JPH01175736A - Reflective mask - Google Patents
Reflective maskInfo
- Publication number
- JPH01175736A JPH01175736A JP62335222A JP33522287A JPH01175736A JP H01175736 A JPH01175736 A JP H01175736A JP 62335222 A JP62335222 A JP 62335222A JP 33522287 A JP33522287 A JP 33522287A JP H01175736 A JPH01175736 A JP H01175736A
- Authority
- JP
- Japan
- Prior art keywords
- reflective
- reflective part
- rays
- soft
- films
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 19
- 229920003229 poly(methyl methacrylate) Polymers 0.000 abstract description 7
- 239000004926 polymethyl methacrylate Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 4
- 238000001459 lithography Methods 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000006096 absorbing agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 239000013074 reference sample Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- -1 tacite Chemical compound 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70033—Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は反射型マスクに関し、特にリソグラフィーに用
いられる波長5人〜300マグ度の軟X線や波長300
人〜2000人程マグ真空紫外線(以下「軟X線等」と
いう。)に対して所定の反射率を有する反射部と非反射
部より成るパターンを利用した反射型マスクに関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a reflective mask, and particularly to soft
This invention relates to a reflective mask using a pattern consisting of a reflective part and a non-reflective part having a predetermined reflectance for vacuum ultraviolet rays (hereinafter referred to as "soft X-rays, etc.").
(従来の技術)
従来より軟X線等を用いた半導体製造装置における露光
用マスクとしては、窒化ケイ素(SiNx)、炭化ケイ
素(S i C)等の透過材としての基板面トに金(A
u)、タンタル(Ta)等の吸収材から成る不透過のパ
ターンを形成した透過型マスクが種々と提案されている
。(Prior Art) Conventionally, exposure masks for semiconductor manufacturing equipment using soft X-rays, etc. have been made by using gold (A
u) Various transmission masks have been proposed in which non-transmissive patterns are formed from absorbing materials such as tantalum (Ta).
一方、特開昭53−139469号公報ではBragg
回折条件を利用して単結晶や完全非晶質の材料より成る
基板面上に、該基板とは異なる単結晶若しくは完全非晶
質の材料より成るパターンを形成したX線リソグラフィ
ー用の反射型マスクが提案されている。On the other hand, in Japanese Patent Application Laid-open No. 53-139469, Bragg
A reflective mask for X-ray lithography that uses diffraction conditions to form a pattern made of a single crystal or completely amorphous material different from the substrate on the surface of a substrate made of a single crystal or completely amorphous material. is proposed.
従来の反射型マスクはその反射の性質ト、軟X線等を基
板面に対して斜入射しなければならず、この結果マスク
面積が増大し、基板の研磨やマスク面の平面性等を良好
に維持するのが難しい。Due to the nature of reflection in conventional reflective masks, soft X-rays, etc. must be incident obliquely on the substrate surface, which increases the mask area and makes it difficult to polish the substrate and improve the flatness of the mask surface. difficult to maintain.
又、マスクを精度良く支持することが難しくなり、更に
装置全体が大型化してくる等の問題点がある。Further, there are other problems such as it becomes difficult to support the mask with high accuracy and the overall size of the apparatus increases.
又、多層膜より成る反射部面上に吸収体により非反射部
より成るパターンを形成した反射型マスクにおいては、
正入射に近い角度で軟X線等を入射することが出来るが
、非反射部の下層に形成されている反射部に軟X線等が
到達しないように非反射部の厚さを十分厚くする必要が
あった。In addition, in a reflective mask in which a pattern consisting of a non-reflective portion is formed using an absorber on a reflective portion consisting of a multilayer film,
Soft X-rays, etc. can be incident at an angle close to normal incidence, but the thickness of the non-reflective part must be made sufficiently thick so that the soft X-rays, etc. do not reach the reflective part formed below the non-reflective part. There was a need.
この場合、反射型マスクに垂直に軟X線等を照射するこ
とが難しい半導体製造用の露光装置においては第2図に
示すように反射面2oが非反射部21により影となる領
域が23が生じ好ましくなかった。In this case, in an exposure apparatus for semiconductor manufacturing in which it is difficult to irradiate a reflective mask with soft X-rays or the like perpendicularly, the reflective surface 2o has a shadow area 23 due to the non-reflective portion 21, as shown in FIG. This was not pleasant.
尚、第2図において24は多層膜より成る反射部である
。Incidentally, in FIG. 2, reference numeral 24 denotes a reflective section made of a multilayer film.
(発明が解決しようとする問題点)
本発明は基板面上に所定面上に転写すべきパターンを少
なくとも2種類の物質を交互に積層した多層積層膜より
成る反射部の上に同様の構成の非反射部を設けて構成す
ることにより、軟X線等を該基板面に正入射して用いる
ことができ、かつ低熱膨張性及び高熱伝導性の良い熱的
に安定で低歪の高コントラストが容易に得られる軟X線
若しくは/及び真空紫外線を用いたりソグラフィ用の反
射型マスクの提供を目的とする。(Problems to be Solved by the Invention) The present invention provides a method for transferring a pattern to be transferred onto a predetermined surface of a substrate onto a reflective portion made of a multilayer film in which at least two types of materials are alternately laminated. By providing a structure with a non-reflective part, soft X-rays, etc. can be used with normal incidence on the substrate surface, and a thermally stable, low distortion, high contrast with low thermal expansion and high thermal conductivity can be used. The object of the present invention is to provide a reflective mask for lithography using easily obtained soft X-rays and/or vacuum ultraviolet rays.
(問題点を解決するための手段)
軟X線若しくは/及び真空紫外線に対して非反射性の基
板面トに軟X線若しくは/及び真空紫外線を反射する反
射部を設け、更にその上に軟X線若しくは/及び真空紫
外線の反射を防止する非反射部より成るパターンを設け
る際、n1記反射部及び非反射部を少なくとも光学定数
の異なる2種類の物質を交互に積層した多層積層膜より
構成したことである。(Means for solving the problem) A reflective part that reflects soft X-rays and/or vacuum ultraviolet rays is provided on the substrate surface that is non-reflective for soft X-rays and/or vacuum ultraviolet rays, and When providing a pattern consisting of a non-reflective part that prevents reflection of X-rays and/or vacuum ultraviolet rays, the reflective part and the non-reflective part (n1) are composed of a multilayer laminated film in which at least two types of substances having different optical constants are alternately laminated. That's what I did.
(実施例)
第1図は本発明の反射型マスクの一実施例の模式断面図
である。同図において10は軟X線等に対する多層膜m
膜より成る反射部である。(Example) FIG. 1 is a schematic sectional view of an example of a reflective mask of the present invention. In the figure, 10 is a multilayer film m for soft X-rays, etc.
This is a reflective part made of a film.
この反射部10は同図に示すように軟X線等を吸収する
非反射性の平面状の基板1上に形成されている。16は
軟X線等に対する多層積層膜より成る非反射部であり、
反射部10面上に設けられており、所定形状のパターン
を構成している。As shown in the figure, this reflecting section 10 is formed on a non-reflective planar substrate 1 that absorbs soft X-rays and the like. 16 is a non-reflective part made of a multilayer laminated film against soft X-rays, etc.;
It is provided on the surface of the reflecting section 10 and forms a pattern of a predetermined shape.
反射部10は光学定数の異なる第1の物質2゜4.6.
−・・及び第2の物質3,5,7.−・・を交互に積層
して形成している。The reflecting portion 10 is made of a first material 2°4.6. having different optical constants.
-... and second substance 3, 5, 7. -... are formed by laminating them alternately.
同図に示す反射部10の各々の物質の層の膜厚d、、d
2・−は10Å以上であり、交互に等しい膜厚であって
(d+ =d:+ ==、d2=d4=−)も、全ての
膜厚を変えて構成しても良い。Thicknesses d, d of each material layer of the reflective section 10 shown in the figure
2.- is 10 Å or more, and even if the film thicknesses are alternately equal (d+ = d: + ==, d2 = d4 = -), all film thicknesses may be changed.
但し、それぞれの層中における軟X線や真空紫外線の吸
収による振幅の減少、及びそれぞれの層の界面における
反射光の位相の重なりによる反射光の強め合いの両者を
考慮し、反射部全体として最も高い反射率が得られるよ
うな厚さとすることが好ましい。各層の厚さは10人よ
り小さい場合は界面における2つの物質の拡散の効果に
より、反射部として高い反射率が得られず好ましくない
。層数を増加させればさせるほど反射率は上昇するが、
その一方で製作上の困難さが発生してくる。その為、積
層数は200層以内が好ましい。However, considering both the decrease in amplitude due to absorption of soft X-rays and vacuum ultraviolet rays in each layer, and the intensification of reflected light due to overlapping phases of reflected light at the interface of each layer, Preferably, the thickness is such that a high reflectance can be obtained. If the thickness of each layer is less than 10 layers, it is not preferable because a high reflectance cannot be obtained as a reflective part due to the effect of diffusion of the two substances at the interface. The reflectance increases as the number of layers increases, but
On the other hand, manufacturing difficulties arise. Therefore, the number of laminated layers is preferably 200 or less.
又、非反射部16は反射部10に対する反射部1F膜と
なっており、各々の層の膜厚d、、d2゜・・・は1θ
人以トであり、交互に等しいIIQ厚であって(d+
=d3=・・・、dz =d4=−)も、全てのJIS
! Nを変えて構成しても良い。Moreover, the non-reflective part 16 is a reflective part 1F film for the reflective part 10, and the film thicknesses d, d2°, etc. of each layer are 1θ
d+
=d3=..., dz =d4=-), all JIS
! The structure may be configured by changing N.
反射型マスクとしては、反射部10と非反射部16で反
射される軟X線等の強度の比が2=1、好ましくは10
:1以上あった方が良い。その為、反射防止膜の層数は
使用する波長域に強く依存するが2層以上で構成するの
が良い。例えば100人近傍の軟X線等に対しては3層
以上設けるのが良い。As a reflective mask, the ratio of the intensity of soft X-rays etc. reflected by the reflective part 10 and the non-reflective part 16 is 2=1, preferably 10.
:It is better to have 1 or more. Therefore, although the number of layers of the antireflection film strongly depends on the wavelength range used, it is preferable to have two or more layers. For example, it is preferable to provide three or more layers for soft X-rays for around 100 people.
一方、反射防止膜の一層あたりの膜厚は反射防止111
2として(動くための条件から、およそλ/ 4 n(
λは波長、nは屈折率)程度となり、層数を増加させた
場合は非反射部会体の厚さが大きくなる。その結果、′
反射型マスクに垂直に軟X線等を照射する場合以外は、
反射部に非反射部による影が生ずる場合がある。反射型
マスクに垂直な方向から、計って角度θの入射角で反射
型マスクに軟X線等を照射した時、反射部の幅がa、非
反射部全θであり、その結果、反射部の幅は実効的にa
−2d tanθなる。反射部に対し、影の幅は!7
3、好ましくは1/Iθ以下である方が良く、その結果
、入射角を変えることがてきない場合には、非反射部会
体の幅を小さくする必要がある。例えば、反射部の幅が
0.2μmの時、入射角10゜で、非反射部会体の厚さ
を1900人ないし、600Å以下とする必要がある。On the other hand, the film thickness per layer of anti-reflection film is 111
2 (from the conditions for movement, approximately λ/4 n(
λ is the wavelength and n is the refractive index), and when the number of layers is increased, the thickness of the non-reflective member becomes larger. the result,'
Except when irradiating soft X-rays etc. perpendicularly to a reflective mask,
A shadow may be caused by a non-reflective part on a reflective part. When a reflective mask is irradiated with soft X-rays at an incident angle of θ measured from a direction perpendicular to the reflective mask, the width of the reflective part is a, the total width of the non-reflective part is θ, and as a result, the reflective part The width of is effectively a
−2d tanθ. What is the width of the shadow relative to the reflective part? 7
3. It is preferably less than 1/Iθ, and as a result, if the angle of incidence cannot be changed, the width of the non-reflective member needs to be reduced. For example, when the width of the reflective portion is 0.2 μm, the thickness of the non-reflective portion must be 1900 nm or less than 600 Å at an incident angle of 10°.
反射型マスクは強力なX線12(例えばシンクロトロン
放射光等を用いた光源)を用いて使用されることが多く
、照射エネルギーの吸収によるマスクの温度上昇が問題
となってくる。特に温度上昇による熱膨張によりマスク
面上のパターンに位置ずれや歪が発生し、この結果、サ
ブミクロンサイズのパターンの形成にあっては重要な問
題となっている。Reflective masks are often used using powerful X-rays 12 (for example, from a light source using synchrotron radiation or the like), and a temperature increase in the mask due to absorption of irradiation energy becomes a problem. In particular, thermal expansion caused by temperature rise causes misalignment and distortion of patterns on the mask surface, which is an important problem when forming submicron-sized patterns.
この為、軟X線等による反射型マスクにおいては反射マ
スクの温度上昇を抑えることが必要となっている。For this reason, in a reflective mask using soft X-rays or the like, it is necessary to suppress the temperature rise of the reflective mask.
本実施例における反射型マスクは基板にバルク材を使う
ことができマスク自体の水冷が可能である為、温度上昇
に伴なう悪影響を大幅に減少させることができる。又、
基板及び多層積層膜に後述するように高熱伝導率を有す
る材料を用いることによフて、効果的に放熱し温度上昇
を防止している。The reflective mask in this embodiment can use a bulk material for the substrate, and the mask itself can be cooled with water, so that the adverse effects of temperature rise can be significantly reduced. or,
By using materials with high thermal conductivity for the substrate and the multilayer laminated film, as will be described later, heat is effectively dissipated and temperature rise is prevented.
この他、本実施例では基板及び多層積層膜に後述するよ
うな線膨張係数の小さい物質を選択し温度上昇に対する
歪の発生を極力少なくしている。In addition, in this embodiment, a material with a small coefficient of linear expansion, as will be described later, is selected for the substrate and the multilayer laminated film to minimize the occurrence of distortion due to temperature rise.
以上の各条件を満足する基板材料としては、例えばセラ
ミックス系の窒化ケイ素、窒化アルミニウム、炭化ケイ
素等がある。特に炭化ケイ素は熱伝導率が著しく大きく
(100w/m・に)好適な材料である。又、多層積
層1112の一方の材料としてはタングステン、タシタ
ル、モリブデン、ロジウム、ルテニウム等の遷移金属及
びそれらの炭化物、窒化物、珪化物、硼化物、酸化物等
が好適である。他方の材料としては珪素、ベリリウム、
炭素、硼素とそれらの相互の化合物、即ち炭化珪素6炭
化硼素等及びそれらの酸化物、窒化物等の酸化珪素。Examples of substrate materials that satisfy the above conditions include ceramic silicon nitride, aluminum nitride, and silicon carbide. In particular, silicon carbide is a suitable material because it has extremely high thermal conductivity (100 w/m). Further, as one material of the multilayer stack 1112, transition metals such as tungsten, tacite, molybdenum, rhodium, and ruthenium, and their carbides, nitrides, silicides, borides, and oxides are suitable. The other material is silicon, beryllium,
Silicon oxides such as carbon, boron and their mutual compounds, such as silicon carbide, hexa-boron carbide, and their oxides and nitrides.
窒化珪素等が好適である。Silicon nitride or the like is suitable.
特に炭化珪素は線膨張係数が〜4.5 x 10−’に
−1、タングステンは〜4.5 X 10””に−1で
あり、又、反射部としての材料として用いられるモリブ
デンは線膨張係数が〜4.8 X 10−’に−1で好
適な材料である。In particular, silicon carbide has a linear expansion coefficient of -1 to 4.5 x 10'', tungsten has a linear expansion coefficient of -1 to 4.5 It is a suitable material with a coefficient of -1 to 4.8 x 10-'.
本実施例においては基板、反射部の材料、そして非反射
部の材料に線膨張係数がI X 10−57に以下の材
料を、又、熱伝導率が2017m−に以上の材料を用い
るのが好ましい。In this example, materials with a linear expansion coefficient of I x 10-57 or less and a thermal conductivity of 2017 m- or more are used for the substrate, the reflective part, and the non-reflective part. preferable.
次に本発明に係る反射型マスクの製造方法の第1実施例
を第3図を用いて説明する。Next, a first embodiment of the method for manufacturing a reflective mask according to the present invention will be described with reference to FIG.
まず、第3図(A)に示す様に基板lとして面粗さがr
ms値で、10Å以下になるように研磨した珪素単結晶
板より成る基板を用い第1の層2.4,6.−一をなす
物質としてモリブデン(Mo、線膨張率5.OX 10
−’に一’ 、熱伝導率139w/mに)、第2の層3
,5,7.−・・をなす物質としてシリコン(Si、線
膨張率2.5 x 10−’に−1,熱伝導率168w
/mに)を用い、I X 10−’P a(パスカル)
以Fの超高真空に到達後、アルゴン圧力を5 X 1O
−2P aに保ち、スパッタ蒸着により第1の層(Mo
)、及び第2の層(Si)の膜厚が各々27人、 :l
LQ人となるようにして41層(Mo層21層、Si層
20層)積層し、反射部10を形成した。そして反射部
10の上に保護膜Aとして炭素を積層した。First, as shown in Fig. 3(A), the surface roughness of the substrate l is r.
The first layers 2.4, 6. - Molybdenum (Mo, coefficient of linear expansion 5.OX 10
−' to 1', thermal conductivity 139 w/m), second layer 3
,5,7. - Silicon (Si, coefficient of linear expansion 2.5 x 10-' -1, thermal conductivity 168w
/m), I X 10-'P a (Pascal)
After reaching an ultra-high vacuum of F, the argon pressure was increased to 5 x 1O
The first layer (Mo
), and the thickness of the second layer (Si) is 27 people each, :l
41 layers (21 Mo layers, 20 Si layers) were laminated in a LQ pattern to form the reflective section 10. Then, carbon was laminated as a protective film A on the reflective part 10.
この場合、第1の層(Mo)が屈折率の実数部分が小で
あり、第2の層(Si)が屈折率の実数部分が大となる
ような物質を選んでいる。In this case, the material selected is such that the first layer (Mo) has a small real part of the refractive index, and the second layer (Si) has a large real part of the refractive index.
次に第3図(B)に示すように反射部10面上にレジス
トとしてのPMMA (ポリメタクリル酸メチル)の層
を0.5μm厚に形成しEB(エレクトロンビーム)描
画により1.75μmライン&スペースのバタニニング
を行った。このPMMAより成るパターン状のレジスト
Bを形成した。Next, as shown in FIG. 3(B), a layer of PMMA (polymethyl methacrylate) as a resist is formed to a thickness of 0.5 μm on the surface of the reflective portion 10, and a 1.75 μm line & I did a space bashing. A patterned resist B made of this PMMA was formed.
このPMMAよりなるパターン状しジストB上にSi、
Moを交互に膜厚をそれぞれ71人。On the patterned resist B made of this PMMA, Si,
71 people each with alternating Mo film thickness.
37人、31人、・・・、36人、32人、36人。37 people, 31 people..., 36 people, 32 people, 36 people.
33人として、13層だけスパッタ蒸着した。スパッタ
蒸着の条件は反射部10の作製時の条件と同じである。Thirty-three people sputter-deposited only 13 layers. The conditions for sputter deposition are the same as those for manufacturing the reflective section 10.
次にレジストBを剥離し、反射部lO上に多層膜非反射
部31を形成した。(第3図(C))。Next, the resist B was peeled off, and a multilayer film non-reflective portion 31 was formed on the reflective portion IO. (Figure 3 (C)).
非反射部31全体の厚さは480人であった。The total thickness of the non-reflective portion 31 was 480 mm.
非反射部が反射部に対して反射防止膜の効果を持つこと
を確認する為、前述の反射型マスクの作製においてスパ
ッタ蒸着を行う時(反射部の作製時及び非反射部の作製
時)、同時に参照試料を蒸着装置中にセットしておいた
。反射部作製時には3枚の参照試料をセットし、非反射
部作製時には、そのうち1枚の参照試料を再度セットし
た。In order to confirm that the non-reflective part has the effect of an anti-reflection film on the reflective part, when performing sputter deposition in the production of the reflective mask described above (when producing the reflective part and when producing the non-reflective part), At the same time, a reference sample was set in the vapor deposition apparatus. Three reference samples were set when producing the reflective part, and one of the reference samples was set again when producing the non-reflective part.
それにより、反射部の反射率及び反射部面上に非反射部
を形成したものの反射率を測定することができるように
し、波長130人、入射角100で反射率を測定したと
ころ、それぞれ52%、28%の反射率が得られた。This made it possible to measure the reflectance of the reflective part and the reflectance of a non-reflective part formed on the reflective part surface, and when the reflectance was measured at a wavelength of 130 people and an incident angle of 100, it was 52% for each. , a reflectance of 28% was obtained.
吸収体を単に形成するだけの時には、どの程度の厚さが
必要かを確認するため、参照試料の反射部」〕にMoを
3000人蒸着積重面述の反射率測定と同じ条件で反射
率の測定を行った。この結果、3.4%の反射率が得ら
れ、吸収体を形成するのみでは相当の厚さの吸収層が必
要とされることが確認された。In order to confirm how much thickness is required when simply forming an absorber, Mo was deposited on the reflective part of the reference sample by 3,000 people and the reflectance was measured under the same conditions as the reflectance measurement described above. measurements were taken. As a result, a reflectance of 3.4% was obtained, and it was confirmed that just forming an absorber would require a considerably thick absorbing layer.
次に本発明に係る反射型マスクの製造方法の第2実施例
を説明する。第3図に示した第1実施例と同様に基板1
上に反射部10を設け、更に、その上にPMMAより成
るレジストにより所定形状のパターンを形成した。次い
で、I X 1O−6P a以下の高真空に到達後、ア
ルゴン圧力を5 X 10−”Paに保ち、スパッタ蒸
着法により、炭素C(線W’rH係@l(3,8X I
Q−’に−1,熱伝導率Plow/+に)タングステン
W(線膨張率5XlO−’に−1,熱伝導率178胃/
IIK)を交互に、膜J’Jがそれぞれ73人。Next, a second embodiment of the method for manufacturing a reflective mask according to the present invention will be described. The substrate 1 is similar to the first embodiment shown in FIG.
A reflective section 10 was provided thereon, and a pattern of a predetermined shape was further formed thereon using a resist made of PMMA. Next, after reaching a high vacuum of less than I
Q-' -1, thermal conductivity Plow/+) Tungsten W (linear expansion coefficient 5XlO-' -1, thermal conductivity 178 stomach/
IIK) alternately, and membrane J'J for 73 people each.
108人、29人、38人、30人、40人となるよう
にして6層からなる非反射部を形成した。次にPMMA
より成るレジストを剥離し、多層膜の反射部面上に多層
膜より成る非反射部を形成した。非反射部全体の厚さは
318人である。A non-reflective portion consisting of 6 layers was formed with 108, 29, 38, 30, and 40 layers. Next, PMMA
The resist made of the multilayer film was peeled off, and a non-reflective part made of the multilayer film was formed on the reflective part surface of the multilayer film. The total thickness of the non-reflective part is 318 mm.
本実施例においても第1実施例と同様に参照試料を作製
し、非反射部による反射防止効果の確認を行った。反射
部の作製は第1実施例と同時に行い波長130人、入射
角10度で52%の反射率を得た。そして反射部の上に
非反射部を形成したものの反射率は3,2%であった。In this example as well, a reference sample was prepared in the same manner as in the first example, and the antireflection effect of the non-reflective portion was confirmed. The reflecting section was manufactured at the same time as the first example, and a reflectance of 52% was obtained at a wavelength of 130 and an incident angle of 10 degrees. The reflectance of the non-reflective portion formed on the reflective portion was 3.2%.
参照試料の反射部面上にWを720人の厚さに形成し、
吸収体となしたものは反射率4.7%が得られ、多層膜
の非反射部と同等の効果をもつ吸収体は、多層膜の非反
射部のJ7さの倍以上の厚さを必要とすることが確認さ
れた。Form W to a thickness of 720 mm on the reflective part surface of the reference sample,
The absorber has a reflectance of 4.7%, and an absorber that has the same effect as the non-reflective part of the multilayer film needs to be at least twice as thick as the J7 thickness of the non-reflective part of the multilayer film. It was confirmed that
尚、以上の各実施例にいおいて反射部の上面に設けた保
護膜は厚さ100Å以下の炭素が好ましいが、特に設け
なくても良い。In each of the above embodiments, the protective film provided on the upper surface of the reflective section is preferably carbon with a thickness of 100 Å or less, but it does not need to be provided.
本実施例では2つの物質を交互に積層して多層積層反射
部を構成した場合を示したが3つ以上の物質を交互に積
層して構成しても良い。In this embodiment, the case where the multilayer laminated reflective section is constructed by laminating two materials alternately is shown, but it may be constructed by laminating three or more materials alternately.
又、多層膜の形成においてスパッタリング法を用いたが
、これに限定されるものではなく、その他、EB蒸着法
、抵抗加熱、CVO,反応性スパッタリング等のさまざ
まな薄膜を形成する方法を用いることができる。In addition, although the sputtering method was used to form the multilayer film, it is not limited to this, and various other methods for forming thin films such as EB evaporation, resistance heating, CVO, and reactive sputtering may be used. can.
又、基板としてSi単結晶板を用いたが、それに限らず
ガラス、溶融石英、炭化ケイ素等の基板であってその表
面が使用波長に比べて七分になめらかになるように研磨
されたものであれば良い。In addition, although a Si single crystal plate was used as the substrate, it is not limited to this, but it is also possible to use a substrate made of glass, fused silica, silicon carbide, etc., which has been polished so that its surface is seven times smoother than the wavelength used. It's good to have.
(発明の効果)
本発明によれば基板面上に面述のような構成の多層膜よ
り成る反射部と非反射部とより、所定形状のパターンを
形成することにより、軟X線等の正入射が可能な簡易な
構成の軟X線等を用いたリソグラフィー用の反射型マス
クを得ることができる。又、所定の線膨張率と熱伝導率
を有した物質を多層膜用として選択することにより、熱
的に極めて安定した歪の小さい反射型マスクを達成する
ことができる二
又、非反射部の厚さを薄くすることができる為、露光装
置においてマスク面への軟x、S!aや真空紫外線の照
射角度の許容範囲が広がり、露光装置の光学系に多くの
自由度を与えることがてきる。(Effects of the Invention) According to the present invention, by forming a pattern of a predetermined shape on a substrate surface by a reflective part and a non-reflective part made of a multilayer film having the above-mentioned structure, it is possible to It is possible to obtain a reflective mask for lithography using soft X-rays or the like, which has a simple configuration and allows incidence of the soft X-rays. In addition, by selecting a material with a predetermined coefficient of linear expansion and thermal conductivity for the multilayer film, it is possible to achieve a reflective mask that is extremely thermally stable and has low distortion. Since the thickness can be made thinner, soft x, S! The permissible range of the irradiation angle of a and vacuum ultraviolet rays is widened, and a greater degree of freedom can be given to the optical system of the exposure apparatus.
第1図は本発明の反射型マスクの一実施例の模式断面図
、第2図は非反射部として吸収体を用いたときの反射型
マスクの説明図、第3図は本発明の反射型マスクの製造
方法を示す第1実施例の説明図である。
図中、1.25は基板、10,24.32は多層膜の反
射部、16.31は多層膜の非反射部、Aは保護膜、B
はレジスト、21は吸収体、2゜4は第1の物質、3.
5は第2の物質である。
特許出願人 キャノン株式会社FIG. 1 is a schematic sectional view of an embodiment of a reflective mask of the present invention, FIG. 2 is an explanatory diagram of a reflective mask using an absorber as a non-reflective part, and FIG. 3 is a reflective mask of the present invention. FIG. 2 is an explanatory diagram of a first example showing a method for manufacturing a mask. In the figure, 1.25 is the substrate, 10, 24.32 is the reflective part of the multilayer film, 16.31 is the non-reflective part of the multilayer film, A is the protective film, and B
21 is a resist, 2.4 is a first substance, and 3. is a resist.
5 is the second substance. Patent applicant Canon Co., Ltd.
Claims (1)
性の基板面上に軟X線若しくは/及び真空紫外線を反射
する反射部を設け、更にその上に軟X線若しくは/及び
真空紫外線の反射を防止する非反射部より成るパターン
を設ける際、前記反射部及び非反射部を少なくとも光学
定数の異なる2種類の物質を交互に積層した多層積層膜
より構成したことを特徴とする反射型マスク。(1) A reflective part that reflects soft X-rays and/or vacuum ultraviolet rays is provided on a substrate surface that is non-reflective to soft X-rays and/or vacuum ultraviolet rays, and furthermore, a reflective part that reflects soft A reflective type characterized in that the reflective part and the non-reflective part are formed of a multilayer laminated film in which at least two types of substances having different optical constants are alternately laminated when providing a pattern consisting of a non-reflective part to prevent reflection of the reflective part. mask.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33522287A JP2545905B2 (en) | 1987-12-29 | 1987-12-29 | Reflective mask and exposure method using the same |
DE3856054T DE3856054T2 (en) | 1987-02-18 | 1988-02-18 | Reflection mask |
EP88301367A EP0279670B1 (en) | 1987-02-18 | 1988-02-18 | A reflection type mask |
US07/633,181 US5052033A (en) | 1987-02-18 | 1990-12-28 | Reflection type mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33522287A JP2545905B2 (en) | 1987-12-29 | 1987-12-29 | Reflective mask and exposure method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01175736A true JPH01175736A (en) | 1989-07-12 |
JP2545905B2 JP2545905B2 (en) | 1996-10-23 |
Family
ID=18286121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33522287A Expired - Fee Related JP2545905B2 (en) | 1987-02-18 | 1987-12-29 | Reflective mask and exposure method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2545905B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641593A (en) * | 1993-10-15 | 1997-06-24 | Canon Kabushiki Kaisha | Lithographic mask and exposure apparatus using the same |
JP2002280291A (en) * | 2001-03-21 | 2002-09-27 | Hoya Corp | Reflection-type mask blank for euv exposure, and reflection-type mask for euv exposure |
JP2004304170A (en) * | 2003-03-19 | 2004-10-28 | Hoya Corp | Method of manufacturing reflection mask, and method of manufacturing semiconductor device |
KR100501768B1 (en) * | 2002-11-30 | 2005-07-18 | 엘지전자 주식회사 | X-ray mask and manufacturing method there of |
JP2005302998A (en) * | 2004-04-12 | 2005-10-27 | Canon Inc | Exposure device and exposure method using euv (extreme ultra violet) light |
KR100589235B1 (en) * | 2001-05-21 | 2006-06-14 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus, device manufacturing methods, devices manufactured thereby, method of manufacturing a reflector, reflector manufactured thereby and phase shift mask |
JP2006519506A (en) * | 2003-03-03 | 2006-08-24 | フリースケール セミコンダクター インコーポレイテッド | Method for patterning photoresist on a wafer using a reflective mask having a multilayer anti-reflective coating (ARC) |
US7102734B2 (en) | 2004-04-09 | 2006-09-05 | Canon Kabushiki Kaisha | Exposure apparatus |
JP2006259699A (en) * | 2005-02-03 | 2006-09-28 | Asml Netherlands Bv | Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device |
JP2015008283A (en) * | 2013-05-31 | 2015-01-15 | Hoya株式会社 | Reflective mask blank, reflective mask, method for manufacturing the same, and method for manufacturing semiconductor device |
JP2015018918A (en) * | 2013-07-10 | 2015-01-29 | キヤノン株式会社 | Reflection type mask, exposure method, and method of manufacturing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5396677A (en) * | 1977-02-03 | 1978-08-24 | Cho Lsi Gijutsu Kenkyu Kumiai | Reflective mask for forming pattern |
JPS629632A (en) * | 1985-07-06 | 1987-01-17 | Agency Of Ind Science & Technol | Projecting and exposing device |
-
1987
- 1987-12-29 JP JP33522287A patent/JP2545905B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5396677A (en) * | 1977-02-03 | 1978-08-24 | Cho Lsi Gijutsu Kenkyu Kumiai | Reflective mask for forming pattern |
JPS629632A (en) * | 1985-07-06 | 1987-01-17 | Agency Of Ind Science & Technol | Projecting and exposing device |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641593A (en) * | 1993-10-15 | 1997-06-24 | Canon Kabushiki Kaisha | Lithographic mask and exposure apparatus using the same |
JP2002280291A (en) * | 2001-03-21 | 2002-09-27 | Hoya Corp | Reflection-type mask blank for euv exposure, and reflection-type mask for euv exposure |
KR100589235B1 (en) * | 2001-05-21 | 2006-06-14 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus, device manufacturing methods, devices manufactured thereby, method of manufacturing a reflector, reflector manufactured thereby and phase shift mask |
KR100501768B1 (en) * | 2002-11-30 | 2005-07-18 | 엘지전자 주식회사 | X-ray mask and manufacturing method there of |
KR101148316B1 (en) * | 2003-03-03 | 2012-05-21 | 프리스케일 세미컨덕터, 인크. | A method of patterning photoresist on a wafer using a reflective mask with a multilayer arc |
JP2006519506A (en) * | 2003-03-03 | 2006-08-24 | フリースケール セミコンダクター インコーポレイテッド | Method for patterning photoresist on a wafer using a reflective mask having a multilayer anti-reflective coating (ARC) |
JP2004304170A (en) * | 2003-03-19 | 2004-10-28 | Hoya Corp | Method of manufacturing reflection mask, and method of manufacturing semiconductor device |
JP4521753B2 (en) * | 2003-03-19 | 2010-08-11 | Hoya株式会社 | Reflective mask manufacturing method and semiconductor device manufacturing method |
US7102734B2 (en) | 2004-04-09 | 2006-09-05 | Canon Kabushiki Kaisha | Exposure apparatus |
JP2005302998A (en) * | 2004-04-12 | 2005-10-27 | Canon Inc | Exposure device and exposure method using euv (extreme ultra violet) light |
US7436490B2 (en) | 2004-04-12 | 2008-10-14 | Canon Kabushiki Kaisha | Exposure apparatus using blaze type diffraction grating to diffract EUV light and device manufacturing method using the exposure apparatus |
JP4508708B2 (en) * | 2004-04-12 | 2010-07-21 | キヤノン株式会社 | Exposure apparatus and exposure method using EUV light |
JP2006259699A (en) * | 2005-02-03 | 2006-09-28 | Asml Netherlands Bv | Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device |
JP4566137B2 (en) * | 2005-02-03 | 2010-10-20 | エーエスエムエル ネザーランズ ビー.ブイ. | Method for generating a photolithographic patterning device, computer program, patterning device, method for determining the position of a target image on or near a substrate, measuring device and lithography device |
JP2015008283A (en) * | 2013-05-31 | 2015-01-15 | Hoya株式会社 | Reflective mask blank, reflective mask, method for manufacturing the same, and method for manufacturing semiconductor device |
JP2019049720A (en) * | 2013-05-31 | 2019-03-28 | Hoya株式会社 | Reflective mask blank, reflective mask, method for manufacturing the same, and method for manufacturing semiconductor device |
JP2015018918A (en) * | 2013-07-10 | 2015-01-29 | キヤノン株式会社 | Reflection type mask, exposure method, and method of manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JP2545905B2 (en) | 1996-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0279670B1 (en) | A reflection type mask | |
US6833223B2 (en) | Multilayer-film reflective mirrors and optical systems comprising same | |
TW449675B (en) | Multilayer attenuating phase-shift masks | |
JP3047541B2 (en) | Reflective mask and defect repair method | |
JP6731415B2 (en) | EUV multilayer mirror, optical system including multilayer mirror, and method for manufacturing multilayer mirror | |
JP2005268750A (en) | Reflection mask blank, reflection mask, and method of manufacturing semiconductor device | |
WO2002084671A1 (en) | Multi-layered film reflector manufacturing method | |
JP2005515448A (en) | Protective layer for multilayer bodies exposed to hard X-rays | |
JPH01175736A (en) | Reflective mask | |
JP2883100B2 (en) | Half mirror or beam splitter for soft X-ray and vacuum ultraviolet | |
JP4703354B2 (en) | SUBSTRATE WITH MULTILAYER REFLECTIVE FILM, ITS MANUFACTURING METHOD, REFLECTIVE MASK BLANK AND REFLECTIVE MASK | |
JPH0727198B2 (en) | Multi-layer reflective mask | |
JP2615741B2 (en) | Reflection type mask, exposure apparatus and exposure method using the same | |
JP2004128490A (en) | Manufacturing method of reflective mask blank and reflective mask and manufacturing method of semiconductor device | |
JPH10339799A (en) | Reflecting mirror and its manufacturing method | |
Shiraishi et al. | Low-stress molybdenum/silicon multilayer coatings for extreme ultraviolet lithography | |
JPH01175734A (en) | Reflective mask and its manufacture | |
JP2692881B2 (en) | Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element | |
US11385536B2 (en) | EUV mask blanks and methods of manufacture | |
JPS6388503A (en) | Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray | |
JP2675263B2 (en) | Exposure apparatus and exposure method using reflective mask | |
JPH01175735A (en) | Reflective mask and its manufacture | |
JP2545905C (en) | ||
JP2615741C (en) | ||
JP2675263C (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |