JP2002280291A - Reflection-type mask blank for euv exposure, and reflection-type mask for euv exposure - Google Patents

Reflection-type mask blank for euv exposure, and reflection-type mask for euv exposure

Info

Publication number
JP2002280291A
JP2002280291A JP2001081161A JP2001081161A JP2002280291A JP 2002280291 A JP2002280291 A JP 2002280291A JP 2001081161 A JP2001081161 A JP 2001081161A JP 2001081161 A JP2001081161 A JP 2001081161A JP 2002280291 A JP2002280291 A JP 2002280291A
Authority
JP
Japan
Prior art keywords
euv light
euv
absorber layer
film
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001081161A
Other languages
Japanese (ja)
Other versions
JP4780847B2 (en
Inventor
Tsutomu Shiyouki
勉 笑喜
Morio Hosoya
守男 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2001081161A priority Critical patent/JP4780847B2/en
Publication of JP2002280291A publication Critical patent/JP2002280291A/en
Application granted granted Critical
Publication of JP4780847B2 publication Critical patent/JP4780847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To raise the contrast of an EUV light absorbing pattern without increasing the thickness of an EUV light absorbing layer which is formed on an EUV light reflecting multilayered film and into which the pattern is engraved in a reflection type mask for EUV exposure used for pattern transfer at manufacturing of a semiconductor, etc. SOLUTION: The contrast of the pattern can be raised by lowering the EUV light reflectance of the EUV light absorbent layer M1 , using the effect of interference between an EUV light (1) reflected by the surface of the layer M1 and another EUV light (2), which is reflected by the multilayered film M2 , after passing through the absorbing layer M1 and again passes through the film M2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造等の際
に使用される、EUV露光用反射型マスクの主要な構成
要素である、EUV光を反射する多層膜(本明細書にお
いては「EUV光反射多層膜」と記載する。)上に成膜
されるEUV光を吸収する吸収体層(本明細書において
は「EUV光吸収体層」と記載する。)、およびその製
造方法、並びに前記EUV光吸収体層を用いたEUV露
光用反射型マスク、等に関する。尚、本発明に記載する
EUV(Extreme Ultra Violet)
光とは、軟X線領域または真空紫外領域の波長帯の光を
指し、具体的には波長が0.2〜100nm程度の光の
ことである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer film for reflecting EUV light, which is a main component of a reflection type mask for EUV exposure used in the manufacture of semiconductors and the like. Absorber layer that absorbs EUV light (hereinafter referred to as “EUV light absorber layer” in this specification), a method for producing the same, and the method described above. The present invention relates to a reflective mask for EUV exposure using an EUV light absorber layer, and the like. The EUV (Extreme Ultra Violet) described in the present invention
The light refers to light in a wavelength range of a soft X-ray region or a vacuum ultraviolet region, and specifically, light having a wavelength of about 0.2 to 100 nm.

【0002】[0002]

【従来の技術】従来、半導体産業において、Si基板等
に微細なパターンからなる集積回路等の半導体装置を形
成する上で必要な微細パターンの転写技術として、可視
光や紫外光を用いたフォトリソグラフィ法が用いられて
いきた。しかし、半導体デバイスの微細化が加速してい
る一方で、従来の光露光の短波長化は露光限界に近づい
てきた。そして光露光の場合、パターンの解像限界は露
光波長の1/2と言われ、F2レーザー(157nm)
を用いても70nm程度が限界と予想される。そこで7
0nm以降の露光技術として、F2レーザーよりさらに
短波長のEUV光(13nm)を用いた露光技術である
EUVリソグラフィ(以下、「EUVL」と記載す
る。)が有望視されている。
2. Description of the Related Art Conventionally, in the semiconductor industry, photolithography using visible light or ultraviolet light has been used as a technique for transferring a fine pattern necessary for forming a semiconductor device such as an integrated circuit having a fine pattern on a Si substrate or the like. Law has been used. However, while miniaturization of semiconductor devices is accelerating, shortening the wavelength of conventional light exposure is approaching the exposure limit. In the case of light exposure, the resolution limit of the pattern is said to be の of the exposure wavelength, and an F 2 laser (157 nm)
It is expected that about 70 nm is the limit even if is used. So 7
EUV lithography (hereinafter, referred to as “EUVL”), which is an exposure technique using EUV light (13 nm) having a shorter wavelength than the F 2 laser, is expected as an exposure technique at 0 nm or later.

【0003】EUVLの像形成原理は、フォトリソグラ
フィと同じであるが、EUV光に対する、あらゆる物質
の吸収は大きく、また屈折率が1に近いため、光露光の
ような屈折光学系は使用できず、すべて反射光学系を用
いる。また、その際用いられるマスクとしては、メンブ
レンを用いた透過型マスクが提案されてきているが、E
UV光に対するメンブレンの吸収が大きいため露光時間
が長くなり、スループットが確保できないという問題が
ある。その為、現状では露光用反射型マスクが一般的に
使用されている。
The principle of EUVL image formation is the same as that of photolithography. However, since EUV light absorbs a large amount of all substances and has a refractive index close to 1, refractive optical systems such as light exposure cannot be used. , All use a reflective optical system. As a mask used at that time, a transmission type mask using a membrane has been proposed.
There is a problem that the exposure time becomes long because the membrane absorbs a large amount of UV light, and the throughput cannot be secured. Therefore, at present, a reflective mask for exposure is generally used.

【0004】ここで、EUVLについて、図17〜19
を用いて説明する。尚、図17、18および後述する図
1において、対応する部分については同一の符号を付し
て示した。図17はEUVLに用いられるEUV露光用
反射型マスク、図18はEUV露光用反射型マスクブラ
ンクを模式的に表現した図であり、図19は製造された
EUVマスクを用いて例えばSiウエハ上にパターンを
露光転写を行っている概念図である。図17に示すよう
に、EUV光用の露光用反射型マスクの主要な構成要素
は、基板S、EUV光反射多層膜M2、リソグラフィの
パターンニングがされたEUV吸収体パターンM1Pであ
る。因みに、露光用反射型マスクブランクとは図18に
示すように、前記EUV光吸収体パターンM1Pにおける
リソグラフィのパターンニング実施前で、EUV光吸収
体層M1の形態のものをいう。
Here, EUVL is described with reference to FIGS.
This will be described with reference to FIG. In FIGS. 17 and 18 and FIG. 1 to be described later, corresponding parts are denoted by the same reference numerals. FIG. 17 is a diagram schematically illustrating a reflective mask for EUV exposure used for EUVL, FIG. 18 is a diagram schematically illustrating a reflective mask blank for EUV exposure, and FIG. 19 is a diagram illustrating, for example, using a manufactured EUV mask on a Si wafer. It is a conceptual diagram which performs exposure transfer of a pattern. As shown in FIG. 17, the main constituent elements of the reflective mask for exposure for EUV light are a substrate S, an EUV light reflective multilayer film M 2 , and a lithographically patterned EUV absorber pattern M 1P . Incidentally, as shown in FIG. 18, the reflective mask blank for exposure has a form of the EUV light absorber layer M 1 before the lithography patterning is performed on the EUV light absorber pattern M 1P .

【0005】次に図19を用いてEUV露光用反射型マ
スクによる半導体基板上へのパターン転写について説明
する。図19に示すように、レーザープラズマX線源1
1からえられたEUV光(軟X線)を前記EUVマスク
12に入射し、ここで反射された光を縮小光学系13を
通して例えばSiウエハ基板14上に転写する。ここ
で、縮小光学系13としてはX線反射ミラーを用いるこ
とができる、縮小光学系によりEUVマスク12で反射
されたパターンは通常1/4程度に縮小される。例えば
Siウエハ14へのパターンの転写は、Siウエハ14
上に形成させたレジスト層にパターンを露光しこれを現
像することによって行うことができる。露光波長として
13〜14nmの波長帯を使用する場合には、通常光路
が真空中になるように転写が行われる。このようにして
EUVLにより、例えばSiウエハ上にパターンを形成
することにより、例えば集積度の高いLSI、等の半導
体装置を製造することができる。
Next, pattern transfer onto a semiconductor substrate using a reflective mask for EUV exposure will be described with reference to FIG. As shown in FIG. 19, the laser plasma X-ray source 1
The EUV light (soft X-ray) obtained from 1 is incident on the EUV mask 12, and the light reflected here is transferred to, for example, a Si wafer substrate 14 through a reduction optical system 13. Here, an X-ray reflection mirror can be used as the reduction optical system 13. The pattern reflected by the EUV mask 12 by the reduction optical system is usually reduced to about 1/4. For example, the transfer of the pattern to the Si wafer 14
This can be performed by exposing a pattern to the resist layer formed thereon and developing the pattern. When a wavelength band of 13 to 14 nm is used as the exposure wavelength, the transfer is usually performed such that the optical path is in a vacuum. By forming a pattern on, for example, a Si wafer by EUVL in this manner, it is possible to manufacture a semiconductor device such as a highly integrated LSI, for example.

【0006】[0006]

【発明が解決しようとする課題】さて、前述した光露光
パターンの解像限界を上げるため、前記パターンニング
後のパターンのコントラストを上げることが重要視され
るようになった。このコントラストを上げるために、前
記EUV光反射多層膜M2の反射率が高いことと同時
に、前記EUV光吸収体層M1の吸収率が高いことが求
められている。ここで前記EUV光吸収体層M1は、例
えばTaBのようなEUV光に対して高い吸収係数を持
つ元素の薄膜であるので、当然のことながらEUV光吸
収体層M1に入射してきたEUV光の大部分は反射され
ることなくEUV光吸収体層M1に吸収される。しかし
前記EUV光吸収体層M1は薄膜であるため、前記吸収
されたEUV光の一部が下層の前記EUV光反射多層膜
2にまで達し、そこで反射されたEUV光のさらに一
部が再び前記EUV光吸収体層M1の薄膜を通過して外
部へもどり、この結果、前記パターンのコントラストが
低下するという問題点が判明した。この問題点に対する
最も直接的な解決策として、EUV光吸収体層M1の膜
厚を厚くすることが考えられる。
In order to raise the resolution limit of the above-mentioned light exposure pattern, it has become important to increase the contrast of the pattern after patterning. To increase the contrast, the EUV light reflective multilayer film simultaneously with the high reflectivity of M 2, said EUV light absorbing layer M 1 in the absorption rate is high is demanded. Here, since the EUV light absorber layer M 1 is a thin film of an element having a high absorption coefficient for EUV light such as TaB, for example, the EUV light incident on the EUV light absorber layer M 1 is of course. most of the light is absorbed in the EUV light absorbing layer M 1 without being reflected. However, since the EUV light absorbing layer M 1 is a thin film, the portion of absorbed EUV light reaches the EUV light reflective multilayer film M 2 of the lower layer, where the further portion of the reflected EUV light back to the outside through the thin film of the EUV light absorbing layer M 1 again, as a result, a problem that the contrast of the pattern is reduced has been found. The most straightforward solution to this problem, it is conceivable to increase the thickness of the EUV light absorbing layer M 1.

【0007】ところがEUV光吸収体層M1の膜厚を厚
くすると、次のような問題点が新たに発生する。 1.EUV光吸収体層M1自体が有する膜応力も膜厚に
伴って増大するためマスクの変形が起き、この結果、光
露光パターンの解像限界が上がらなくなる。 2.EUV光吸収体層M1は、例えばTa、B、等のコ
ストの高い原料を用いて成膜されているので、膜厚を厚
くすることはすぐに製造コストの上昇につながる。 3.EUV光はある一定の入射角度、出射角度をもって
EUV光吸収体層M1を通過するため、EUV光吸収体
層M1の膜厚が厚くなると、そのエッジの部分ではEU
V光がEUV光吸収体層M1を通過する距離が大きく変
化するため、光露光パターンがぼやけるという問題が顕
著になる。本発明は、以上の背景のもとでなされたもの
であり、EUV光吸収体層M1において、膜厚を厚くす
ることなくEUV光反射率を下げることで、パターンの
コントラストを上げることを目的とする。
However, when the thickness of the EUV light absorber layer M 1 is increased, the following problems are newly generated. 1. Deformation of the mask happened since the film stress of the EUV light absorbing layer M 1 itself increases with the film thickness, a result, the resolution limit of the optical exposure pattern can not rise. 2. EUV light absorbing layer M 1 is, for example Ta, B, because it is formed by using a costly raw material etc., that increasing the thickness leads to immediate increase in manufacturing cost. 3. Certain incident angle EUV light that, for passing the EUV light absorbing layer M 1 having the emission angle, the thickness of the EUV light absorbing layer M 1 becomes thicker, EU is the portion of the edge
Since the distance V light passes through the EUV light absorbing layer M 1 is greatly changed, a problem that the light exposure pattern blurring becomes significant. The present invention has been made under the above background, in the EUV light absorbing layer M 1, by lowering the EUV light reflectivity without increasing the film thickness, intended to increase the contrast of the pattern And

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
めに、本願発明者らがなした第1の発明は、EUV光反
射多層膜上に成膜されたEUV光吸収体層を有するEU
V露光用反射型マスクブランクであって、前記EUV吸
収体層の表面にて反射されるEUV光と、前記EUV吸
収体層を通過して前記EUV吸収体層の下にある前記E
UV光反射多層膜で反射され、再び前記EUV吸収体層
を通過したEUV光と、の干渉効果を利用して、前記E
UV吸収体層におけるEUV光の反射率が低くなるよう
に、前記EUV吸収体層の膜厚を設定したことを特徴と
するEUV露光用反射型マスクブランクである。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention made by the present inventors is an EU having an EUV light absorber layer formed on an EUV light reflecting multilayer film.
A reflective mask blank for V-exposure, wherein the EUV light reflected on the surface of the EUV absorber layer and the EUV passing through the EUV absorber layer and below the EUV absorber layer.
By utilizing the interference effect between the EUV light reflected by the UV light reflecting multilayer film and the EUV light that has passed through the EUV absorber layer again,
A reflective mask blank for EUV exposure, characterized in that the thickness of the EUV absorber layer is set so that the reflectance of EUV light in the UV absorber layer is reduced.

【0009】第2の発明は、EUV光反射多層膜上に成
膜されたEUV光吸収体層を有するEUV露光用反射型
マスクブランクであって、前記EUV光吸収体層の表面
にて反射されるEUV光と、前記EUV光吸収体層を通
過し前記EUV光吸収体層の下にある前記EUV光反射
多層膜で反射され再び前記EUV光吸収体層を通過した
EUV光との、干渉効果を加算した反射率をシュミレー
ションし、前記反射率のシュミレーションの結果を、膜
厚を横軸、反射率を縦軸としたグラフに表し、前記グラ
フにおいて、膜厚に対し反射率の極大値を与える点を結
んだ曲線を求め、その膜厚が膜応力の観点から使用不適
と判断される膜厚値を限界膜厚としたとき、前記限界膜
厚に対応する反射率を前記曲線から求め、限界反射率と
定義したとき、前記反射率のシュミレーション結果よ
り、膜厚に対し反射率の極小値を与える膜厚を求め、そ
の膜厚を極小値膜厚と定義し、前記EUV光吸収体層の
成膜において、前記極小値膜厚をねらう際に発生する不
可避的な膜厚変動を見込んでも、前記限界反射率より低
い反射率を得ることができる膜厚を用いることを特徴と
するEUV露光用反射型マスクブランクである。
A second invention is a reflective mask blank for EUV exposure having an EUV light absorbing layer formed on an EUV light reflecting multilayer film, wherein the reflective mask blank is reflected on the surface of the EUV light absorbing layer. Between EUV light that has passed through the EUV light absorber layer and EUV light that has been reflected by the EUV light reflecting multilayer film below the EUV light absorber layer and has passed through the EUV light absorber layer again Is simulated, and the result of the simulation of the reflectance is shown in a graph with the film thickness on the horizontal axis and the reflectance on the vertical axis. In the graph, the maximum value of the reflectance is given to the film thickness. A curve connecting the points is obtained, and when a film thickness value at which the film thickness is determined to be unsuitable for use from the viewpoint of the film stress is defined as a limit film thickness, a reflectance corresponding to the limit film thickness is obtained from the curve, When defined as reflectance, From the simulation result of the reflectance, a film thickness that gives a minimum value of the reflectance with respect to the film thickness is obtained, and the film thickness is defined as a minimum value film thickness. In forming the EUV light absorber layer, the minimum value film is formed. A reflective mask blank for EUV exposure, characterized by using a film thickness capable of obtaining a reflectivity lower than the limiting reflectivity even in anticipation of an unavoidable film thickness variation occurring when aiming for a thickness.

【0010】第3の発明は、EUV光反射多層膜上に成
膜されたEUV光吸収体層を有するEUV露光用反射型
マスクブランクであって、前記EUV光吸収体層の表面
にて反射されるEUV光と、前記EUV光吸収体層を通
過し前記EUV光吸収体層の下にある前記EUV光反射
多層膜で反射され再び前記EUV光吸収体層を通過した
EUV光との、干渉効果をもちいて、前記EUV光吸収
体層におけるEUV光の反射率を低減させる構造におい
て、前記干渉効果の起きる条件を前記EUV光吸収体層
の膜厚の関数として定式化し、さらに前記EUV光反射
多層膜での多層反射を表面の反射とする近似を行うこと
で、前記干渉効果の起きる条件を前記EUV光吸収体層
の膜厚の関数として表す式の近似式を求め、この近似式
により算出した膜厚を有するEUV光吸収体層を有する
ことを特徴とするEUV露光用反射型マスクブランクで
ある。
A third invention is a reflective mask blank for EUV exposure having an EUV light absorber layer formed on an EUV light reflective multilayer film, wherein the reflective mask blank is reflected on the surface of the EUV light absorber layer. Between EUV light that has passed through the EUV light absorber layer and EUV light that has been reflected by the EUV light reflecting multilayer film below the EUV light absorber layer and has passed through the EUV light absorber layer again In the structure for reducing the reflectivity of EUV light in the EUV light absorber layer, the conditions under which the interference effect occurs are formulated as a function of the thickness of the EUV light absorber layer, and the EUV light reflection multilayer is further formulated. By performing an approximation using the multilayer reflection on the film as the reflection on the surface, an approximate expression of an expression representing the condition under which the interference effect occurs as a function of the film thickness of the EUV light absorber layer was obtained, and the approximate expression was calculated. film A EUV exposure reflective mask blank and having an EUV light absorbing layer having a.

【0011】第4の発明は、第3の発明に記載のEUV
露光用反射型マスクブランクであって、前記近似式によ
り算出した膜厚dの値が、
A fourth invention is directed to the EUV according to the third invention.
The reflective mask blank for exposure, the value of the film thickness d calculated by the above approximate expression,

【数3】 および(Equation 3) and

【数4】 の両式を満足する範囲内にあることで、前記干渉効果を
用いて、EUV光の反射率を下げることを特徴とするE
UV露光用反射型マスクブランクである。但し、λ0
真空中でのEUV光の波長、n0は真空中に屈折率、n1
は吸収体層の屈折率、θ0はEUV光のEUV光吸収体
層への入射角、k1は正の実数、T01は真空中とEUV
光吸収体層との界面の透過率、R01は真空中とEUV光
吸収体層との界面の反射率、R12はEUV光吸収体層と
EUV光反射多層膜との界面の反射率、mは正の整数、
φは位相のずれ、である。
(Equation 4) Is within the range satisfying both of the above expressions, the reflectivity of EUV light is reduced using the interference effect.
It is a reflective mask blank for UV exposure. Here, λ 0 is the wavelength of EUV light in vacuum, n 0 is the refractive index in vacuum, n 1
Is the refractive index of the absorber layer, θ 0 is the angle of incidence of the EUV light on the EUV light absorber layer, k 1 is a positive real number, T 01 is the vacuum and EUV
R 01 is the reflectance at the interface between the vacuum and the EUV light absorber layer, R 12 is the reflectance at the interface between the EUV light absorber layer and the EUV light reflection multilayer film, m is a positive integer,
φ is the phase shift.

【0012】第5の発明は、第1から第4の発明のいず
れかに記載のEUV露光用反射型マスクブランクであっ
て、前記EUV光反射多層膜は交互に積層した第1の膜
と第2の膜とを有し、前記第1の膜は、遷移金属、遷移
金属の炭化物、遷移金属の窒化物、遷移金属の珪化物、
および遷移金属の硼化物、より選ばれる少なくとも1つ
以上の成分を含み、前記第2の膜は、Bおよび/または
Beおよび/またはCおよび/またはSi、Bおよび/
またはBeおよび/またはCおよび/またはSiの酸化
物、Bおよび/またはBeおよび/またはCおよび/ま
たはSiの窒化物、より選ばれる少なくとも1つ以上の
成分を含み、前記EUV吸収体層は、Cr、Crの炭化
物、Crの窒化物、Crの珪化物およびCrの硼化物よ
り選ばれる少なくとも1つ以上の成分を含みこのEUV
吸収体層の膜厚は70nm〜100nmであることを特
徴とするEUV露光用反射型マスクブランクである。
According to a fifth aspect of the present invention, there is provided the reflective mask blank for EUV exposure according to any one of the first to fourth aspects, wherein the EUV light reflecting multilayer film is formed by alternately stacking the first film and the second film. A first film, a transition metal, a transition metal carbide, a transition metal nitride, a transition metal silicide,
And at least one component selected from borides of transition metals, and the second film is made of B and / or Be and / or C and / or Si, B and / or
Or at least one component selected from oxides of Be and / or C and / or Si, nitrides of B and / or Be and / or C and / or Si, and the EUV absorber layer comprises: This EUV contains at least one component selected from Cr, Cr carbide, Cr nitride, Cr silicide and Cr boride.
A reflective mask blank for EUV exposure, wherein the thickness of the absorber layer is 70 nm to 100 nm.

【0013】第6の発明は、第1から第4の発明のいず
れかに記載のEUV露光用反射型マスクブランクであっ
て、前記EUV光反射多層膜は交互に積層した第1の膜
と第2の膜とを有し、前記第1の膜は、遷移金属、遷移
金属の炭化物、遷移金属の窒化物、遷移金属の珪化物、
および遷移金属の硼化物、より選ばれる少なくとも1つ
以上の成分を含み、前記第2の膜は、Bおよび/または
Beおよび/またはCおよび/またはSi、Bおよび/
またはBeおよび/またはCおよび/またはSiの酸化
物、Bおよび/またはBeおよび/またはCおよび/ま
たはSiの窒化物、より選ばれる少なくとも1つ以上の
成分を含み、前記EUV吸収体層は、Ta、Taの炭化
物、Taの窒化物、Taの珪化物およびTaの硼化物よ
り選ばれる少なくとも1つ以上の成分を含み、このEU
V吸収体層の膜厚は70nm〜110nmであることを
特徴とするEUV露光用反射型マスクブランクである。
A sixth invention is a reflective mask blank for EUV exposure according to any one of the first to fourth inventions, wherein the EUV light reflecting multilayer film is composed of a first film and a second film alternately laminated. A first film, a transition metal, a transition metal carbide, a transition metal nitride, a transition metal silicide,
And at least one component selected from borides of transition metals, and the second film is made of B and / or Be and / or C and / or Si, B and / or
Or at least one component selected from oxides of Be and / or C and / or Si, nitrides of B and / or Be and / or C and / or Si, and the EUV absorber layer comprises: The EU contains at least one or more components selected from Ta, a carbide of Ta, a nitride of Ta, a silicide of Ta, and a boride of Ta.
The reflective mask blank for EUV exposure, wherein the thickness of the V absorber layer is 70 nm to 110 nm.

【0014】第7の発明は、第5または第6の発明に記
載のEUV露光用反射型マスクブランクであって、前記
遷移金属は、W、Ta、Mo、Rh、Ru、Au、H
f、Ni、Cr、Reより選ばれる少なくとも1つ以上
の金属であることを特徴とするEUV露光用反射型マス
クブランクである。
A seventh invention is the reflective mask blank for EUV exposure according to the fifth or sixth invention, wherein the transition metal is W, Ta, Mo, Rh, Ru, Au, H
A reflective mask blank for EUV exposure, characterized by being at least one metal selected from f, Ni, Cr, and Re.

【0015】第8の発明は、第1から第7の発明のいず
れかに記載のEUV露光用反射型マスクブランクを用い
たことを特徴とするEUV露光用反射型マスクである。
According to an eighth aspect of the present invention, there is provided a reflective mask for EUV exposure, wherein the reflective mask blank for EUV exposure according to any one of the first to seventh aspects is used.

【0016】第9の発明は、第8の発明に記載のEUV
露光用反射型マスクを用いて、半導体ウエハ上にEUV
光によりパターンを転写することを特徴とする半導体の
製造方法である。
The ninth invention is directed to the EUV according to the eighth invention.
EUV on semiconductor wafer using reflective mask for exposure
A method for manufacturing a semiconductor, wherein a pattern is transferred by light.

【0017】[0017]

【発明の実施の形態】以下、EUV光吸収体層M1の表
面にて反射されるEUV光と、EUV光吸収体層M1
通過しEUV光吸収体層M1の下にあるEUV光反射多
層膜M2で反射され再びEUV光吸収体層M1を通過した
EUV光とが、特定の条件を満たすときに起こる干渉効
果を用いて、EUVLに十分なコントラストを得ること
ができる条件について詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, EUV light and EUV light is reflected by the absorber layer M 1 in the surface, the EUV light below the EUV light absorbing layer M 1 through an EUV light absorbing layer M 1 and the EUV light that has passed through the EUV light absorbing layer M 1 again is reflected by the reflective multilayer film M 2 is, by using the interference effect which occurs when certain conditions, the conditions that can obtain a sufficient contrast for EUVL It will be described in detail.

【0018】図1はEUV光反射多層膜M2とその上に
成膜されたEUV光吸収体層M1および真空中M0をそれ
ぞれ模式的に表現し、そこへを有し角度θ0を以てEU
V光が真空中M0から、強度I0を有して入射してきた際
の光路を表した図である。入射してきたEUV光のう
ち、EUV光吸収体層M1の表面で反射されるものをE
UV光、EUV光吸収体層M1を通過しEUV光吸収
体層M1の下にあるEUV光反射多層膜M2で反射され再
びEUV光吸収体層M1を通過したEUV光をEUV光
とした。ここで、干渉効果を起こすために満たすべき
条件とは、1)EUV光ととの位相差がほぼπずれ
ていること、2)EUV光ととの強度がほぼ等しい
ことである。すなわちEUV光吸収体層M1の制御によ
りEUV光ととが上記1)、2)の条件を満たせ
ば、EUV光吸収体層M1の厚膜化によることなくEU
VLに十分なコントラストを得ることができる。
FIG. 1 schematically shows an EUV light reflecting multilayer film M 2 , an EUV light absorber layer M 1 formed thereon, and a vacuum M 0 , each having an angle θ 0. EU
FIG. 5 is a diagram illustrating an optical path when V light enters from vacuum M 0 with intensity I 0 . Of the EUV light entered, E what is reflected by the surface of the EUV light absorbing layer M 1
UV light, EUV light EUV light that has passed through the EUV light reflective multilayer film M 2 EUV light absorbing layer M 1 again is reflected by the bottom of the EUV light absorbing layer through the M 1 EUV light absorbing layer M 1 And Here, the conditions to be satisfied in order to cause the interference effect are 1) that the phase difference with the EUV light is substantially π shifted, and 2) that the intensity with the EUV light is substantially equal. That EUV light and transgressions the one under the control of the EUV light absorbing layer M 1), satisfies the condition of 2), EU without depending thickening of the EUV light absorbing layer M 1
A sufficient contrast can be obtained for VL.

【0019】EUV光ととが上記1)、2)を満た
す条件を図1を用いて説明する。但し、R01は真空中M
0とEUV光吸収体層M1との界面の反射率である。R12
はEUV光吸収体層M1とEUV光反射多層膜M2との界
面の反射率である。T01は真空中M0とEUV光吸収体
層M1との界面の透過率である。αは入射してきたEU
V光に対するEUV光吸収体層M1の吸収係数である。
2Zは入射してきたEUV光がEUV光吸収体層M1
を進行する距離である。すると、EUV光吸収体層M1
の表面で反射されたEUV光の強度I1は式(1) I1=I001………(1) となる。
The conditions under which EUV light satisfies the above conditions 1) and 2) will be described with reference to FIG. However, R01 is M in vacuum
0 and the reflectance at the interface between the EUV light absorber layer M 1. R 12
Is the reflectivity of the interface between the EUV light absorber layer M 1 and the EUV light reflective multilayer film M 2. T 01 is the transmittance at the interface between the vacuum M 0 and the EUV light absorber layer M 1 . α is the incoming EU
It is the absorption coefficient of EUV light absorbing layer M 1 for V light.
2Z is the distance EUV light entered proceeds EUV light absorbing layer M 1 medium. Then, the EUV light absorber layer M 1
The intensity I 1 of the EUV light reflected on the surface of the above equation is expressed by the following equation (1): I 1 = I 0 R 01 (1)

【0020】一方、EUV光の強度I2は式(2) I2=I001exp[−αZ]・R12exp[−αZ]T01=I001 212exp [−2αZ]………(2) となる。但し、αは式(3) α=2ω01/c………(3) である。ここでω0は真空中M0での光の角速度であり、
1はEUV光吸収体層M1のEUV光の消衰係数、cは
光速である。すると、ω0は式(4) ω0=2πν0=2πc/λ0………(4) となる。ここでν0は真空中での光の振動数、λ0は真空
中での波長である。そして式(3)と式(4)より式
(5)が導かれる。 α=4πk1/λ0 ………(5) また、EUV光吸収体層M1における光路長zと膜厚dの
関係を式(6)に示す。 z = d/cosθ1………(6) ここで、θ1に関しては、入射角θ0と式(7)の関係に
ある。但し、n0 は真空中の屈折率、n1 は吸収体層の屈
折率である。 n0 sinθ0 = n1 sinθ1………(7) そして式(6)と式(7)式より式(8)が導かれる。
On the other hand, the intensity I 2 of the EUV light is given by the following equation (2): I 2 = I 0 T 01 exp [−αZ] · R 12 exp [−αZ] T 01 = I 0 T 01 2 R 12 exp [−2αZ ] ... (2) Here, α is the equation (3) α = 2ω 0 k 1 / c (3) Here, ω 0 is the angular velocity of light at M 0 in vacuum,
k 1 is the extinction coefficient of EUV light of the EUV light absorber layer M 1 , and c is the speed of light. Then, ω 0 is given by the following equation (4): ω 0 = 2πν 0 = 2πc / λ 0 (4) Here, ν 0 is the frequency of light in a vacuum, and λ 0 is the wavelength in a vacuum. Then, Expression (5) is derived from Expression (3) and Expression (4). α = 4πk 1 / λ 0 (5) Further, the relationship between the optical path length z and the film thickness d in the EUV light absorber layer M 1 is shown in Expression (6). z = d / cos θ 1 (6) Here, θ 1 is in the relationship of the incident angle θ 0 and the equation (7). Here, n 0 is the refractive index in a vacuum, and n 1 is the refractive index of the absorber layer. n 0 sin θ 0 = n 1 sin θ 1 (7) Then, Expression (8) is derived from Expressions (6) and (7).

【数5】 ・・・・・(8)(Equation 5) ・ ・ ・ ・ ・ (8)

【0021】最後に、 I1=I2、すなわち式(1)=式
(2)の条件に式(5)および式(8)を代入すると、
条件1)を満たす最適膜厚dを示す式(9)が導出され
る。 I0R01= I0(T01)2R12exp[-2αz]-2αz = ln[R01/(T01)
2R12]
Finally, substituting equations (5) and (8) into the condition of I 1 = I 2 , ie, equation (1) = equation (2), gives:
Equation (9) indicating the optimum film thickness d that satisfies the condition 1) is derived. I 0 R 01 = I 0 (T 01 ) 2 R 12 exp [-2αz] -2αz = ln [R 01 / (T 01 )
2 R 12 ]

【数6】 ・・・・・(9) 次に条件2)を満足する膜厚dについて検討する。EU
V光との光路差は2zである。これが波長の(整数+
0.5)倍のとき、EUV光との位相がπずれること
になる。そこでこの光路差を求めようとすると、EUV
光反射多層膜M2が数十層の多層膜で構成されているた
め、干渉条件を求めるためにる光学シュミレーション計
算をおこない、この結果よりEUVLにおいて十分なコ
ントラストを得ることのできるEUV光吸収体層M1
膜厚を求めることができる。
(Equation 6) (9) Next, a film thickness d satisfying the condition 2) will be examined. EU
The optical path difference from the V light is 2z. This is the (integer +
At 0.5) times, the phase with EUV light is shifted by π. Therefore, when trying to find this optical path difference, EUV
Since the light reflecting multilayer film M 2 is composed of several tens of multilayer films, an optical simulation calculation for obtaining interference conditions is performed, and from this result, an EUV light absorber capable of obtaining a sufficient contrast in EUVL it is possible to obtain the thickness of the layer M 1.

【0022】上述の方法にてEUV光吸収体層M1の膜
厚を求めるには、例えば、以下のような操作を行う。ま
ず、前記EUV光吸収体層の表面にて反射されるEUV
光と、前記EUV光吸収体層を通過し前記EUV光吸収
体層の下にある前記EUV光反射多層膜で反射され再び
前記EUV光吸収体層を通過したEUV光との、干渉効
果を加算した反射率をシュミレーションする。但しシュ
ミレーションの方法については後述する。前記反射率の
シュミレーションの結果を、図3、6、10、13に示
すような膜厚を横軸、反射率を縦軸としたグラフに表
し、膜厚に対し反射率の極大値を与える点を結んだ曲線
を求める。一方、その膜厚があまりに厚くなると自身の
膜応力も大きくなり、膜の歪みの原因となる。そこで膜
応力の観点から、これ以上の膜厚値は使用不適と判断さ
れる膜厚値を限界膜厚としたとき、前記限界膜厚に対応
する反射率を前記曲線から求め、これを限界反射率と定
義する。ここで、前記反射率のシュミレーション結果よ
り、EUV光吸収体層の表面にて反射されるEUV光
と、EUV光吸収体層を通過しEUV光吸収体層の下に
ある前記EUV光反射多層膜で反射され、再び前記EU
V光吸収体層を通過したEUV光と、の干渉効果により
反射率が極小となる点が周期的に現れる。この膜厚に対
し反射率の極小値を与える膜厚を求め、その膜厚を極小
値膜厚と定義する。ここで、前記EUV光吸収体層の膜
厚を反射率が極小となる膜厚近傍の値に設定すれば、E
UV光吸収体層での反射率を低くすることができる。ま
た前記反射率の極小値の中でも最小の極小値を与える膜
厚近傍の値に設定すれば、さらに好ましい。一方、ここ
で前記EUV光吸収体層の成膜において、前記極小値膜
厚をねらって成膜を実施しても、実際の成膜工程におい
ては膜厚の変動は不可避である。しかし発生する不可避
的な膜厚変動を見込んでも、前記限界反射率より低い反
射率を得ることができる膜厚を用いるならば、この膜厚
をねらって成膜を実施することで薄い膜厚でありながら
高いコントラストを得ることができる。
In order to determine the thickness of the EUV light absorber layer M 1 by the above-described method, for example, the following operation is performed. First, EUV reflected on the surface of the EUV light absorber layer
The interference effect between light and EUV light that has passed through the EUV light absorber layer, has been reflected by the EUV light reflection multilayer film below the EUV light absorber layer, and has again passed through the EUV light absorber layer has been added. Simulated reflectance. However, the simulation method will be described later. The results of the simulation of the reflectance are shown in the graphs shown in FIGS. 3, 6, 10 and 13 in which the horizontal axis represents the film thickness and the vertical axis represents the reflectance. Find the curve connecting. On the other hand, if the film thickness is too large, the film stress of the film itself increases, which causes distortion of the film. Therefore, from the viewpoint of film stress, when a film thickness value that is determined to be unsuitable for use as a film thickness value larger than this is set as a limit film thickness, the reflectance corresponding to the limit film thickness is obtained from the curve, Defined as rate. Here, from the simulation result of the reflectance, the EUV light reflected on the surface of the EUV light absorber layer and the EUV light reflection multilayer film passing through the EUV light absorber layer and under the EUV light absorber layer are shown. And reflected again by the EU
A point where the reflectance becomes minimal due to the interference effect between the EUV light passing through the V light absorber layer and the EUV light periodically appears. A film thickness that gives the minimum value of the reflectance to this film thickness is determined, and the film thickness is defined as the minimum value film thickness. Here, if the film thickness of the EUV light absorber layer is set to a value near the film thickness at which the reflectivity is minimized,
The reflectance at the UV light absorber layer can be reduced. Further, it is more preferable to set a value near the film thickness that gives the minimum minimum value among the minimum values of the reflectance. On the other hand, here, in the film formation of the EUV light absorber layer, even if the film formation is performed aiming at the minimum value film thickness, a change in the film thickness is inevitable in an actual film formation process. However, even in anticipation of unavoidable film thickness fluctuations that occur, if a film thickness that can obtain a reflectance lower than the critical reflectance is used, a thin film is formed by aiming at this film thickness. High contrast can be obtained even though it is.

【0023】しかし、この光路差を求めようとすると、
大型計算機による光学シュミレーション計算が必要とな
りコストと時間を必要とするため、膜厚算定の毎に光学
シュミレーション計算を実施せずに済めば、それはさら
に好ましい構成である。ここで本発明者らは、EUV光
反射多層膜M2を均一な媒体と仮定し、整数mを用い、且
つEUV光の反射はM12の界面でのみ起こると近似
すると、EUV光との光路差である2zが満たすべき
条件式(10)が導出できることに想達した。 2z =(m+0.5)λ1/n1 =(m+0.5)λ0/n1………(10)
However, when trying to find this optical path difference,
Since optical simulation calculation by a large-scale computer is required and cost and time are required, it is a more preferable configuration if the optical simulation calculation is not performed every time the film thickness is calculated. Here the present inventors, when the EUV light reflective multilayer film M 2 assuming a uniform medium, using the integer m, and the reflection of EUV light is approximated to occur only at the interface of the M 1 M 2, and the EUV light It has been found that the conditional expression (10) to be satisfied by the optical path difference 2z can be derived. 2z = (m + 0.5) λ 1 / n 1 = (m + 0.5) λ 0 / n 1 (10)

【0024】一方、この近似による精度の低下について
は後述するが、EUV光反射多層膜M2から反射する波
に対し位相のずれφを導入することで、実用上問題ない
程度とすることができることが確認できた。この位相の
ずれφを導入すると、式(10)は式(10’)のよう
に修正される(位相のずれφの単位はラジアンとす
る)。尚、位相のずれφの算出方法は後述する。 2z =(m+0.5+φ/2π)λ0/n1………(10’) 以上のことより式(7)、式(10’)より膜厚dを求
める式(11)が導出される。
On the other hand, a decrease in accuracy due to this approximation will be described later, but by introducing a phase shift φ with respect to the wave reflected from the EUV light reflection multilayer film M 2, it can be reduced to a practically acceptable level. Was confirmed. When the phase shift φ is introduced, the equation (10) is modified as in the equation (10 ′) (the unit of the phase shift φ is radian). The method of calculating the phase shift φ will be described later. 2z = (m + 0.5 + φ / 2π) λ 0 / n 1 (10 ′) From the above, Expression (7) and Expression (11) for obtaining the film thickness d from Expression (10 ′) are derived. You.

【数7】 ・・・・・(11) 従って、EUV光吸収体層M1の膜厚を、式(9)から
得られる膜厚dと、式(11)から得られる膜厚dとの
両者が一致する値とすれば、EUV光との干渉によ
り、EUVLにおけるパターンの高いコントラストが実
現できる。
(Equation 7) ..... (11) Therefore, the thickness of the EUV light absorbing layer M 1, and the film thickness d obtained from the equation (9), is both the thickness d obtained from the equation (11) coincides If it is set to a value, a high contrast of the pattern in EUVL can be realized by interference with EUV light.

【0025】上述した数式を基に算出したEUV光吸収
体層M1の膜厚と、実際に成膜したしたEUV光反射多
層膜M2のデータを基に光学シュミレーションして得ら
れたEUV光吸収体層M1の膜厚とを比較した。但し、
ここで用いた光学シュミレーションは、藤原史郎編「光
学薄膜」(光学技術シリーズ11)第1章2〜62頁、
共立出版に記載されている一般的な多層膜の光学計算手
法に拠っている。またB.L.Henkenらの、「L
OW ENERGY X−RAY INTERACTI
ON COEFFISIENTSPHOTOABSOR
PTION,SCATTERING AND REFL
ECTION AT E=50〜30,000eV,Z
=1〜92」(ATOMIC DATA AND NU
CLEAR DATA TABLE 54,181〜3
42(1993))に記載された方法を用いて、屈折率
や消衰係数を求めた。
The EUV light obtained by optical simulation based on the thickness of the EUV light absorber layer M 1 calculated based on the above formula and the data of the EUV light reflective multilayer film M 2 actually formed. It was compared in the thickness absorber layer M 1. However,
The optical simulation used here is described in “Optical Thin Film” (Optical Technology Series 11), edited by Shiro Fujiwara, Chapters 1 to 62,
It is based on a general multilayer optical calculation method described in Kyoritsu Shuppan. B. L. Henken et al., "L
OW ENERGY X-RAY INTERACTI
ON COEFFISIENTTS PHOTOABSOR
PTION, SCATTERING AND REFL
ECTION ATE = 50 to 30,000 eV, Z
= 1-92 ”(ATOMIC DATA AND NU
CLEAR DATA TABLE 54,181-3
42 (1993)), the refractive index and the extinction coefficient were determined.

【0026】さらにここで、位相のずれφの算出方法に
ついて説明する。位相のずれφは、EUV光反射多層膜
2を真空中に設置した場合において、多層膜表面で反
射する光の位相と、多層膜中で多重散乱を生じて真空中
に戻ってきた光と、の位相差として得られる。従って、
計算方法は、前述の光学シュミレーションと同様の計算
を実施する。
Here, a method of calculating the phase shift φ will be described. The phase shift φ is caused by the phase of light reflected on the multilayer film surface and the light returning to the vacuum due to multiple scattering in the multilayer film when the EUV light reflecting multilayer film M 2 is installed in a vacuum. , Are obtained as a phase difference. Therefore,
As a calculation method, the same calculation as in the above-described optical simulation is performed.

【0027】この結果、式(9)から得られる膜厚d
は、前記光学シュミレーションして得られた最適膜厚よ
りやや厚めになることが判明した。これはEUV光反射
多層膜M2とEUV光吸収体層M1で起こる多重散乱の影
響によるものと考えられる。ここで、EUV露光用反射
型マスクのコントラストは1000以上あることが望ま
れている。したがって反射率は0.001であることが
好ましいが、これまでのシュミレーション結果より、最
適膜厚前後の−20%および+10%程度の膜厚値にお
いて十分なコントラストが得られることが判明したこと
から、前記条件1)を満足する膜厚dの範囲は次のよう
になる。
As a result, the film thickness d obtained from the equation (9)
Was slightly larger than the optimum film thickness obtained by the optical simulation. This is attributed to the influence of multiple scattering occurs in the EUV light reflective multilayer film M 2 and the EUV light absorbing layer M 1. Here, it is desired that the reflective mask for EUV exposure has a contrast of 1000 or more. Therefore, the reflectivity is preferably 0.001, but from the simulation results so far, it has been found that a sufficient contrast can be obtained at film thickness values of about -20% and + 10% before and after the optimum film thickness. The range of the film thickness d that satisfies the condition 1) is as follows.

【数8】 ………(12)(Equation 8) ............ (12)

【0028】一方、式(11)から得られる膜厚dは、
前記光学シュミレーションして得られた最適膜厚とほぼ
一致することが判明した。また、膜厚が最適膜厚からわ
ずかにずれ、その結果EUV光との位相差がπから
ずれても干渉効果が起きることも判明し、π/2〜3π
/2の範囲にて干渉効果を利用できることが判明した。
以上のことより前記条件2)を満足する膜厚dの範囲は
次のようになる。
On the other hand, the film thickness d obtained from the equation (11) is
It was found that the film thickness almost coincided with the optimum film thickness obtained by the optical simulation. It was also found that the film thickness slightly deviated from the optimum film thickness, and as a result, an interference effect occurred even if the phase difference from EUV light deviated from π.
It has been found that the interference effect can be used in the range of / 2.
From the above, the range of the film thickness d satisfying the condition 2) is as follows.

【数9】 ………(13)(Equation 9) ............ (13)

【0029】ここで、EUV露光用反射型マスクブラン
クやEUV露光用反射型マスクにおいて、図18に示す
EUV光吸収体層M1とEUV光反射多層膜M2との間
へ、EUV光吸収体層M1加工時の影響がEUV光反射
多層膜M2におよぶのを抑止するために、エッチンクス
トッパー層が導入される場合がある。このような場合に
は、EUV光反射多層膜M2とエッチンクストッパー層
とを一体のEUV光反射多層膜と仮定することで、前記
最適膜厚dを求める式を導出することができる。すなわ
ち、図1におけるR12をEUV光吸収体層M1と、EU
V光反射多層膜M2およびエッチンクストッパー層の一
体膜と、の界面の反射率とする。さらに、位相のずれφ
はEUV光反射多層膜M2およびエッチンクストッパー
層の一体膜を真空中に設置した場合において、エッチン
グストッパー層表面で反射する光の位相と、多層膜中で
多重散乱を生じて真空中に戻ってきた光と、の位相差と
して求めることができる。
[0029] In the reflective mask blank and EUV exposure reflective mask for EUV exposure, to between the EUV light absorber layer M 1 and the EUV light reflective multilayer film M 2 shown in FIG. 18, the EUV light absorber to effect when the layers M 1 processing to suppress the spans EUV light reflective multilayer film M 2, which may etch link stopper layer is introduced. In such a case, by assuming an integral EUV light reflective multilayer film and an EUV light reflective multilayer film M 2 and etch tank stopper layer, it is possible to derive the equation for obtaining the optimum film thickness d. That is, R 12 in FIG. 1 is defined as EUV light absorber layer M 1 and EU.
Integral membrane V light reflective multilayer film M 2 and etch tank stopper layer, the reflectivity of the interface. Furthermore, the phase shift φ
Returning in case of installing an integral film of the EUV light reflective multilayer film M 2 and etch link stopper layer in a vacuum, and the phase of light reflected by the etching stopper layer surface, in a vacuum occurs multiple scattering in multilayer film Can be obtained as a phase difference between the incident light and the incident light.

【0030】さらにここで、前記EUV光反射多層膜M
2とEUV光吸収体層M1との、各々の膜に含まれる成分
として、好ましいものについて以下に記載する。まず前
記EUV光反射多層膜M2は交互に積層した第1の膜と
第2の膜とを有しているが、膜成分の好ましい例として
以下のものがある。すなわち、前記第1の膜としては、
遷移金属、遷移金属の炭化物、遷移金属の窒化物、遷移
金属の珪化物、および遷移金属の硼化物、より選ばれる
少なくとも1つ以上の成分を含むものが好ましく、W、
Ta、Mo、Rh、Ru、Au、Hf、Ni、Cr、R
e、等およびその合金はさらに好ましい。前記第2の膜
としては、B、Be、C、Si、等またはその化合物、
およびそれらの酸化物、窒化物が好ましい。一方、前記
EUV光吸収層M1としては、Cr、Crの炭化物、C
rの窒化物、Crの珪化物およびCrの硼化物より選ば
れる少なくとも1つ以上の成分、またはTa、Taの炭
化物、Taの窒化物、Taの珪化物およびTaの硼化物
より選ばれる少なくとも1つ以上の成分が好ましい。そ
して、このEUV吸収体層の膜厚は70nm〜100n
mの範囲であって、式(12)と式(13)との両方を
満足することが好ましい。
Here, the EUV light reflecting multilayer film M
Between 2 and EUV light absorbing layer M 1, as a component contained in each layer are described below for preferred. Although initially the EUV light reflective multilayer film M 2 has a first and second films laminated alternately, it is: Preferred examples of membrane components. That is, as the first film,
Transition metals, carbides of transition metals, nitrides of transition metals, silicides of transition metals, and borides of transition metals, preferably those containing at least one component selected from the group consisting of
Ta, Mo, Rh, Ru, Au, Hf, Ni, Cr, R
e, etc. and their alloys are more preferred. As the second film, B, Be, C, Si, etc. or a compound thereof,
And oxides and nitrides thereof. Meanwhile, as the EUV light absorbing layer M 1, Cr, carbide Cr, C
r, at least one component selected from a nitride of Cr, a silicide of Cr, and a boride of Cr; or at least one component selected from Ta, a carbide of Ta, a nitride of Ta, a silicide of Ta, and a boride of Ta One or more components are preferred. The thickness of the EUV absorber layer is 70 nm to 100 n.
It is preferable that m be within the range of m and both the expressions (12) and (13) should be satisfied.

【0031】以上のことより、EUV光吸収体層M1
膜厚dが式(12)および式(13)の両方を満足する
範囲にあるとき、EUV光吸収体層M1は干渉効果によ
る十分なコントラストを発揮でき、同時に膜厚を薄くす
ることも可能になった。この結果、EUV光吸収体層M
1の発生する膜応力を減らすことが可能になり、この膜
応力に由来する基板およびEUV光反射多層膜M2の歪
みも削減できるので、歪みの少ないEUVマスクやEU
Vマスクブランクを得ることができた。さらに、EUV
光吸収体層M1の膜厚が薄くなったことにより、そのエ
ッジの部分で光露光パターンがぼやけるという問題も解
決した。このEUVマスクを用いて図19に示すよう
に、Si等の半導体ウエハ上に、超LSI等の半導体装
置のパターンの露光転写を行ったところ、従来のEUV
マスクを用いた場合に較べ、光露光の解像限界を大きく
上げることが出来た。
[0031] From the above facts, when the thickness d of the EUV light absorbing layer M 1 is in the range that satisfies both the equation (12) and Equation (13), an EUV light absorbing layer M 1 is due to interference effects Sufficient contrast can be exhibited, and the film thickness can be reduced at the same time. As a result, the EUV light absorber layer M
It is possible to reduce the first generation to film stress, since it also reduced distortion of the substrate and the EUV light reflective multilayer film M 2 from this film stress, less EUV mask and EU distortion
A V mask blank was obtained. In addition, EUV
By the thickness of the light absorbing layer M 1 becomes thinner, it was also solved a problem that the light exposure pattern is blurred at the portion of that edge. As shown in FIG. 19, using this EUV mask, a pattern of a semiconductor device such as an VLSI was exposed and transferred onto a semiconductor wafer such as Si.
As compared with the case where a mask was used, the resolution limit of light exposure could be greatly increased.

【0032】(実施例1)厚さ600nmのSiO2
TiO2ガラス基板上にEUV光反射多層膜M2として、
Mo/Si多層膜を40周期積層した。Mo/Si多層
膜はSiが4.2nm、Moが2.8nmで1周期を構
成し、これが40周期積層されている。一方、EUV光
吸収体層M1はCrとした。そしてEUV光の波長は1
3.5nm、入射角度は2.05degとし、各材料の
屈折率、吸収係数を図2の値として、式(9)、式(1
1)により最適膜厚の計算を行った。Cr層がない場合
のEUV光反射多層膜M2の理論反射率は71.7%で
あった。また、M2で反射された波の位相差は入射波に
対して0.19808radであった。M2における多
重散乱を考慮に入れた光学シミュレーションによる計算
結果を図3に示す。これに基づいて、式(11)より得
られた干渉の強まる膜厚と、光学シミュレーションの計
算で得られた干渉の強まる膜厚との比較を図4に示す。
一方、式(9)から得られた最適膜厚は89.86nm
であった。以上の結果を綜合して図5に示す。これよる
と式(9)で得られた最適膜厚値は光学シミュレーショ
ンによる計算結果によるピーク位置より若干厚い位置に
あるが、ほぼ正確に予想できることが判明した。
(Example 1) SiO 2-having a thickness of 600 nm
As a EUV light reflection multilayer film M 2 on a TiO 2 glass substrate,
Forty cycles of the Mo / Si multilayer film were laminated. The Mo / Si multilayer film forms one cycle with 4.2 nm of Si and 2.8 nm of Mo, and 40 cycles of this are stacked. On the other hand, EUV light absorbing layer M 1 was Cr. And the wavelength of EUV light is 1
Equation (9) and Equation (1) are set to 3.5 nm, the incident angle is set to 2.05 deg, and the refractive index and absorption coefficient of each material are set to the values in FIG.
The optimum film thickness was calculated according to 1). Theoretical reflectivity of EUV light reflective multilayer film M 2 in the absence of Cr layer was 71.7%. The phase difference of the wave reflected by M 2 was 0.19808 rad with respect to the incident wave. FIG. 3 shows a calculation result by an optical simulation taking into account multiple scattering at M 2 . Based on this, FIG. 4 shows a comparison between the film thickness with increased interference obtained from the equation (11) and the film thickness with increased interference obtained by calculation of the optical simulation.
On the other hand, the optimum film thickness obtained from the equation (9) is 89.86 nm.
Met. The above results are shown in FIG. According to this, it has been found that the optimum film thickness value obtained by the equation (9) is slightly thicker than the peak position based on the calculation result by the optical simulation, but can be predicted almost exactly.

【0033】(実施例2)実施例1と同様のSiO2
TiO2ガラス基板を用い、EUV光反射多層膜M 2とし
て、Si/Mo多層膜を40周期積層した。他の条件は
実施例1と同様である。Cr層がない場合のEUV光反
射多層膜M2の理論反射率は70.8%であった。ま
た、M2で反射された波の位相差は入射波に対して2.
5736radであった。実施例1と同様の光学シミュ
レーションによる計算結果を図6に示す。これに基づい
て、式(11)より得られた干渉の強まる膜厚と、光学
シミュレーションの計算で得られた干渉の強まる膜厚と
の比較を図7に示す。ここで、式(9)から得られた最
適膜厚は89.69nmであった。以上の結果を綜合し
て図8に示す。これよると式(9)で得られた最適膜厚
値は実施例1と同様に、光学シミュレーションによる計
算結果によるピーク位置より若干厚い位置にあるが、ほ
ぼ正確に予想できることが判明した。
Example 2 The same SiO 2 as in Example 1 was used.Two
TiOTwoEUV light reflective multilayer film M using glass substrate Twoage
Thus, a Si / Mo multilayer film was stacked for 40 periods. Other conditions are
This is similar to the first embodiment. EUV light response without Cr layer
Multilayer film MTwoHad a theoretical reflectance of 70.8%. Ma
MTwoThe phase difference of the wave reflected by is 2.
5,736 rad. Optical simulation similar to that of the first embodiment.
FIG. 6 shows the calculation results by the calculation. Based on this
Therefore, the film thickness of the interference obtained from the equation (11) and the optical thickness
The thickness of the interference that was obtained by the simulation
7 is shown in FIG. Here, the maximum obtained from equation (9) is obtained.
The appropriate film thickness was 89.69 nm. Combining the above results
FIG. According to this, the optimum film thickness obtained by equation (9)
The values were measured by optical simulation as in Example 1.
Although it is slightly thicker than the peak position according to the calculation result,
It turns out that it can be predicted exactly.

【0034】(実施例3)実施例1と同様のSiO2
TiO2ガラス基板、およびEUV光反射多層膜M 2を用
い、EUV光吸収体層M1はTaBとした。そしてEU
V光は実施例1と同様とし、各材料の屈折率、吸収係数
を図9の値として、式(9)、式(11)により最適膜
厚の計算を行った。TaB層がない場合のEUV光反射
多層膜M2の理論反射率は71.7%であった。また、
2で反射された波の位相差は入射波に対して0.19
808radであった。実施例1と同様の光学シミュレ
ーションによる計算結果を図10に示す。これに基づい
て、式(11)より得られた干渉の強まる膜厚と、光学
シミュレーションの計算で得られた干渉の強まる膜厚と
の比較を図11に示す。ここで、式(9)から得られた
最適膜厚は95.73nmであった。以上の結果を綜合
して図12に示す。これよると式(9)で得られた最適
膜厚値は実施例1と同様に、光学シミュレーションによ
る計算結果によるピーク位置より若干厚い位置にある
が、ほぼ正確に予想できることが判明した。
(Embodiment 3) The same SiO 2 as in Embodiment 1Two
TiOTwoGlass substrate and EUV light reflective multilayer film M TwoFor
No, EUV light absorber layer M1Is TaB. And the EU
V light is the same as in Example 1, and the refractive index and absorption coefficient of each material
Is the value of FIG. 9, the optimum film is obtained by the equations (9) and (11).
Thickness calculations were performed. EUV light reflection without TaB layer
Multilayer film MTwoHad a theoretical reflectance of 71.7%. Also,
MTwoThe phase difference of the wave reflected by is 0.19 with respect to the incident wave.
808 rad. Optical simulation similar to that of the first embodiment.
FIG. 10 shows the results of the calculation based on the solution. Based on this
Therefore, the film thickness of the interference obtained from the equation (11) and the optical thickness
The thickness of the interference that was obtained by the simulation
Is shown in FIG. Here, the value obtained from Expression (9) is obtained.
The optimum film thickness was 95.73 nm. Combining the above results
FIG. According to this, the optimum obtained by equation (9)
The film thickness was determined by optical simulation as in Example 1.
Is slightly thicker than the peak position according to the calculation result
However, it turned out to be almost exactly predictable.

【0035】また実施例3においては、EUV光吸収体
層の膜厚が条件1)を満たす場合と条件2)とを図12
に記入した図16を作成した。図17において条件1)
を満たす部分のグラフを実線で、条件2)を満たす部分
をハンチングで示した。そして図16より、EUV光吸
収体層の膜厚が条件1)2)同時に満たす場合には、前
記干渉効果により、干渉効果を用いない場合より少なく
とも160nmの膜厚の削減を実現していることが判明
した。
In Example 3, the case where the thickness of the EUV light absorber layer satisfies the condition 1) and the condition 2) are shown in FIG.
FIG. 16 filled in was prepared. In FIG. 17, condition 1)
The graph of the portion satisfying the condition 2 is indicated by a solid line, and the portion satisfying the condition 2) is indicated by hunting. As shown in FIG. 16, when the thickness of the EUV light absorber layer satisfies the conditions 1) and 2) at the same time, the thickness of at least 160 nm is reduced by the interference effect as compared with the case where the interference effect is not used. There was found.

【0036】(実施例4)実施例1と同様のSiO2
TiO2ガラス基板を用い、EUV光反射多層膜M 2とし
て、Si/Mo多層膜を40周期積層した。他の条件は
実施例3と同様である。TaB層がない場合のEUV光
反射多層膜M2の理論反射率は70.8%であった。ま
た、M2で反射された波の位相差は入射波に対して2.
5736radであった。実施例1と同様の光学シミュ
レーションによる計算結果を図13に示す。これに基づ
いて、式(11)より得られた干渉の強まる膜厚と、光
学シミュレーションの計算で得られた干渉の強まる膜厚
との比較を図14に示す。ここで、式(9)から得られ
た最適膜厚は95.71nmであった。以上の結果を綜
合して図15に示す。これよると式(9)で得られた最
適膜厚値は実施例1と同様に、光学シミュレーションに
よる計算結果によるピーク位置より若干厚い位置にある
が、ほぼ正確に予想できることが判明した。
Example 4 The same SiO 2 as in Example 1 was used.Two
TiOTwoEUV light reflective multilayer film M using glass substrate Twoage
Thus, a Si / Mo multilayer film was stacked for 40 periods. Other conditions are
This is the same as the third embodiment. EUV light without TaB layer
Reflective multilayer film MTwoHad a theoretical reflectance of 70.8%. Ma
MTwoThe phase difference of the wave reflected by is 2.
5,736 rad. Optical simulation similar to that of the first embodiment.
FIG. 13 shows the calculation results by the calculation. Based on this
And the film thickness of the interference obtained from equation (11)
Film thickness of interference obtained by calculation of chemical simulation
14 is shown in FIG. Where the equation (9)
The optimum film thickness was 95.71 nm. Based on the above results
FIG. According to this, the maximum obtained by equation (9)
The optimum film thickness value is calculated by the optical simulation as in the first embodiment.
Is slightly thicker than the peak position calculated by
However, it turned out to be almost exactly predictable.

【0037】(実施例5)ガラス基板として外形6イン
チ角、厚さ6mmの低膨張SiO2−TiO2ガラス基板
を準備し、機械研磨により、表面の平滑度0.2nm以
下、平坦度100nm以下とした。このガラス基板上
に、EUV光反射多層膜としてMoとSiとを積層し
た。その積層方法は、DCマグネトロンスパッタ法によ
り、まずSiターゲットを用いてArガス0.1Pa中
でSi膜を4.2nm成膜し、次にMoターゲットを用
いてArガス0.1Pa中でMo膜を2.8nm成膜
し、これを1周期として40周期積層した後、最後にS
i膜を4.2nm成膜した。次に、図13のグラフおよ
び図14の表の結果より、極小の反射率を期待できる膜
厚を求め、前記EUV光反射多層膜上にEUV光吸収体
層としてスパッタ法によりTaBを85nmの厚さに成
膜し、EUV露光用反射型マスクブランクを得た。得ら
れたEUV露光用反射型マスクブランク上にEBレジス
トをコ−トし、EB描画によりパターンを形成し、次に
このレジストパターンをマスクとして、前記EUV光吸
収体層をCl2を用いてドライエッチングし、EUV光
吸収パターンを形成して、デザインルールが70nmの
16GBit−DRAMのパターンを有するEUV露光
用反射型マスクを作製した。作製されたEUV露光用反
射型マスクについて、マスクへの入射角を2.05de
gとし波長13.5nmのEUV光を用いて露光転写を
おこなったところ、要求された線幅50nmに対して、
高精度な転写特性を得ることができた。
Example 5 A low-expansion SiO 2 —TiO 2 glass substrate having an outer shape of 6 inches square and a thickness of 6 mm was prepared as a glass substrate, and the surface smoothness was 0.2 nm or less and the flatness was 100 nm or less by mechanical polishing. And On this glass substrate, Mo and Si were laminated as an EUV light reflection multilayer film. The laminating method is as follows. First, a 4.2 nm Si film is formed in 0.1 Pa of Ar gas using a Si target by a DC magnetron sputtering method, and then a Mo film is formed in 0.1 Pa of Ar gas using a Mo target. Was formed into a film having a thickness of 2.8 nm.
An i film was formed to a thickness of 4.2 nm. Next, from the graph of FIG. 13 and the result of the table of FIG. 14, a film thickness that can be expected to have a minimum reflectance is obtained, and a TaB film having a thickness of 85 nm is formed on the EUV light reflecting multilayer film as a EUV light absorber layer by sputtering. Then, a reflective mask blank for EUV exposure was obtained. An EB resist is coated on the obtained reflective mask blank for EUV exposure, a pattern is formed by EB lithography, and the EUV light absorber layer is dried using Cl 2 using this resist pattern as a mask. Etching was performed to form an EUV light absorption pattern, thereby producing a reflective mask for EUV exposure having a pattern of 16 Gbit-DRAM having a design rule of 70 nm. With respect to the manufactured reflective mask for EUV exposure, the incident angle on the mask was 2.05 de.
g and exposure transfer was performed using EUV light having a wavelength of 13.5 nm.
Highly accurate transfer characteristics could be obtained.

【0038】[0038]

【発明の効果】以上、詳述したように本発明は、EUV
吸収体層の表面にて反射されるEUV光と、EUV吸収
体層を通過して前記EUV吸収体層の下にあるEUV光
反射多層膜で反射され、再び前記EUV吸収体層を通過
したEUV光と、の干渉効果を利用して、前記EUV吸
収体層におけるEUV光の反射率が低くなるように、前
記EUV吸収体層の膜厚を設定したことを特徴とするE
UV露光用反射型マスクブランクであり、これを用いる
ことで、EUV光吸収体層の膜厚を厚くすることなくE
UV光吸収体層のEUV光反射率を下げ、パターンのコ
ントラストを上げることができた。
As described in detail above, the present invention relates to EUV
EUV light reflected on the surface of the absorber layer, EUV light that has passed through the EUV absorber layer, has been reflected by the EUV light reflecting multilayer film below the EUV absorber layer, and has again passed through the EUV absorber layer The film thickness of the EUV absorber layer is set so that the EUV light reflectance in the EUV absorber layer is reduced by utilizing an interference effect with light.
This is a reflective mask blank for UV exposure. By using this mask, the thickness of the EUV light absorber layer can be increased without increasing the thickness.
The EUV light reflectance of the UV light absorber layer was reduced, and the pattern contrast was increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態にかかる、真空中M0
EUV光吸収体層M1とEUV光反射多層膜M2との配
置、並びにそこへ入射してきたEUV光の光路を模式的
に表した図である。
FIG. 1 is a diagram illustrating an embodiment of M 0 in vacuum according to an embodiment of the present invention.
Arrangement of the EUV light absorbing layer M 1 and the EUV light reflective multilayer film M 2, and the optical path of the EUV light entering thereto is a diagram schematically showing.

【図2】Cr、Si、Moの各部材の屈折率を示す表で
ある。
FIG. 2 is a table showing the refractive indices of Cr, Si, and Mo members.

【図3】本発明の実施例1にかかる、EUV光吸収体層
の反射率とCr膜厚との関係について、EUV光反射多
層膜における多重散乱を考慮に入れた光学シミュレータ
ーにより計算した結果を示す図である。
FIG. 3 is a graph showing the relationship between the reflectance of the EUV light absorber layer and the Cr film thickness according to Example 1 of the present invention, calculated by an optical simulator taking into account multiple scattering in the EUV light reflective multilayer film. FIG.

【図4】本発明の実施例1にかかる、式(11)より得
られた干渉の強まる膜厚と、光学シミュレーションの計
算で得られた干渉の強まる膜厚との比較を示す表であ
る。
FIG. 4 is a table showing a comparison between a film thickness with increased interference obtained from Expression (11) and a film thickness with increased interference obtained by calculation of an optical simulation according to Example 1 of the present invention.

【図5】本発明の実施例1にかかる、(図4)の表の値
および式(9)から得られた最適膜厚値を(図3)に記
入した図である。
5 is a diagram in which values in the table of FIG. 4 and optimum film thickness values obtained from Expression (9) according to the first embodiment of the present invention are written in FIG. 3;

【図6】本発明の実施例2にかかる、EUV光吸収体層
の反射率とCr膜厚との関係について、EUV光反射多
層膜における多重散乱を考慮に入れた光学シミュレータ
ーにより計算した結果を示す図である。
FIG. 6 is a graph showing the relationship between the reflectance of the EUV light absorber layer and the Cr film thickness according to Example 2 of the present invention, calculated by an optical simulator taking into account multiple scattering in the EUV light reflective multilayer film. FIG.

【図7】本発明の実施例2にかかる、式(11)より得
られた干渉の強まる膜厚と、光学シミュレーションの計
算で得られた干渉の強まる膜厚との比較を示す表であ
る。
FIG. 7 is a table showing a comparison between a film thickness with increased interference obtained from Expression (11) and a film thickness with increased interference obtained by calculation of an optical simulation according to Example 2 of the present invention.

【図8】本発明の実施例2にかかる、(図7)の表の値
および式(9)から得られた最適膜厚値を(図6)に記
入した図である。
8 is a diagram in which values in the table of FIG. 7 and optimum film thickness values obtained from Expression (9) according to Example 2 of the present invention are written in FIG. 6;

【図9】TaB、Si、Moの各部材の屈折率を示す表
である。
FIG. 9 is a table showing the refractive index of each member of TaB, Si, and Mo.

【図10】本発明の実施例3にかかる、EUV光吸収体
層の反射率とCr膜厚との関係について、EUV光反射
多層膜における多重散乱を考慮に入れた光学シミュレー
ターにより計算した結果を示す図である。
FIG. 10 is a graph showing the relationship between the reflectance of the EUV light absorber layer and the Cr film thickness according to Example 3 of the present invention, calculated by an optical simulator taking into account multiple scattering in the EUV light reflective multilayer film. FIG.

【図11】本発明の実施例3にかかる、式(11)より
得られた干渉の強まる膜厚と、光学シミュレーションの
計算で得られた干渉の強まる膜厚との比較を示す表であ
る。
FIG. 11 is a table showing a comparison between a film thickness with increased interference obtained from Expression (11) and a film thickness with increased interference obtained by calculation of an optical simulation according to Example 3 of the present invention.

【図12】本発明の実施例3にかかる、(図11)の表
の値および式(9)から得られた最適膜厚値を(図1
0)に記入した図である。
FIG. 12 shows the values in the table of FIG. 11 and the optimum film thickness values obtained from Equation (9) according to Example 3 of the present invention (FIG. 1).
FIG.

【図13】本発明の実施例4にかかる、EUV光吸収体
層の反射率とTaB膜厚との関係について、EUV光反
射多層膜における多重散乱を考慮に入れた光学シミュレ
ーターにより計算した結果を示す図である。
FIG. 13 is a graph showing the relationship between the reflectance of the EUV light absorber layer and the TaB film thickness according to Example 4 of the present invention, which is calculated by an optical simulator taking into account multiple scattering in the EUV light reflective multilayer film. FIG.

【図14】本発明の実施例4にかかる、式(11)より
得られた干渉の強まる膜厚と、光学シミュレーションの
計算で得られた干渉の強まる膜厚との比較を示す表であ
る。
FIG. 14 is a table showing a comparison between a film thickness with increased interference obtained from Expression (11) and a film thickness with increased interference obtained by calculation of an optical simulation according to Example 4 of the present invention.

【図15】本発明の実施例4にかかる、(図14)の表
の値および式(9)から得られた最適膜厚値を(図1
3)に記入した図である。
FIG. 15 shows the values in the table of FIG. 14 and the optimum film thickness values obtained from Equation (9) according to Example 4 of the present invention (FIG. 1).
It is the figure entered in 3).

【図16】本発明の実施例3にかかる、EUV光吸収体
層の膜厚が、条件1)を満たす場合と、条件2)を満た
す場合とを(図10)に記入した図である。
FIG. 16 is a diagram in which a case where the film thickness of the EUV light absorber layer satisfies the condition 1) and a case where the film thickness of the EUV light absorber layer satisfies the condition 2) according to Example 3 of the present invention are shown in FIG.

【図17】EUVLに用いられるEUV露光用反射型マ
スクを模式的に表現した図である。
FIG. 17 is a diagram schematically illustrating a reflective mask for EUV exposure used in EUVL.

【図18】EUV露光用反射型マスク、等を製造するた
めに用いられるEUV露光用反射型マスクブランクを模
式的に表現した図である。
FIG. 18 is a view schematically illustrating a reflective mask blank for EUV exposure used for manufacturing a reflective mask for EUV exposure and the like.

【図19】EUV露光用反射型マスクを用いて、例えば
Siウエハ上にパターンの露光転写を行っている概念図
である。
FIG. 19 is a conceptual diagram in which a pattern is exposed and transferred onto, for example, a Si wafer using a reflective mask for EUV exposure.

【符号の説明】[Explanation of symbols]

EUV.入射してきたEUV光 EUV.EUV光吸収体層の表面で反射されるEUV
光 EUV.EUV光吸収体層を通過しEUV光反射多層
膜で反射され再びEUV光吸収体層を通過したEUV光 M0.真空 M1.EUV光吸収体層 M2.EUV光反射多層膜 θ0.EUV光のEUV光吸収体層への入射角 θ1.EUV光のEUV光反射層への入射角 I0.EUV光の強度 R01.真空中M0とEUV光吸収体層M1との界面の反射
率 R12.EUV光吸収体層M1とEUV光反射多層膜M2
の界面の反射率 T01.真空中M0とEUV光吸収体層M1との界面の透過
率 d.EUV光吸収体層M1の膜厚 z.EUV光吸収体層M1における光路長
EUV. EUV light EUV. EUV reflected on the surface of the EUV light absorber layer
Light EUV. EUV light M 0 which passes through the EUV light absorbing layer is reflected by the EUV light reflective multilayer film has passed the EUV light absorber layer again. Vacuum M 1 . EUV light absorber layer M 2 . EUV light reflection multilayer film θ 0 . Angle of incidence of EUV light on EUV light absorber layer θ 1 . Angle of incidence of EUV light on EUV light reflecting layer I 0 . EUV light intensity R 01 . Reflectance at interface between vacuum M 0 and EUV light absorber layer M 1 R 12 . Reflectance T 01 of the interface between the EUV light absorber layer M 1 and the EUV light reflective multilayer film M 2. Transmittance at the interface between vacuum M 0 and EUV light absorber layer M 1 d. Film thickness of EUV light absorber layer M 1 z. The optical path length in the EUV light absorbing layer M 1

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03F 1/16 H01L 21/30 531M Fターム(参考) 2H048 FA05 FA07 FA09 FA18 FA24 GA07 GA46 GA51 GA60 GA61 2H095 BA00 BC04 BC13 5F046 CA08 GD01 GD16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) G03F 1/16 H01L 21/30 531M F-term (Reference) 2H048 FA05 FA07 FA09 FA18 FA24 GA07 GA46 GA51 GA60 GA61 2H095 BA00 BC04 BC13 5F046 CA08 GD01 GD16

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 EUV光反射多層膜上に成膜されたEU
V光吸収体層を有するEUV露光用反射型マスクブラン
クであって、 前記EUV吸収体層の表面にて反射されるEUV光と、
前記EUV吸収体層を通過して前記EUV吸収体層の下
にある前記EUV光反射多層膜で反射され、再び前記E
UV吸収体層を通過したEUV光と、の干渉効果を利用
して、前記EUV吸収体層におけるEUV光の反射率が
低くなるように、前記EUV吸収体層の膜厚を設定した
ことを特徴とするEUV露光用反射型マスクブランク。
1. An EU film formed on an EUV light reflecting multilayer film
A reflective mask blank for EUV exposure having a V light absorber layer, wherein EUV light reflected on the surface of the EUV absorber layer;
The light passes through the EUV absorber layer, is reflected by the EUV light reflecting multilayer film below the EUV absorber layer, and is again irradiated with the EUV light.
The thickness of the EUV absorber layer is set so that the EUV light reflectance of the EUV absorber layer is reduced by utilizing the interference effect between the EUV light passing through the UV absorber layer. A reflective mask blank for EUV exposure.
【請求項2】 EUV光反射多層膜上に成膜されたEU
V光吸収体層を有するEUV露光用反射型マスクブラン
クであって、 前記EUV光吸収体層の表面にて反射されるEUV光
と、前記EUV光吸収体層を通過し前記EUV光吸収体
層の下にある前記EUV光反射多層膜で反射され再び前
記EUV光吸収体層を通過したEUV光との、干渉効果
を加算した反射率をシュミレーションし、 前記反射率のシュミレーションの結果を、膜厚を横軸、
反射率を縦軸としたグラフに表し、 前記グラフにおいて、膜厚に対し反射率の極大値を与え
る点を結んだ曲線を求め、 その膜厚が膜応力の観点から使用不適と判断される膜厚
値を限界膜厚としたとき、前記限界膜厚に対応する反射
率を前記曲線から求め、限界反射率と定義したとき、 前記反射率のシュミレーション結果より、膜厚に対し反
射率の極小値を与える膜厚を求め、その膜厚を極小値膜
厚と定義し、前記EUV光吸収体層の成膜において、前
記極小値膜厚をねらう際に発生する不可避的な膜厚変動
を見込んでも、前記限界反射率より低い反射率を得るこ
とができる膜厚を用いることを特徴とするEUV露光用
反射型マスクブランク。
2. An EU film formed on an EUV light reflecting multilayer film
A reflective mask blank for EUV exposure having a V light absorber layer, wherein the EUV light reflected on the surface of the EUV light absorber layer and the EUV light absorber layer passing through the EUV light absorber layer Simulate the reflectance obtained by adding the interference effect with the EUV light reflected by the EUV light reflecting multilayer film below and passing through the EUV light absorber layer again. The horizontal axis,
The reflectance is represented in a graph with the vertical axis. In the graph, a curve connecting the points giving the maximum value of the reflectance with respect to the film thickness is obtained, and the film whose film thickness is determined to be unsuitable for use from the viewpoint of film stress When the thickness is defined as the critical film thickness, the reflectance corresponding to the critical film thickness is obtained from the curve, and defined as the critical reflectance.From the simulation result of the reflectance, the minimum value of the reflectance with respect to the film thickness is obtained. Is determined, and the film thickness is defined as a minimum value film thickness. In the film formation of the EUV light absorber layer, even if an unavoidable film thickness variation occurring when aiming for the minimum value film thickness is considered. A reflective mask blank for EUV exposure, characterized by using a film thickness capable of obtaining a reflectance lower than the limiting reflectance.
【請求項3】 EUV光反射多層膜上に成膜されたEU
V光吸収体層を有するEUV露光用反射型マスクブラン
クであって、 前記EUV光吸収体層の表面にて反射されるEUV光
と、 前記EUV光吸収体層を通過し前記EUV光吸収体層の
下にある前記EUV光反射多層膜で反射され再び前記E
UV光吸収体層を通過したEUV光との、干渉効果をも
ちいて、前記EUV光吸収体層におけるEUV光の反射
率を低減させる構造において、 前記干渉効果の起きる条件を前記EUV光吸収体層の膜
厚の関数として定式化し、 さらに前記EUV光反射多層膜での多層反射を表面の反
射とする近似を行うことで、前記干渉効果の起きる条件
を前記EUV光吸収体層の膜厚の関数として表す式の近
似式を求め、 この近似式により算出した膜厚を有するEUV光吸収体
層を有することを特徴とするEUV露光用反射型マスク
ブランク。
3. An EU formed on an EUV light reflecting multilayer film
A reflective mask blank for EUV exposure having a V light absorber layer, comprising: EUV light reflected on the surface of the EUV light absorber layer; and the EUV light absorber layer passing through the EUV light absorber layer. Reflected by the EUV light reflective multilayer film below
In a structure for reducing the reflectivity of EUV light in the EUV light absorber layer by using an interference effect with EUV light passing through the UV light absorber layer, the condition under which the interference effect occurs is determined by the EUV light absorber layer By formulating as a function of the film thickness of the EUV light-absorbing layer, the conditions under which the interference effect occurs are approximated by making the multilayer reflection in the EUV light-reflecting multilayer film the surface reflection. A reflective mask blank for EUV exposure, comprising: an EUV light absorber layer having a film thickness calculated by the approximate expression.
【請求項4】 請求項3に記載のEUV露光用反射型マ
スクブランクであって、 前記近似式により算出した膜厚dの値が、 【数1】 および 【数2】 の両式を満足する範囲内にあることで、前記干渉効果を
用いて、EUV光の反射率を下げることを特徴とするE
UV露光用反射型マスクブランク。但し、λ0は真空中
でのEUV光の波長、n0は真空中に屈折率、n1は吸収
体層の屈折率、θ0はEUV光のEUV光吸収体層への
入射角、k1は正の実数、T01は真空中とEUV光吸収
体層との界面の透過率、R01は真空中とEUV光吸収体
層との界面の反射率、R12はEUV光吸収体層とEUV
光反射多層膜との界面の反射率、mは正の整数、φは位
相のずれ、である。
4. The reflective mask blank for EUV exposure according to claim 3, wherein a value of the film thickness d calculated by the approximate expression is: And Is within the range satisfying both of the above expressions, the reflectivity of EUV light is reduced using the interference effect.
Reflective mask blank for UV exposure. Here, λ 0 is the wavelength of EUV light in vacuum, n 0 is the refractive index in vacuum, n 1 is the refractive index of the absorber layer, θ 0 is the incident angle of EUV light to the EUV light absorber layer, k 1 is a positive real number, T 01 is the transmittance at the interface between the vacuum and the EUV light absorber layer, R 01 is the reflectance at the interface between the vacuum and the EUV light absorber layer, and R 12 is the EUV light absorber layer And EUV
The reflectance at the interface with the light reflection multilayer film, m is a positive integer, and φ is the phase shift.
【請求項5】 請求項1から4のいずれかに記載のEU
V露光用反射型マスクブランクであって、 前記EUV光反射多層膜は交互に積層した第1の膜と第
2の膜とを有し、 前記第1の膜は、遷移金属、遷移金属の炭化物、遷移金
属の窒化物、遷移金属の珪化物、および遷移金属の硼化
物、より選ばれる少なくとも1つ以上の成分を含み、 前記第2の膜は、Bおよび/またはBeおよび/または
Cおよび/またはSi、Bおよび/またはBeおよび/
またはCおよび/またはSiの酸化物、Bおよび/また
はBeおよび/またはCおよび/またはSiの窒化物、
より選ばれる少なくとも1つ以上の成分を含み、 前記EUV吸収体層は、Cr、Crの炭化物、Crの窒
化物、Crの珪化物およびCrの硼化物より選ばれる少
なくとも1つ以上の成分を含みこのEUV吸収体層の膜
厚は70nm〜100nmであることを特徴とするEU
V露光用反射型マスクブランク。
5. The EU according to claim 1, wherein:
A reflective mask blank for V exposure, wherein the EUV light reflective multilayer film has a first film and a second film alternately laminated, wherein the first film is a transition metal, a carbide of a transition metal. , A transition metal nitride, a transition metal silicide, and a transition metal boride, and at least one component selected from the group consisting of B and / or Be and / or C and / or Or Si, B and / or Be and / or
Or an oxide of C and / or Si, a nitride of B and / or Be and / or C and / or Si,
The EUV absorber layer includes at least one component selected from Cr, Cr carbide, Cr nitride, Cr silicide, and Cr boride. The EUV absorber layer has a thickness of 70 nm to 100 nm.
Reflective mask blank for V exposure.
【請求項6】 請求項1から4のいずれかに記載のEU
V露光用反射型マスクブランクであって、 前記EUV光反射多層膜は交互に積層した第1の膜と第
2の膜とを有し、 前記第1の膜は、遷移金属、遷移金属の炭化物、遷移金
属の窒化物、遷移金属の珪化物、および遷移金属の硼化
物、より選ばれる少なくとも1つ以上の成分を含み、 前記第2の膜は、Bおよび/またはBeおよび/または
Cおよび/またはSi、Bおよび/またはBeおよび/
またはCおよび/またはSiの酸化物、Bおよび/また
はBeおよび/またはCおよび/またはSiの窒化物、
より選ばれる少なくとも1つ以上の成分を含み、 前記EUV吸収体層は、Ta、Taの炭化物、Taの窒
化物、Taの珪化物およびTaの硼化物より選ばれる少
なくとも1つ以上の成分を含み、このEUV吸収体層の
膜厚は70nm〜110nmであることを特徴とするE
UV露光用反射型マスクブランク。
6. The EU according to claim 1, wherein:
A reflective mask blank for V exposure, wherein the EUV light reflective multilayer film has a first film and a second film alternately laminated, wherein the first film is a transition metal, a carbide of a transition metal. , A transition metal nitride, a transition metal silicide, and a transition metal boride, and at least one component selected from the group consisting of B and / or Be and / or C and / or Or Si, B and / or Be and / or
Or an oxide of C and / or Si, a nitride of B and / or Be and / or C and / or Si,
The EUV absorber layer contains at least one component selected from Ta, a carbide of Ta, a nitride of Ta, a silicide of Ta, and a boride of Ta. The EUV absorber layer has a thickness of 70 nm to 110 nm.
Reflective mask blank for UV exposure.
【請求項7】 請求項5または請求項6に記載のEUV
露光用反射型マスクブランクであって、前記遷移金属
は、W、Ta、Mo、Rh、Ru、Au、Hf、Ni、
Cr、Reより選ばれる少なくとも1つ以上の金属であ
ることを特徴とするEUV露光用反射型マスクブラン
ク。
7. EUV according to claim 5 or claim 6.
A reflective mask blank for exposure, wherein the transition metal is W, Ta, Mo, Rh, Ru, Au, Hf, Ni,
A reflective mask blank for EUV exposure, comprising at least one metal selected from Cr and Re.
【請求項8】 請求項1から7のいずれかに記載のEU
V露光用反射型マスクブランクを用いたことを特徴とす
るEUV露光用反射型マスク。
8. The EU according to claim 1, wherein:
A reflective mask for EUV exposure, wherein a reflective mask blank for V exposure is used.
【請求項9】 請求項8に記載のEUV露光用反射型マ
スクを用いて、半導体ウエハ上にEUV光によりパター
ンを転写することを特徴とする半導体の製造方法。
9. A method for manufacturing a semiconductor, comprising: transferring a pattern on a semiconductor wafer by EUV light using the reflective mask for EUV exposure according to claim 8.
JP2001081161A 2001-03-21 2001-03-21 Reflective mask blank for EUV exposure and reflective mask for EUV exposure Expired - Lifetime JP4780847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081161A JP4780847B2 (en) 2001-03-21 2001-03-21 Reflective mask blank for EUV exposure and reflective mask for EUV exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081161A JP4780847B2 (en) 2001-03-21 2001-03-21 Reflective mask blank for EUV exposure and reflective mask for EUV exposure

Publications (2)

Publication Number Publication Date
JP2002280291A true JP2002280291A (en) 2002-09-27
JP4780847B2 JP4780847B2 (en) 2011-09-28

Family

ID=18937312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081161A Expired - Lifetime JP4780847B2 (en) 2001-03-21 2001-03-21 Reflective mask blank for EUV exposure and reflective mask for EUV exposure

Country Status (1)

Country Link
JP (1) JP4780847B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
WO2003071590A1 (en) * 2002-02-25 2003-08-28 Sony Corporation Production method for exposure mask, exposure mask, and production method of semiconductor device
JP2005268255A (en) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd Mask blank for extreme ultraviolet exposure and mask, and transferring method
JP2010026030A (en) * 2008-07-16 2010-02-04 Japan Aviation Electronics Industry Ltd VISIBLE-LIGHT MIRROR, VISIBLE-LIGHT GAS LASER, AND He-Ne RING LASER GYRO
US8173332B2 (en) 2009-07-23 2012-05-08 Kabushiki Kaisha Toshiba Reflection-type exposure mask and method of manufacturing a semiconductor device
JP2019049720A (en) * 2013-05-31 2019-03-28 Hoya株式会社 Reflective mask blank, reflective mask, method for manufacturing the same, and method for manufacturing semiconductor device
WO2020137928A1 (en) * 2018-12-27 2020-07-02 Hoya株式会社 Reflective mask blank, reflective mask and method for producing semiconductor device
JP7363913B2 (en) 2019-10-29 2023-10-18 Agc株式会社 Reflective mask blanks and reflective masks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281088B2 (en) 2017-04-17 2022-03-22 AGC Inc. Reflective mask blank for EUV exposure, and reflective mask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290182A (en) * 1986-05-19 1987-12-17 Fujitsu Ltd Infrared ray detector
JPH01175736A (en) * 1987-12-29 1989-07-12 Canon Inc Reflective mask
JPH01293699A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Wave absorber
JPH0697052A (en) * 1992-09-14 1994-04-08 Hoya Corp X-ray masking material and x-ray mask made out of it
JPH07114173A (en) * 1993-10-15 1995-05-02 Canon Inc Reflection mask for lithography and reduction stepper
JPH0817716A (en) * 1994-06-29 1996-01-19 Nikon Corp Manufacture of reflection-type mask
JPH11307442A (en) * 1998-04-24 1999-11-05 Hoya Corp X-ray mask, x-ray mask blank, and their manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290182A (en) * 1986-05-19 1987-12-17 Fujitsu Ltd Infrared ray detector
JPH01175736A (en) * 1987-12-29 1989-07-12 Canon Inc Reflective mask
JPH01293699A (en) * 1988-05-23 1989-11-27 Mitsubishi Electric Corp Wave absorber
JPH0697052A (en) * 1992-09-14 1994-04-08 Hoya Corp X-ray masking material and x-ray mask made out of it
JPH07114173A (en) * 1993-10-15 1995-05-02 Canon Inc Reflection mask for lithography and reduction stepper
JPH0817716A (en) * 1994-06-29 1996-01-19 Nikon Corp Manufacture of reflection-type mask
JPH11307442A (en) * 1998-04-24 1999-11-05 Hoya Corp X-ray mask, x-ray mask blank, and their manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
JP4540267B2 (en) * 2001-07-30 2010-09-08 Hoya株式会社 Reflective mask blank for EUV light exposure and reflective mask for EUV light exposure
WO2003071590A1 (en) * 2002-02-25 2003-08-28 Sony Corporation Production method for exposure mask, exposure mask, and production method of semiconductor device
US7413831B2 (en) 2002-02-25 2008-08-19 Sony Corporation Reflective exposure mask, and method for producing and using the same
JP2005268255A (en) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd Mask blank for extreme ultraviolet exposure and mask, and transferring method
JP2010026030A (en) * 2008-07-16 2010-02-04 Japan Aviation Electronics Industry Ltd VISIBLE-LIGHT MIRROR, VISIBLE-LIGHT GAS LASER, AND He-Ne RING LASER GYRO
US8173332B2 (en) 2009-07-23 2012-05-08 Kabushiki Kaisha Toshiba Reflection-type exposure mask and method of manufacturing a semiconductor device
JP2019049720A (en) * 2013-05-31 2019-03-28 Hoya株式会社 Reflective mask blank, reflective mask, method for manufacturing the same, and method for manufacturing semiconductor device
WO2020137928A1 (en) * 2018-12-27 2020-07-02 Hoya株式会社 Reflective mask blank, reflective mask and method for producing semiconductor device
JP2020106639A (en) * 2018-12-27 2020-07-09 Hoya株式会社 Reflection type mask blank, reflection type mask and method for manufacturing semiconductor device
JP7250511B2 (en) 2018-12-27 2023-04-03 Hoya株式会社 Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
US11914281B2 (en) 2018-12-27 2024-02-27 Hoya Corporation Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP7363913B2 (en) 2019-10-29 2023-10-18 Agc株式会社 Reflective mask blanks and reflective masks

Also Published As

Publication number Publication date
JP4780847B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US9134604B2 (en) Extreme ultraviolet (EUV) mask and method of fabricating the EUV mask
JP4958147B2 (en) Reflective mask blank for exposure, reflective mask for exposure, substrate with multilayer reflective film, and method for manufacturing semiconductor device
JP3939132B2 (en) SUBSTRATE WITH MULTILAYER FILM, REFLECTIVE MASK BLANK FOR EXPOSURE, REFLECTIVE MASK FOR EXPOSURE AND ITS MANUFACTURING METHOD, AND SEMICONDUCTOR MANUFACTURING METHOD
WO2006030627A1 (en) Reflective mask blank for euv lithography and method for producing same
US20130157177A1 (en) Euv mask and method for forming the same
US20060222961A1 (en) Leaky absorber for extreme ultraviolet mask
JP2007109964A (en) Substrate with multilayer reflection film, manufacturing method thereof, reflection type mask blank and reflection type mask
JP5292747B2 (en) Reflective photomask for extreme ultraviolet
JP6915280B2 (en) Reflective photomask and reflective photomask blank
JP2014160752A (en) Reflective mask blank for euv lithography and substrate with reflective layer for the mask blank
JP2019144587A (en) Mask blank, phase shift mask and manufacturing method of semiconductor device
JP2023175863A (en) Reflection type mask blank and reflection type mask
JP2002280291A (en) Reflection-type mask blank for euv exposure, and reflection-type mask for euv exposure
US9448491B2 (en) Extreme ultraviolet lithography process and mask
US11442357B2 (en) Mask blank, phase-shift mask, and method of manufacturing semiconductor device
JP6938428B2 (en) Manufacturing method of mask blank, phase shift mask and semiconductor device
JP4540267B2 (en) Reflective mask blank for EUV light exposure and reflective mask for EUV light exposure
JP2021071685A (en) Reflective mask and production method for reflective mask
US20220187699A1 (en) Reflective mask blank for euvl, reflective mask for euvl, and method of manufacturing reflective mask for euvl
WO2023136183A1 (en) Reflection-type mask blank, reflection-type mask, and method for producing reflection-type mask
WO2021059890A1 (en) Mask blank, phase shift mask, and method for producing semiconductor device
KR102660488B1 (en) Method for manufacturing mask blanks, phase shift masks, and semiconductor devices
JP2022083394A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
TW202403436A (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing display device
JP2014099433A (en) Reflective mask with light shielding-area and manufacturing method of reflective mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term