され、また他
方の層対である金属材料との結合度合いも小さく、界面
のみだれによる散乱や吸収を最小限にすることができる
In the X-ray reflecting mirror of the present invention, silicon carbide (SiC) is deposited on a substrate such as glass, silicon, or graphite.
and metal layers (Ni, Cr, Co, Mo, Pd, Ag, H
f, Ta, W, Re, Ir, pt, and Au). This X-ray reflector has a controlled reflectance free from crystalline constraints and has improved reflectivity for the first and higher order waves, or for special applications, Reflections can be increased and higher order reflections virtually eliminated. Furthermore, by using silicon carbide (SiC), which has excellent corrosion resistance, heat resistance, and thermal conductivity, in one of the layer pairs, the stability of each layer is improved, and the degree of bonding with the metal material of the other layer pair is also improved. It is small and can minimize scattering and absorption due to sagging at the interface.

本発明は、X線波長が0.1人から200人の範囲のX
線の反射と分散を必要とするほぼ全ての分野に対して、
例えば、分光結晶、モノクロメータ、X線顕微鏡、X線
望遠鏡あるいはX線リソグラフィー装置など広範な応用
を有する。
The present invention provides an X-ray beam with an X-ray wavelength in the range of 0.1 to 200 people.
For almost all fields that require line reflection and dispersion.
For example, it has a wide range of applications such as spectroscopic crystals, monochromators, X-ray microscopes, X-ray telescopes, and X-ray lithography equipment.

〔従来の技術〕[Conventional technology]

一般に、反射・分散特性を有する構造体は、LiF、熱
分解グラファイト、ラングミューアーブロジェット(L
anuuir−Blodett)膜などから形成してい
る。また、X線反射率の改良、使用波長範囲の拡大ある
いは耐環境性の改良の目的で新しい結晶性材料を考案す
る試みが行なわれている。そのような試みの一つとして
、タングステンと炭素あるいはタングステンとベリリウ
ムまた、モリブデン−ケイ素などの積層膜があり、反射
率を制御することがある程度可能となった。
In general, structures with reflective and dispersive properties include LiF, pyrolytic graphite, Langmuir-Blodgett (L
It is formed from a neutron-Blodett film or the like. Further, attempts are being made to devise new crystalline materials for the purpose of improving X-ray reflectance, expanding the usable wavelength range, or improving environmental resistance. One such attempt is to create a laminated film of tungsten and carbon, tungsten and beryllium, or molybdenum-silicon, and it has become possible to control the reflectance to some extent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

LiF、熱分解グラファイトおよびラングミューアーブ
ロジェット(Lanuuir−81odutt)′v4
などから形成されている物質は、格子間隔の拘束が大き
い、またラングミューアープロジェット膜は、環境の制
限が厳しく、乾燥雰囲気中でかつ、室温近傍で動作させ
なければならない、さらに、入射ビームのエネルギーが
高い場合には、分解する恐れがある。
LiF, pyrolytic graphite and Langmuir-81odutt'v4
Langmuir-Projet films have severe environmental restrictions and must be operated in a dry atmosphere near room temperature. If the energy is high, there is a risk of decomposition.

これらの物質は、X線の使用波長領域が狭く、使用に対
しては限定されてしまう、また、これらの物質の反射率
は全て望ましい値よりも小さい。
These materials have a narrow X-ray wavelength range, which limits their use, and the reflectance of these materials is all lower than a desirable value.

一方、X線反射率の改良、使用波長範囲の拡大あるいは
、耐環境性の改良の目的で新しい結晶性材料を考案する
試みの中の一つであるタングステンと炭素、タングステ
ンとベリリウムあるいはモリブデンとケイ素の積層膜は
、使用波長範囲が限定され、しかも層対の一方である金
属材料との結合がみられ、界面での散乱、吸収が大きく
反射率を低下させるという欠点を有している。
On the other hand, tungsten and carbon, tungsten and beryllium, or molybdenum and silicon are among the attempts to devise new crystalline materials for the purpose of improving X-ray reflectivity, expanding the usable wavelength range, or improving environmental resistance. The laminated film has the disadvantage that the usable wavelength range is limited, and moreover, it is bonded to the metal material that is one of the layer pairs, and the scattering and absorption at the interface are large, reducing the reflectance.

そこで本発明は、従来のこのような欠点を解決し、X線
反射率を大幅に改良し、使用波長範囲の大きな、しかも
入射X線ビームのエネルギーが高い場合にも、使用可能
な耐環境性のすぐれたX線反射鏡を提供することを目的
としている。
Therefore, the present invention solves these conventional drawbacks, significantly improves the X-ray reflectance, and provides environmental resistance that can be used over a wide wavelength range and when the energy of the incident X-ray beam is high. The purpose of this invention is to provide an excellent X-ray reflecting mirror.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、この発明は、炭化ケイ素
(SiC)と金属層(N i 、 C’r、Co、Mo
、Pd、Ag、Hf、Ta、W、Re、I r。
In order to solve the above problems, the present invention combines silicon carbide (SiC) and metal layers (N i , C'r, Co, Mo
, Pd, Ag, Hf, Ta, W, Re, Ir.

ptおよびAuの中から少なくとも−・種以上の元素を
含む)を交互に積層させ形成することにより、X線反射
率を増大させることを可能とすることができる。また使
用できるX線波長が0.1人から200人までと範囲を
拡大することを可能とすることができる。さらに、層対
の一方に炭化ケイ素(Sin)を用いることにより、金
属材料との結合が非常に少ないため、界面での散乱、吸
収が小さい。
The X-ray reflectance can be increased by alternately stacking layers (containing at least -. elements selected from PT and Au). Furthermore, it is possible to expand the range of usable X-ray wavelengths from 0.1 to 200 people. Furthermore, by using silicon carbide (Sin) for one of the layer pairs, there is very little bonding with the metal material, so scattering and absorption at the interface are small.

〔実施例〕〔Example〕

本発明のX線反射鏡は、スパッタリング法、真空蒸着法
、イオンビーム法、分子線エピタキシー(MBE)法な
どの物理的蒸着法やCVDなどの化学的蒸着法によって
作製される。NJの大きさは、シャッターによりまた基
板を材料源に対して動かすことにより制御される。各層
の膜厚は蒸着が行なわれている場所で、膜のX線反射率
、電子線反射率あるいは、水晶振動子膜厚計を監視する
ことにより制御される。基板には、ガラス、ケイ素、グ
ラファイト、モリブデンを用いた。基板の表面粗さ(r
ms!!lさ)は、IOA以下であった。
The X-ray reflecting mirror of the present invention is manufactured by a physical vapor deposition method such as a sputtering method, a vacuum evaporation method, an ion beam method, a molecular beam epitaxy (MBE) method, or a chemical vapor deposition method such as a CVD method. The magnitude of the NJ is controlled by the shutter and by moving the substrate relative to the material source. The thickness of each layer is controlled by monitoring the film's X-ray reflectance, electron beam reflectance, or quartz crystal thickness gauge at the location where the deposition is being performed. Glass, silicon, graphite, and molybdenum were used for the substrate. Surface roughness of the substrate (r
ms! ! 1) was below IOA.

以下この発明の実施例にもとづ゛いて説明する。Embodiments of the present invention will be explained below.

実施例1 膜作製には、多源の真空蒸着装置を用いた。真空度は、
できるだけ高いことが望まれるのでクライオポンプを使
って7X10−’トールに保ち蒸着を行なった。加熱装
置には電子ビームを用い、炭化ケイ素(StC)とレニ
ウム(Re)の2種類の物質が独立に加熱される。炭化
ケイ素とレニウムのそれぞれの蒸着層の厚さの制御は二
つのシャッターによって行なう、さらにプログラミング
機構をもつ水晶発振式膜厚計を用いて、炭化ケイ素とレ
ニウムの層の厚さを設定し、シャッターの開閉が自動的
に行なわれ、規則正しい蒸着が繰り返えされる。蒸着時
には、水冷あるいは冷却を行ない状態にある。各層の膜
厚には、X線回折を使った。
Example 1 A multi-source vacuum evaporation apparatus was used for film production. The degree of vacuum is
Since it is desired that the temperature be as high as possible, a cryopump was used to maintain the temperature at 7 x 10-' torr for vapor deposition. An electron beam is used in the heating device, and two types of materials, silicon carbide (StC) and rhenium (Re), are independently heated. The thickness of the vapor deposited layers of silicon carbide and rhenium is controlled by two shutters.Furthermore, the thickness of the silicon carbide and rhenium layers is set using a crystal oscillation type film thickness meter with a programming mechanism, and the shutter The opening and closing are performed automatically, and regular deposition is repeated. During vapor deposition, water cooling or cooling is performed. X-ray diffraction was used to determine the thickness of each layer.

第1図は、実施例1に基ずいたX線反射鏡の構成図を示
したものである。入射X線1aは反射鏡の層対によって
反射され反射X線lbを構成する。
FIG. 1 shows a configuration diagram of an X-ray reflecting mirror based on Example 1. The incident X-rays 1a are reflected by the layer pair of reflecting mirrors to form reflected X-rays lb.

第2図の曲線2aは、実施例1にもとすいて作製した結
果である。斜入射角θは、ブラッグの式:%式% d:1つめ層対の厚さ m:次数 に従う。第2図の曲線2aは、炭化ケイ素と金属材料層
にレニウムを用い、入射X線波長8.34人、層数50
層で作製した結果である。斜入射角10度付近で約40
%の反射強度が得られた。
Curve 2a in FIG. 2 is the result obtained in accordance with Example 1. The oblique incidence angle θ follows Bragg's formula: % formula % d: Thickness of the first layer pair m: Order. Curve 2a in Figure 2 uses silicon carbide and rhenium for the metal material layer, the incident X-ray wavelength is 8.34, and the number of layers is 50.
This is the result of fabricating layers. Approximately 40 at grazing incidence angle of 10 degrees
% reflection intensity was obtained.

実施例2 実施例1と同様の作製および評価方評を用い、炭化ケイ
素と金属材料層にモリブデンの組み合せで行なった結果
が第2図の破線2bである。入射X線波長は、8.34
A、層数30層、斜入射角を10度付近にして層対の厚
さを設定した0反射率は約15%が得られた。
Example 2 Using the same manufacturing and evaluation method as in Example 1, a combination of silicon carbide and molybdenum in the metal material layer was used, and the broken line 2b in FIG. 2 shows the results. The incident X-ray wavelength is 8.34
A, the number of layers was 30, the grazing incidence angle was set to around 10 degrees, and the thickness of the layer pair was set, and a zero reflectance of about 15% was obtained.

ここでは、金属層がレニウムとモリブデンであるX線反
射鏡の効果についてのみ示したが、金属層にNi、Cr
、Co、Pd、Ag、Hf、Ta、W、Ir、Ptおよ
びAuの中から少なくとも一種以上の元素を倉んだ層に
することによっても実用的な反射率を得ることができる
。また入射X線波長は8.34Aを用いたが、0.1A
〜200Aの波長範囲でも、同様の斜入射角で5%〜8
0%の反射率が得られた。
Here, we have only shown the effect of an X-ray reflector whose metal layer is made of rhenium and molybdenum, but
, Co, Pd, Ag, Hf, Ta, W, Ir, Pt, and Au, a practical reflectance can also be obtained by forming a layer containing at least one element selected from the group consisting of , Co, Pd, Ag, Hf, Ta, W, Ir, Pt, and Au. In addition, the incident X-ray wavelength used was 8.34A, but 0.1A
Even in the ~200A wavelength range, 5%~8 at similar grazing incidence angles.
A reflectance of 0% was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、ガラス、シリコンある
いはグラファイトなどの基板上に炭化ケイ素(SiC)
と金属層(Ni、Cr、Co、Mo、Pd、Ag、If
S Ta、W、Re、  I  r、Pt、およびAu
の中から少なくても一種以上の元素を含む層)を交互に
積層させることにより形成される。このX線反射鏡は、
結晶性の拘束を受けず、制御された反射率を有し、また
1次および高次の反射率が改良され、あるいは特別な用
途に対しては、1次の反射を増加させ、高次波の反射を
実質的にゼロとすることができる。さらに層対の一方に
炭化ケイ素を用いることにより、各金属層と炭化ケイ素
の相互作用を阻止することができ、反射率の増大をより
正確な制御が可能となった。
As explained above, the present invention provides silicon carbide (SiC) on a substrate such as glass, silicon, or graphite.
and metal layers (Ni, Cr, Co, Mo, Pd, Ag, If
S Ta, W, Re, I r, Pt, and Au
It is formed by alternately laminating layers containing at least one or more elements from the following. This X-ray reflector is
Unconstrained by crystallinity, with controlled reflectance, and with improved first and higher order reflectivity, or for special applications, increased first order reflection and higher order reflection can be reduced to virtually zero. Furthermore, by using silicon carbide in one of the layer pairs, interaction between each metal layer and silicon carbide can be prevented, making it possible to more accurately control increase in reflectance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明におけるX線反射鏡の構成図、第2図
は、実施例にもとすいて作製したX線の斜入射角と反射
率との関係を示すグラフである。 1a・・・入射X線ビーム lb・・・反射X線ビーム 1C・・・金属層 1d・・・炭化ケイ素(SiC)層 θ・・・斜入射角 d・・・層対の厚さ 2a・・・ReとSLCの組合わせによる反射率の結果 2b・・・MoとSiCの組合わぜによる反射率の結果 以上 出願人 セイコー電子工業株式会社
FIG. 1 is a configuration diagram of an X-ray reflecting mirror according to the present invention, and FIG. 2 is a graph showing the relationship between the oblique incidence angle of X-rays and the reflectance, which were prepared in accordance with the examples. 1a... Incident X-ray beam lb... Reflected X-ray beam 1C... Metal layer 1d... Silicon carbide (SiC) layer θ... Oblique incidence angle d... Thickness of layer pair 2a. ...Results of reflectance due to the combination of Re and SLC 2b...Results of reflectance due to the combination of Mo and SiC Applicant: Seiko Electronic Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)複数個の層対が互いの上に形成されており、前記
層対は対象波長領域でX線分散特性を有し、各層対の一
層が炭化ケイ素(SiC)を含み、また各層対の第二層
は金属材料によって構成されていることを特徴とするX
線反射鏡。
(1) A plurality of layer pairs are formed on top of each other, the layer pairs have X-ray dispersion properties in a wavelength region of interest, one layer of each layer pair includes silicon carbide (SiC), and each layer pair has X, characterized in that the second layer is made of a metal material.
Line reflector.
(2)金属材料層が、Ni、Cr、Co、Mo、Pd、
Ag、Hf、Ta、W、Re、Ir、Pt、およびAu
の中から少なくとも一種以上の元素を含むことを特徴と
する特許請求の範囲第1項に記載のX線反射鏡。
(2) The metal material layer is Ni, Cr, Co, Mo, Pd,
Ag, Hf, Ta, W, Re, Ir, Pt, and Au
The X-ray reflecting mirror according to claim 1, characterized in that it contains at least one element selected from the following.
(3)対象波長領域が、0.1Åから200ÅのX線波
長であることを特徴とする特許請求の範囲第1項または
第2項記載のX線反射鏡。
(3) The X-ray reflecting mirror according to claim 1 or 2, wherein the target wavelength range is an X-ray wavelength of 0.1 Å to 200 Å.
JP13970688A 1988-06-07 1988-06-07 X-ray reflector Pending JPH01309000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13970688A JPH01309000A (en) 1988-06-07 1988-06-07 X-ray reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13970688A JPH01309000A (en) 1988-06-07 1988-06-07 X-ray reflector

Publications (1)

Publication Number Publication Date
JPH01309000A true JPH01309000A (en) 1989-12-13

Family

ID=15251524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13970688A Pending JPH01309000A (en) 1988-06-07 1988-06-07 X-ray reflector

Country Status (1)

Country Link
JP (1) JPH01309000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597664A2 (en) * 1992-11-12 1994-05-18 Seiko Instruments Inc. X-ray mirror and material
EP2009470A1 (en) * 2006-04-14 2008-12-31 Japan Atomic Energy Agency Multi-layer film type diffraction grating
CN108468029A (en) * 2018-02-12 2018-08-31 中国科学院国家天文台南京天文光学技术研究所 It is modified the magnetron sputtering scan method promoted with face shape for silicon carbide optical mirror plane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388502A (en) * 1986-10-01 1988-04-19 Canon Inc Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388502A (en) * 1986-10-01 1988-04-19 Canon Inc Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597664A2 (en) * 1992-11-12 1994-05-18 Seiko Instruments Inc. X-ray mirror and material
EP0597664A3 (en) * 1992-11-12 1994-07-13 Seiko Instr Inc X-ray mirror and material.
US5454021A (en) * 1992-11-12 1995-09-26 Seiko Instruments, Inc. X-ray mirror and material
EP2009470A1 (en) * 2006-04-14 2008-12-31 Japan Atomic Energy Agency Multi-layer film type diffraction grating
EP2009470A4 (en) * 2006-04-14 2011-05-18 Japan Atomic Energy Agency Multi-layer film type diffraction grating
CN108468029A (en) * 2018-02-12 2018-08-31 中国科学院国家天文台南京天文光学技术研究所 It is modified the magnetron sputtering scan method promoted with face shape for silicon carbide optical mirror plane

Similar Documents

Publication Publication Date Title
JP4904287B2 (en) Thermally stable multilayer mirror for EUV spectral range
KR100567363B1 (en) Euvl multilayer structures
EP1464061B1 (en) Protective layer for multilayers exposed to hard x-rays
JPH01309000A (en) X-ray reflector
JP2648599B2 (en) Method of making multilayer reflector for X-ray or vacuum ultraviolet
JPH01175736A (en) Reflective mask
JP2723955B2 (en) Multilayer reflector for soft X-ray and vacuum ultraviolet
JPH04169898A (en) Multi-layer mirror structure for x-ray
JPS6388502A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JP2692881B2 (en) Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element
JPS636504A (en) Heat control film
JPH05232299A (en) Manufacture of x-ray multilayer film reflector
JPS63106703A (en) Optical element
JPS63271200A (en) X-ray reflecting mirror
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
JPS63266397A (en) X-ray reflecting mirror
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
JPH04169899A (en) X-ray reflector
JPS63269100A (en) X ray reflector
JPS63266400A (en) Multi-layered x-ray reflecting
JPS63266398A (en) X-ray reflecting mirror
JPH0476498A (en) X-ray reflector
JPS63266399A (en) X-ray reflecting mirror
JPH04164297A (en) X-ray reflecting mirror
JP3648791B2 (en) Manufacturing method of multilayer mirror