JPH05232299A - Manufacture of x-ray multilayer film reflector - Google Patents

Manufacture of x-ray multilayer film reflector

Info

Publication number
JPH05232299A
JPH05232299A JP4037898A JP3789892A JPH05232299A JP H05232299 A JPH05232299 A JP H05232299A JP 4037898 A JP4037898 A JP 4037898A JP 3789892 A JP3789892 A JP 3789892A JP H05232299 A JPH05232299 A JP H05232299A
Authority
JP
Japan
Prior art keywords
layer
film
multilayer film
targets
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4037898A
Other languages
Japanese (ja)
Other versions
JP3033323B2 (en
Inventor
Katsuhiko Murakami
勝彦 村上
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4037898A priority Critical patent/JP3033323B2/en
Publication of JPH05232299A publication Critical patent/JPH05232299A/en
Application granted granted Critical
Publication of JP3033323B2 publication Critical patent/JP3033323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent mutual diffusion and also to improve heat resistance by forming a multilayer film repeatedly in a plurality of times in a prescribed sequence by using three kinds of substances different in refractive index as targets. CONSTITUTION:A target holder 4 rotates as shown by an arrow P and moves targets 3a to 3c of substances desired to be formed in a film, to a position opposed to an ion source 5. An ion beam 7 being applied from the source 5, vapor produced by sputtering target materials thereby is made to stick on a substrate 1 and thereby a thin film is formed. By this apparatus, Mo, Si and SiO2, for instance, are put as the targets 3a to 3c on the holder 4, an Mo layer (layer A) of a film thickness 25Angstrom , an SiO2 layer (layer C) of a film thickness 5Angstrom and an Si layer (layer B) of a film thickness 40Angstrom are formed fifty times in the sequence of A/C/B/C on the substrate 1 of an Si wafer and thereby a multilayer film of which a periodical length is 75Angstrom and the number of laminates fifty sets is formed. Since a compound of substances being stable thermodynamically is used as a diffusion-preventing layer in this way, mutual diffusion is prevented, heat resistance is also improved and lowering of reflectance is avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線縮小投影露光装
置、X線望遠鏡、X線顕微鏡、X線レーザおよび各種X
線分析装置等において、X線の波長域での反射光学系に
用いられる多層膜反射鏡の製造方法に関する。
The present invention relates to an X-ray reduction projection exposure apparatus, an X-ray telescope, an X-ray microscope, an X-ray laser and various X-rays.
The present invention relates to a method for manufacturing a multilayer-film reflective mirror used in a reflective optical system in the X-ray wavelength range in a line analyzer or the like.

【0002】[0002]

【従来の技術】X線波長域の光に対しては、物質の屈折
率は、 n=1−δ−iβ (δ、β:正の実数) と表され、δ、βともに1に比べて非常に小さい(屈折
率の虚部βはX線の吸収を表す)。従って、屈折率がほ
ぼ1に近くなりX線はほとんど屈折せず、また、必ずX
線を吸収する。そのため、可視光領域の光のように屈折
を利用したレンズはX線波長域の光には使用できない。
2. Description of the Related Art For light in the X-ray wavelength range, the refractive index of a material is expressed as n = 1-δ-iβ (δ, β: positive real number), and both δ and β are compared to 1. Very small (refractive index imaginary part β represents absorption of X-rays). Therefore, the refractive index is close to 1 and X-rays are hardly refracted.
Absorb the rays. Therefore, a lens that uses refraction such as light in the visible light region cannot be used for light in the X-ray wavelength region.

【0003】そこで、反射を利用した光学系が用いられ
るが、やはり屈折率が1に近いために反射率は非常に低
く、大部分のX線は透過するか或いは吸収されてしま
う。この問題を解決するために、使用するX線の波長域
での屈折率と真空の屈折率(=1)との差が大きい物質
と、差の小さい物質とを交互に何層も積層することでそ
れらの界面である反射面を多数設け、それぞれの界面か
らの反射波の位相が一致するように光学的干渉理論に基
づいて各層の厚さを調整した多層膜反射鏡が開発され
た。このような多層膜反射鏡の代表的なものとして、W
(タングステン)/C(炭素)、Mo(モリブデン)/
Si(シリコン)等の組合せが知られている。そして、
これらの多層膜はスパッタリング、真空蒸着、CVD等
の薄膜形成技術によって作製されていた。
Therefore, an optical system utilizing reflection is used. However, since the refractive index is also close to 1, the reflectance is very low and most X-rays are transmitted or absorbed. In order to solve this problem, a material having a large difference between the refractive index in the wavelength range of X-rays used and a vacuum refractive index (= 1) and a material having a small difference are alternately laminated in many layers. Then, a multi-layered film mirror was developed in which a large number of reflecting surfaces, which are the interfaces between them, were provided, and the thickness of each layer was adjusted based on the optical interference theory so that the phases of the reflected waves from the respective interfaces coincided with each other. A typical example of such a multilayer-film reflective mirror is W
(Tungsten) / C (carbon), Mo (molybdenum) /
A combination of Si (silicon) or the like is known. And
These multilayer films have been produced by thin film forming techniques such as sputtering, vacuum deposition, and CVD.

【0004】[0004]

【発明が解決しようとする課題】前述のような多層膜
は、人工的に周期構造を構成してあり本来不安定なもの
である。特に、高強度のX線に対してこのような多層膜
反射鏡を使用する場合、X線の一部が多層膜およびその
基板に吸収され、そのエネルギによって多層膜の温度が
上昇する。そのため、多層膜中で相互拡散、化合物形成
などの反応が促進されるため、短時間のうちに多層膜構
造が破壊されて反射鏡としての機能を失ってしまう。
The above-mentioned multilayer film artificially constitutes a periodic structure and is inherently unstable. In particular, when using such a multilayer-film reflective mirror for high-intensity X-rays, a part of the X-rays is absorbed by the multilayer film and its substrate, and the energy raises the temperature of the multilayer film. Therefore, reactions such as mutual diffusion and compound formation are promoted in the multilayer film, so that the multilayer film structure is destroyed in a short time and the function as a reflecting mirror is lost.

【0005】最近、X線多層膜反射鏡の実用化が進むに
従い、多層膜の耐熱性の評価が行われるようになり、い
くつかの材料の組み合わせについてその耐熱性が明らか
にされつつある。例えば、前記Mo/Siの組合せの多
層膜は、123 Åというシリコンの吸収端の長波長側で高
い反射率を示すため、X線縮小投影露光装置の反射光学
系に用いる多層膜反射鏡として優れている。しかし、こ
の多層膜は耐熱性が低く、真空中で400 ℃程度に加熱さ
れると多層膜構造が破壊してしまう。そして、この破壊
の現象は、モリブデン層へのシリコンの拡散とモリブデ
ンシリサイドの形成によることが知られている。(例え
ば、D.G.Sterns et.al.,J.Appl.Phys.67(1990)2415. 参
照) そこで、拡散を防止して耐熱性を向上させる目的で、多
層膜を形成している互いに屈折率の異なる物質からなる
A層とB層の間に拡散防止層C層を設けた多層膜反射鏡
が提案された。しかし、いずれも多層膜も耐熱性の向上
は不十分なものであった。
Recently, as the practical use of the X-ray multilayer mirror is advanced, the heat resistance of the multilayer film has been evaluated, and the heat resistance of some combinations of materials is being clarified. For example, the multi-layer film of the Mo / Si combination has a high reflectance on the long wavelength side of the absorption edge of silicon of 123Å, and thus is excellent as a multi-layer film reflection mirror used in the reflection optical system of the X-ray reduction projection exposure apparatus. ing. However, this multi-layer film has low heat resistance, and the multi-layer film structure is destroyed when heated to about 400 ° C. in vacuum. It is known that this destruction phenomenon is due to the diffusion of silicon into the molybdenum layer and the formation of molybdenum silicide. (See, for example, DGSterns et.al., J.Appl.Phys.67 (1990) 2415.) Therefore, in order to prevent diffusion and improve heat resistance, different refractive indexes are formed in the multilayer film. A multilayer-film reflective mirror has been proposed in which a diffusion prevention layer C layer is provided between a layer A and a layer B made of a substance. However, in all cases, the improvement in heat resistance of the multilayer films was insufficient.

【0006】例えば、特開昭60-7400 では金属層と炭化
ホウ素(B4 C)層との間にシリコン(Si)の拡散防
止層を設けた多層膜が提案されているが、シリコンは多
くの金属と反応してシリサイドを形成し易いので拡散防
止層としては機能しない。また、特開平2-242201にはモ
リブデンとシリコンからなる多層膜の界面に反応性スパ
ッタリングにより形成した酸化珪素(SiO2 )層を設
けて耐熱性を向上させた多層膜が提案されている。しか
し、反応性スパッタリングによる成膜では、基板上に既
に形成された薄膜の表面も同時に反応性ガスのイオンお
よびラジカルにさらされることになる。形成されたばか
りの薄膜表面は、非常に活性であるため、このようなイ
オンおよびラジカルと容易に反応する。そのため、基板
上の薄膜の表面でも化合物化反応が起こり、薄膜の表面
粗さが著しく増大してしまう。その結果、形成された多
層膜の界面粗さが大きくなって散乱による損失が大きい
ため高い反射率が得られなくなる。従って、この場合、
モリブデン層の表面が酸素プラズマにさらされて表面粗
さが増大するため、耐熱性は向上してもX線の反射率自
体が低下してしまうという問題が生じた。
For example, Japanese Patent Laid-Open No. 60-7400 proposes a multi-layer film in which a diffusion preventive layer for silicon (Si) is provided between a metal layer and a boron carbide (B 4 C) layer. It does not function as a diffusion prevention layer because it easily reacts with the metal to form silicide. Further, Japanese Patent Application Laid-Open No. 2-242201 proposes a multilayer film in which a heat resistance is improved by providing a silicon oxide (SiO 2 ) layer formed by reactive sputtering at the interface of the multilayer film made of molybdenum and silicon. However, in the film formation by reactive sputtering, the surface of the thin film already formed on the substrate is also exposed to the ions and radicals of the reactive gas at the same time. The freshly formed thin film surface is so active that it readily reacts with such ions and radicals. Therefore, a compounding reaction also occurs on the surface of the thin film on the substrate, and the surface roughness of the thin film remarkably increases. As a result, the interface roughness of the formed multilayer film becomes large and the loss due to scattering is large, so that a high reflectance cannot be obtained. So in this case,
Since the surface of the molybdenum layer is exposed to oxygen plasma to increase the surface roughness, there arises a problem that the X-ray reflectance itself is lowered even though the heat resistance is improved.

【0007】本発明は、このような問題を解決すること
を目的とする。
The present invention aims to solve such a problem.

【0008】[0008]

【課題を解決するための手段】上記目的のために本発明
では、互いに屈折率の異なる3種類の物質A、B、Cを
ターゲットとしたスパッタリング法により、A/C/B
/Cの順に前記各物質からなる薄膜を積層し、これを複
数回繰り返すことで多層膜を形成しX線多層膜反射鏡を
製造した。(請求項1) そして、これらの各層をアルゴン等の不活性ガスを用い
たスパッタリング法により形成した。(請求項2)
To achieve the above object, in the present invention, A / C / B is formed by a sputtering method using three kinds of substances A, B and C having different refractive indexes as targets.
X-ray multilayer mirrors were manufactured by laminating thin films made of the above substances in the order of / C and repeating this multiple times to form a multilayer film. (Claim 1) Then, each of these layers is formed by a sputtering method using an inert gas such as argon. (Claim 2)

【0009】[0009]

【作用】本発明により製造されるX線多層膜反射鏡は、
図1に示すように互いに屈折率の異なる物質からなるA
層、B層の間に拡散防止層としてC層を形成したもので
ある。このような構成においては、熱力学的に安定なC
層がA層とB層の間の相互拡散を効果的に防止するので
耐熱性が大幅に向上する。拡散防止層となるC層には、
酸化物、窒化物、炭化物等の熱力学的に安定な材料を用
いればよいが、光学特性を考慮して高い反射率が得られ
る材料を選択することが好ましい。
The X-ray multilayer mirror according to the present invention is
As shown in FIG. 1, A composed of materials having different refractive indexes
The C layer is formed as a diffusion preventing layer between the layer and the B layer. In such a construction, thermodynamically stable C
The layers effectively prevent interdiffusion between the A and B layers, thus significantly improving heat resistance. The C layer, which is the diffusion prevention layer, includes
Thermodynamically stable materials such as oxides, nitrides, and carbides may be used, but it is preferable to select a material that can obtain high reflectance in consideration of optical characteristics.

【0010】本発明においては、3種類の個別のターゲ
ットを用いるため各層の材料に関して選択上の制限はな
い。多層膜の最表面(入射面)層をC層としてこれを多
層膜の保護層として機能させてもよいし、A層もしくは
B層を最表面層としても構わない。そして、本発明で
は、スパッタリング法によって各層を成膜する際に、ア
ルゴン等の不活性ガスを用いるようにした。
In the present invention, since three types of individual targets are used, there is no selection limitation on the material of each layer. The outermost surface (incident surface) layer of the multilayer film may be used as the C layer to function as a protective layer of the multilayer film, or the A layer or the B layer may be used as the outermost surface layer. Further, in the present invention, an inert gas such as argon is used when forming each layer by the sputtering method.

【0011】一般に、スパッタリング法による酸化物、
窒化物、炭化物等の化合物の成膜に際しては、ターゲッ
トとして金属等の単体の物質を用いていた。そして、ス
パッタリングを行う際にアルゴン等の不活性ガスに酸
素、窒素、アンモニア、メタン等の炭化水素などの反応
性ガスを混入し、成膜時に化合物を合成する方法がとら
れていた。しかし、この方法では、前述のように基板上
に既に成膜された薄膜の表面も反応性ガスのイオンおよ
びラジカルにさらされるので、拡散防止層の表面粗さが
増大する。そのため、多層膜の界面粗さが大きくなる。
Generally, an oxide produced by a sputtering method,
When forming a compound such as a nitride or a carbide, a single substance such as a metal was used as a target. Then, a method has been adopted in which a reactive gas such as oxygen, nitrogen, ammonia, or a hydrocarbon such as methane is mixed into an inert gas such as argon when performing sputtering to synthesize a compound at the time of film formation. However, in this method, since the surface of the thin film already formed on the substrate is also exposed to the ions and radicals of the reactive gas as described above, the surface roughness of the diffusion preventing layer increases. Therefore, the interface roughness of the multilayer film increases.

【0012】それに対して本発明では、化合物からなる
拡散防止層を成膜する際もアルゴン等の不活性ガスのみ
を用いるので、界面の粗さが生じることはない。そのた
め、高い反射率を有する多層膜を形成することができ
る。なお、拡散防止層の厚さは、必要な耐熱性を得るた
めに必要最小限の厚さにすればよいので、該拡散防止層
を設けたことによる反射率の低下は小さく抑えることが
できる。
On the other hand, in the present invention, since only the inert gas such as argon is used also when forming the diffusion preventing layer made of a compound, the roughness of the interface does not occur. Therefore, a multilayer film having high reflectance can be formed. Since the thickness of the diffusion prevention layer may be set to the minimum necessary thickness to obtain the necessary heat resistance, the decrease in reflectance due to the provision of the diffusion prevention layer can be suppressed.

【0013】以下、本発明を実施例によりさらに詳しく
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0014】[0014]

【実施例1】図2は、本実施例において使用されるイオ
ンビームスパッタリング装置の概略構成図である。この
装置の真空チャンバー10内には、基板1を取り付ける
基板ホルダ2、イオン源5および3種類の物質のターゲ
ット3a、3b、3cがそれぞれ取り付けられるターゲ
ットホルダ4とが設けられている。ターゲットホルダ4
は、図示していない回転手段により図中矢印Pで示すよ
うに回転可能になっており、成膜したい物質のターゲッ
トをイオン源5に対向する位置へ移動させることができ
る。成膜時は、イオン源5からアルゴンイオンビーム7
を照射して所望の物質からなるターゲットに衝突させ
る。そして、ターゲット材料をスパッタリングして生じ
た蒸気を基板1上に付着させて薄膜を形成する。
Example 1 FIG. 2 is a schematic configuration diagram of an ion beam sputtering apparatus used in this example. In the vacuum chamber 10 of this apparatus, there are provided a substrate holder 2 to which the substrate 1 is attached, an ion source 5 and a target holder 4 to which targets 3a, 3b and 3c of three kinds of substances are attached respectively. Target holder 4
Can be rotated as shown by an arrow P in the figure by a rotating means (not shown), and the target of the substance to be film-formed can be moved to a position facing the ion source 5. During film formation, the ion source 5 to the argon ion beam 7
Is irradiated to collide with a target made of a desired substance. Then, vapor generated by sputtering the target material is attached onto the substrate 1 to form a thin film.

【0015】本実施例では、ターゲットホルダ4にモリ
ブデン、シリコン、酸化珪素(SiO2 )の3種類のタ
ーゲットを取付けた。そして、シリコンウエハを基板と
して用い、この基板1上に膜厚25Åのモリブデン層(A
層)、膜厚5Åの酸化珪素層(C層)、膜厚40Åのシリ
コン層(B層)、膜厚5Åの酸化珪素層(C層)の順で
50回成膜を行い、図1のような周期長75Å、積層数50組
の多層膜を形成した。なお、本実施例では最上層として
シリコン層を形成してある。
In this embodiment, three types of targets of molybdenum, silicon and silicon oxide (SiO 2 ) were attached to the target holder 4. Then, using a silicon wafer as a substrate, a molybdenum layer (A
Layer), a silicon oxide layer (C layer) having a film thickness of 5Å, a silicon layer (B layer) having a film thickness of 40Å, and a silicon oxide layer (C layer) having a film thickness of 5Å.
Film formation was performed 50 times to form a multilayer film having a cycle length of 75Å and a stack number of 50 as shown in FIG. In this embodiment, a silicon layer is formed as the uppermost layer.

【0016】以上のようにして作製した多層膜を真空中
で加熱して耐熱性を調べた。その結果、450 ℃まで反射
率の変化はなく、550 ℃で多層膜構造が破壊して反射率
が低下した。比較例として本実施例と同じイオンビーム
スパッタリング装置により、膜厚25Åのモリブデン層と
膜厚50Åのシリコン層とを交互に50層ずつ積層して多層
膜を作製した。そして、同様にしてその耐熱性を調べ
た。その結果、400 ℃で既に反射しなくなった。
The multilayer film produced as described above was heated in vacuum to examine the heat resistance. As a result, the reflectance did not change up to 450 ° C, and the multilayer structure was destroyed at 550 ° C and the reflectance decreased. As a comparative example, a multilayer film was prepared by alternately laminating 50 layers each of a molybdenum layer having a film thickness of 25 Å and a silicon layer having a film thickness of 50 Å by the same ion beam sputtering apparatus as in the present example. And the heat resistance was investigated similarly. As a result, it no longer reflects at 400 ° C.

【0017】次に、本実施例で作製した多層膜と比較例
で作製した多層膜について、それぞれの軟X線反射率を
放射光を用いてS偏光で測定した。放射光の入射角は多
層膜の法線に対して15゜に設定し、波長135 Å付近に反
射率のピークが生じるようにした。その結果、比較例の
多層膜の反射率72%に対して本実施例の多層膜の反射率
は66%であり、拡散防止層を設けたことによる反射率の
大幅な低下は認められなかった。
Next, the soft X-ray reflectance of each of the multilayer film produced in this example and the multilayer film produced in the comparative example was measured by s-polarized light using synchrotron radiation. The incident angle of the synchrotron radiation was set to 15 ° with respect to the normal line of the multilayer film so that the peak of reflectance was generated near the wavelength of 135 Å. As a result, the reflectance of the multilayer film of this example was 66% with respect to the reflectance of 72% of the multilayer film of the comparative example, and no significant reduction in reflectance was observed due to the provision of the diffusion prevention layer. ..

【0018】[0018]

【実施例2】図3は、本実施例において使用される高周
波マグネトロンスパッタリング装置の概略構成図であ
る。この装置の真空チャンバー10内には、基板1を取
り付ける基板ホルダ2と3種類の物質のターゲット3
a、3b、3cとが設けられている。そして、各ターゲ
ットにはそれぞれ高周波電源6a、6b、6cが接続さ
れている。基板ホルダ2は自転可能に構成され、基板1
が各ターゲット上を通過することができるようになって
いる。各ターゲットにはそれぞれシャッタが設けられ、
また各ターゲット間には遮蔽板が設けられている。(い
ずれも図示せず。)成膜時は、アルゴンガスを真空チャ
ンバー10内に導入して、各ターゲットに高周波電力を
印加する。この時、成膜したい物質のターゲットのシャ
ッタを開き、それ以外のターゲットのシャッタを閉じて
おく。そして、シャッタを開けたターゲットの材料をス
パッタリングして、生じた蒸気を基板1上に付着させて
薄膜を形成する。
Second Embodiment FIG. 3 is a schematic configuration diagram of a high frequency magnetron sputtering apparatus used in this embodiment. In a vacuum chamber 10 of this apparatus, a substrate holder 2 for mounting a substrate 1 and a target 3 of three kinds of substances are provided.
a, 3b, and 3c are provided. The high frequency power supplies 6a, 6b and 6c are connected to the respective targets. The substrate holder 2 is configured to be rotatable, and the substrate 1
Are able to pass over each target. Each target has its own shutter,
A shield plate is provided between the targets. (Neither is shown.) During film formation, argon gas is introduced into the vacuum chamber 10 and high frequency power is applied to each target. At this time, the shutters of the targets of the material to be formed are opened, and the shutters of the other targets are closed. Then, the material of the target with the shutter opened is sputtered and the generated vapor is adhered onto the substrate 1 to form a thin film.

【0019】本実施例では、ターゲットとしてモリブデ
ン、シリコン、炭化珪素(SiC)の3種類を用いた。
そして、シリコンウエハを基板として用い、この基板1
上に膜厚25Åのモリブデン層(A層)、膜厚10Åの炭化
珪素層(C層)、膜厚30Åのシリコン層(B層)、膜厚
10Åの炭化珪素層(C層)の順に50回成膜を行い、図1
のような周期長75Å、積層数50組の多層膜を形成した。
なお、本実施例では最上層としてシリコン層を形成して
ある。
In this embodiment, three types of targets, molybdenum, silicon and silicon carbide (SiC) were used.
Then, using a silicon wafer as a substrate, the substrate 1
Molybdenum layer (A layer) with a film thickness of 25Å, silicon carbide layer (C layer) with a film thickness of 10Å, silicon layer (B layer) with a film thickness of 30Å, film thickness
The silicon carbide layer (C layer) of 10 Å was deposited 50 times in this order,
A multilayer film with a cycle length of 75Å and a stack number of 50 was formed.
In this embodiment, a silicon layer is formed as the uppermost layer.

【0020】以上のようにして作製した多層膜を真空中
で加熱して耐熱性を調べた。その結果、600 ℃まで反射
率の変化はなく、800 ℃で多層膜構造が破壊して反射し
なくなった。比較例として本実施例と同じ装置を用いて
膜厚25Åのモリブデン層と膜厚50Åのシリコン層とを交
互に50層ずつ積層して多層膜を作製した。そして、同様
にしてその耐熱性を調べた。その結果、400 ℃で既に反
射しなくなった。
The multilayer film produced as described above was heated in vacuum to examine the heat resistance. As a result, the reflectance did not change up to 600 ° C, and the multilayer structure was destroyed at 800 ° C and no reflection occurred. As a comparative example, a multilayer film was manufactured by alternately laminating 50 layers each of a molybdenum layer having a film thickness of 25 Å and a silicon layer having a film thickness of 50 Å by using the same apparatus as this example. And the heat resistance was investigated similarly. As a result, it no longer reflects at 400 ° C.

【0021】次に、本実施例で作製した多層膜と比較例
で作製した多層膜について、それぞれの軟X線反射率を
実施例1と同様にして測定した。その結果、比較例の多
層膜の反射率72%に対して本実施例の多層膜の反射率は
68%であり、拡散防止層を設けたことによる反射率の大
幅な低下は認められなかった。なお、各実施例において
は、実用上重要度の高いモリブデン/シリコンの組合せ
の多層膜反射鏡に関する耐熱性向上について述べたが、
他の物質の組合せからなる多層膜反射鏡に対しても、本
発明を適用できることは言うまでもない。
Next, the soft X-ray reflectance of each of the multilayer film produced in this example and the multilayer film produced in the comparative example was measured in the same manner as in Example 1. As a result, the reflectance of the multilayer film of this example is 72% as compared with the reflectance of the multilayer film of the comparative example.
It was 68%, and a significant decrease in reflectance due to the provision of the diffusion preventing layer was not recognized. It should be noted that, in each of the embodiments, the heat resistance improvement of the multilayer film reflecting mirror of the combination of molybdenum / silicon, which is of high practical importance, is described.
It goes without saying that the present invention can be applied to a multilayer-film reflective mirror made of a combination of other substances.

【0022】ところで、2種類の物質を交互に積層して
なる従来の多層膜反射鏡に、本発明で拡散防止層として
用いた酸化物、窒化物、炭化物等の化合物を一方の物質
に用いても耐熱性の向上を図れる。しかし、この場合は
反射率の大幅な低下を余儀なくされる。これは、一般
に、高い反射率を得るのに適した材料と熱力学的に安定
な拡散防止効果を有する材料とが一致しないためであ
る。
By the way, in a conventional multi-layer film reflecting mirror in which two kinds of substances are alternately laminated, the compound such as oxide, nitride or carbide used as the diffusion preventing layer in the present invention is used for one of the substances. Can also improve heat resistance. However, in this case, the reflectance is inevitably lowered. This is because, in general, a material suitable for obtaining a high reflectance does not match a material having a thermodynamically stable diffusion preventing effect.

【0023】[0023]

【発明の効果】以上のように本発明によれば、熱力学的
に安定な酸化物、窒化物、炭化物等の化合物を拡散防止
層として多層膜中に設けたので、該多層膜中の相互拡散
を有効に防止することができる。そのため、多層膜の耐
熱性が大幅に向上する。そして、スパッタリングによる
成膜の際、不活性ガスだけによるスパッタリングを行う
ため薄膜の表面粗さが増大しない。従って、高反射率の
多層膜を作製できる。
As described above, according to the present invention, compounds such as thermodynamically stable oxides, nitrides and carbides are provided in the multilayer film as the diffusion preventing layer. Diffusion can be effectively prevented. Therefore, the heat resistance of the multilayer film is significantly improved. Further, when forming a film by sputtering, the surface roughness of the thin film does not increase because the sputtering is performed only with an inert gas. Therefore, a multilayer film having a high reflectance can be manufactured.

【0024】本発明は、今後、放射光を始めとする高強
度のX線源に対して使用される多層膜光学系の用途、あ
るいはX線レーザ共振器のように極端に過酷な耐久性が
要求される用途等に対し、おおいにその効果を発揮する
ことができるものである。
The present invention is applicable to multilayer optical systems used for high-intensity X-ray sources such as synchrotron radiation in the future, or extremely harsh durability like X-ray laser resonators. The effect can be largely exerted for required applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明により製造される多層膜の構造を示
す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a multilayer film manufactured according to the present invention.

【図2】は、実施例1で用いたイオンビームスパッタリ
ング装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an ion beam sputtering apparatus used in Example 1.

【図3】は、実施例2で用いた高周波マグネトロンスパ
ッタリング装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of a high frequency magnetron sputtering apparatus used in Example 2.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 基板 2 基板ホルダ 3a ターゲット 3b ターゲット 3c ターゲット 4 ターゲットホルダ 5 イオン源 6a 高周波電源 6b 高周波電源 6c 高周波電源 7 イオンビーム 10 真空チャンバー 1 substrate 2 substrate holder 3a target 3b target 3c target 4 target holder 5 ion source 6a high frequency power source 6b high frequency power source 6c high frequency power source 7 ion beam 10 vacuum chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに屈折率の異なる3種類の物質A、
B、Cをターゲットとしたスパッタリング法により、A
/C/B/Cの順に前記各物質からなる薄膜を積層し、
これを複数回繰り返すことで多層膜を形成することを特
徴とするX線多層膜反射鏡の製造方法。
1. Three types of substances A having different refractive indexes,
By the sputtering method targeting B and C, A
/ C / B / C in the order of thin films of the above substances,
A method for manufacturing an X-ray multilayer film reflecting mirror, characterized in that a multilayer film is formed by repeating this a plurality of times.
【請求項2】 前記スパッタリングを行う際、不活性ガ
スのイオンを前記ターゲットに照射することを特徴とす
る請求項1記載のX線多層膜反射鏡の製造方法。
2. The method for manufacturing an X-ray multilayer mirror according to claim 1, wherein the target is irradiated with ions of an inert gas when the sputtering is performed.
【請求項3】 前記物質Cが、酸化物または窒化物、も
しくは炭化物の化合物であることを特徴とする請求項1
および請求項2に記載のX線多層膜反射鏡の製造方法。
3. The substance C is a compound of an oxide, a nitride, or a carbide.
And a method for manufacturing an X-ray multilayer mirror according to claim 2.
JP4037898A 1992-02-25 1992-02-25 Method for manufacturing X-ray multilayer mirror Expired - Fee Related JP3033323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037898A JP3033323B2 (en) 1992-02-25 1992-02-25 Method for manufacturing X-ray multilayer mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037898A JP3033323B2 (en) 1992-02-25 1992-02-25 Method for manufacturing X-ray multilayer mirror

Publications (2)

Publication Number Publication Date
JPH05232299A true JPH05232299A (en) 1993-09-07
JP3033323B2 JP3033323B2 (en) 2000-04-17

Family

ID=12510366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037898A Expired - Fee Related JP3033323B2 (en) 1992-02-25 1992-02-25 Method for manufacturing X-ray multilayer mirror

Country Status (1)

Country Link
JP (1) JP3033323B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277589A (en) * 2001-03-16 2002-09-25 Japan Atom Energy Res Inst Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE
DE10208705A1 (en) * 2002-02-25 2003-09-11 Fraunhofer Ges Forschung Monochromator mirror for the EUV spectral range
EP1239306A3 (en) * 2001-03-05 2004-02-25 Alps Electric Co., Ltd. Method for manufacturing an optical filter having laminate film
JP2007041603A (en) * 2005-08-03 2007-02-15 Samsung Electronics Co Ltd Euv lithography reflection device, method of fabricating the same, euv lithography mask applying the same, projection optical system and lithography apparatus
JP2009544839A (en) * 2006-07-20 2009-12-17 アビザ テクノロジー リミティド Ion deposition equipment
JP2010506224A (en) * 2006-10-13 2010-02-25 メディア ラリオ ソシエタ ア レスポンサビリタ リミタータ Coated mirror and its manufacture
KR100948650B1 (en) * 2008-01-14 2010-03-18 주식회사 쎄크 Target unit with multi function target and X-ray generating apparatus having the same
JP2011527416A (en) * 2008-07-09 2011-10-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Reflective optical element and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239306A3 (en) * 2001-03-05 2004-02-25 Alps Electric Co., Ltd. Method for manufacturing an optical filter having laminate film
JP2002277589A (en) * 2001-03-16 2002-09-25 Japan Atom Energy Res Inst Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE
DE10208705A1 (en) * 2002-02-25 2003-09-11 Fraunhofer Ges Forschung Monochromator mirror for the EUV spectral range
DE10208705B4 (en) * 2002-02-25 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monochromator mirror for the EUV spectral range
JP2007041603A (en) * 2005-08-03 2007-02-15 Samsung Electronics Co Ltd Euv lithography reflection device, method of fabricating the same, euv lithography mask applying the same, projection optical system and lithography apparatus
JP2009544839A (en) * 2006-07-20 2009-12-17 アビザ テクノロジー リミティド Ion deposition equipment
US8425741B2 (en) 2006-07-20 2013-04-23 Aviza Technology Limited Ion deposition apparatus having rotatable carousel for supporting a plurality of targets
JP2010506224A (en) * 2006-10-13 2010-02-25 メディア ラリオ ソシエタ ア レスポンサビリタ リミタータ Coated mirror and its manufacture
KR100948650B1 (en) * 2008-01-14 2010-03-18 주식회사 쎄크 Target unit with multi function target and X-ray generating apparatus having the same
JP2011527416A (en) * 2008-07-09 2011-10-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Reflective optical element and manufacturing method thereof

Also Published As

Publication number Publication date
JP3033323B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
KR100567363B1 (en) Euvl multilayer structures
US7920323B2 (en) Thermally stable multilayer mirror for the EUV spectral region
Pawlewicz et al. Recent developments in reactively sputtered optical thin films
US20030128810A1 (en) Protective layer for multilayers exposed to x-rays
Braun et al. Multi component EUV multilayer mirrors
JP3033323B2 (en) Method for manufacturing X-ray multilayer mirror
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
JP2010537230A (en) Dichroic filter formed using silicon carbide-based layers
JP2723955B2 (en) Multilayer reflector for soft X-ray and vacuum ultraviolet
JP3018648B2 (en) Method for manufacturing X-ray multilayer mirror
JP2993261B2 (en) X-ray multilayer reflector
JPH0194300A (en) Multi-layer reflecting mirror for x ray and vacuum ultraviolet ray
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
JPH012004A (en) Ultra-narrowband optical multilayer film
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
Boher et al. Tungsten/magnesium silicide multilayers for soft x-ray optics
TWI835896B (en) Extreme ultraviolet mask with backside coating
JP2814595B2 (en) Multilayer reflector
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP3353931B2 (en) Optical thin film, optical component formed with this optical thin film, antireflection film, and plastic optical component formed with this antireflection film
Gaponov et al. Spherical and plane multilayer normal incidence mirrors for soft x-rays
JP2007163221A (en) Manufacturing method for multilayer-film reflector
Boher et al. Magnesium-silicide-based multilayers for soft x-ray optics
JPH0219800A (en) Manufacture of multi-layer film reflecting mirror and multi-layer film reflecting mirror
JPH05283322A (en) Mask for exposure to x-ray

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees