JP2535038B2 - Multi-layer film mirror for X-ray / VUV - Google Patents

Multi-layer film mirror for X-ray / VUV

Info

Publication number
JP2535038B2
JP2535038B2 JP62249697A JP24969787A JP2535038B2 JP 2535038 B2 JP2535038 B2 JP 2535038B2 JP 62249697 A JP62249697 A JP 62249697A JP 24969787 A JP24969787 A JP 24969787A JP 2535038 B2 JP2535038 B2 JP 2535038B2
Authority
JP
Japan
Prior art keywords
surface roughness
reflectance
substrate
ray
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62249697A
Other languages
Japanese (ja)
Other versions
JPH0192700A (en
Inventor
豊 渡辺
繁太郎 小倉
雅美 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62249697A priority Critical patent/JP2535038B2/en
Publication of JPH0192700A publication Critical patent/JPH0192700A/en
Application granted granted Critical
Publication of JP2535038B2 publication Critical patent/JP2535038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学装置、特にX線から真空紫外線と称され
る波長200nm以下の光を対象とし、入射角が鏡面に対し
垂直に近い正入射反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is directed to an optical device, in particular, to light having a wavelength of 200 nm or less, which is called vacuum ultraviolet light from X-rays. It relates to a reflector.

〔従来の技術〕[Conventional technology]

従来、真空紫外と称される領域より短波長の光に対し
て、面に垂直もしくはそれに近い角度で入射したときに
高い反射率を有するような反射鏡は存在せず、垂直入射
に近い入射角でも1%以下の反射率しか得られていなか
った。
Conventionally, there is no reflecting mirror that has a high reflectance when the light has a shorter wavelength than the region called vacuum ultraviolet when it is incident at an angle perpendicular to or close to the surface. However, only a reflectance of 1% or less was obtained.

一方、比較的高い反射率を有する斜入射反射鏡でさえ
も入射角を鏡面から1゜以下もしくは2〜3゜の範囲に
調整する必要があった。そしてこれでも光束を面に対し
小さい角度で入射させるために細い光束に対しても非常
に大きな反射面を必要とし、その装置の使用は困難かつ
限定されるものであった。
On the other hand, even with an oblique-incidence reflecting mirror having a relatively high reflectance, it was necessary to adjust the incident angle within 1 ° or less or 2 to 3 ° from the mirror surface. Even in this case, since the light beam is incident on the surface at a small angle, a very large reflecting surface is required even for a thin light beam, and the use of the device is difficult and limited.

また、斜入斜鏡では光学系構成の自由度が少なく、反
射鏡の作製に関しても大面積にわたり高精度の平面度が
要求され実際の使用にあたっても制限が多かった。な
お、可視域から2000Åの波長域では多層薄膜の干渉を利
用した多層膜の反射鏡が提案されている。例えば第2図
に反射率特性を示したように2000Å以上の可視域ではMg
F2とZnSなどを初めとする2つの誘電体の組合せで多層
交互層を形成させてほぼ80〜100%の反射率が正入射で
得ている。
In addition, the oblique-incidence mirror has a low degree of freedom in the optical system configuration, and it is required to have high-precision flatness over a large area when manufacturing the reflecting mirror, and there are many restrictions in actual use. In the wavelength range from the visible region to 2000 Å, a multi-layered film reflecting mirror utilizing interference of multi-layered thin films has been proposed. For example, as shown in the reflectance characteristics in Fig. 2, Mg is visible in the visible range of 2000 Å or higher.
A multilayer alternating layer is formed by combining two dielectrics such as F 2 and ZnS, and a reflectance of approximately 80 to 100% is obtained at a normal incidence.

しかしながら誘電体交互層の場合には2000Å以下の波
長域では吸収が急激に増加し1000Å以下では反射鏡とし
て使用できる材料の組合せはほとんど存在しなくなる。
また第2図に特性を示しているAl、Au、Pt等の金属単層
膜でも700Åより短い波長ではλに比例して急激に反
射率が減少し、500Åさらに200Åより短い波長域では1
%以下の反射率しか正入射では得られない。
However, in the case of a dielectric alternating layer, the absorption increases sharply in the wavelength range of 2000 Å or less, and at 1000 Å or less, there is almost no combination of materials that can be used as a reflecting mirror.
Even in the case of a metal single layer film such as Al, Au, Pt, etc., whose characteristics are shown in Fig. 2 , the reflectance decreases sharply in proportion to λ 2 at wavelengths shorter than 700 Å, and becomes 1 at wavelengths shorter than 500 Å and 200 Å.
Only a reflectance of less than% can be obtained with normal incidence.

一方、異なる複素屈折率をもつ2つの金属材料を交互
に積層した金属多層膜反射鏡が試みられるようになって
いるが、X線および真空紫外光の領域ではほとんどの物
質についてその反射率は吸収を表わす虚数部分Kをもつ
複素屈折率(n+ik、以下屈折率と呼ぶ)で表わされ、
実数部分nはほぼ1.0(n+1−δ、δ=10-1〜10-3
となるため真空と物質薄膜との境界におけるフレネルの
反射率は非常に小さく0.1%以下のオーダーである。ま
た、異種材料の積層薄膜の境界においても反射率は単一
の境界面あたり数%を越えることが無い。
On the other hand, a metal multi-layered film reflecting mirror in which two metal materials having different complex refractive indexes are alternately laminated has been tried, but the reflectivity of most substances is absorbed in the X-ray and VUV region. Is represented by a complex refractive index (n + ik, hereinafter referred to as refractive index) having an imaginary part K representing
Real part n is approximately 1.0 (n + 1-δ, δ = 10 -1 to 10 -3 ).
Therefore, the reflectance of Fresnel at the boundary between the vacuum and the material thin film is very small, on the order of 0.1% or less. Further, even at the boundary between laminated thin films of different materials, the reflectance does not exceed several% per single boundary surface.

しかるに、異種材料を交互に多層膜構造とし、各々の
層鏡面からの反射光が干渉により強め合い、多層膜全体
としての反射率が最大となるような膜厚構成をとること
により、高い反射率を得ることが可能となる。さらに隣
接する層間での屈折率の差が大きくなるような異種材料
の組合せを選択し、先の膜厚構成と合せて反射率の高い
反射鏡が実現できることが知られている。
However, a high reflectance can be obtained by using different materials in a multilayer film structure and reflecting light from each layer mirror surface is strengthened by interference to maximize the reflectance of the multilayer film as a whole. Can be obtained. Further, it is known that a reflective mirror having a high reflectance can be realized by selecting a combination of different kinds of materials such that the difference in refractive index between adjacent layers becomes large, and combining with the above film thickness configuration.

現実までに多層膜の構成につき知られている材料の組
合せとしては、低屈折率材料として遷移金属があり、高
屈折率材料としての多くは炭素、シリコン等の半導体元
素を用いたものであった。代表的な例をあげると、タン
グステン(W)と炭素(C)との組合せやモリブデン
(Mo)とシリコン(Si)の組合わせ等がある。
As a material combination that has been known so far for the structure of a multilayer film, there is a transition metal as a low refractive index material, and most of the high refractive index materials use semiconductor elements such as carbon and silicon. . Typical examples are a combination of tungsten (W) and carbon (C), a combination of molybdenum (Mo) and silicon (Si), and the like.

従来、この種の多層膜反射鏡において反射率を向上さ
せるために面荒さを小さくするということが重要である
ことは認識されてきた。しかしながらその評価方法が例
えばヘテロダイン干渉式面荒さ計などによる広い領域、
すなわち、数平方μmの領域を平均化する方式の面荒さ
計で評価するものでしかなかったため(精密工学Vo1.52
(1986)、No.11、pp7−10)、X線・真空紫外線の領域
で反射率を低減させる重要な原因である基板表面の面に
平行な方向に数+Å以上数千Å以下の大きさをもつ凹凸
には考慮が払われず、従ってそのような凹凸をおさえる
工夫もなされたことはなかった。
Conventionally, it has been recognized that it is important to reduce the surface roughness in order to improve the reflectance in this type of multilayer film reflecting mirror. However, the evaluation method is a wide area such as a heterodyne interferometric surface roughness meter,
In other words, it was only evaluated with a surface roughness meter that averages the area of several square μm (Precision Engineering Vo1.52
(1986), No.11, pp7-10), which is an important cause for reducing the reflectance in the X-ray / vacuum-UV region, with a size of several + Å or more and several thousand Å or less in the direction parallel to the surface of the substrate. No consideration was given to the unevenness having a ridge, and therefore no attempt was made to control such an unevenness.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そのため、上記従来例では、広い領域すなわち数平方
μmの領域を平均化する方式で測定した面荒さは十分制
御してあるにもかかわらず、期待される反射率と測定さ
れた反射率には大きな開きがあり、多層膜反射鏡として
の反射率が低いものしか得られないという欠点があっ
た。例えば基板表面、作製された多層膜反射鏡の各層と
それに隣接する層の界面および作製された多層膜反射鏡
の表面の面荒さがrms値で10Åの多層膜反射鏡と20Åの
それの反射率を比較すると、波長124Åの軟X線をルテ
ニウム(以下Ru)とSiの41層からなる多層膜反射鏡に垂
直に入射した時、面荒さ20Åの多層膜反射鏡の反射率は
面荒さ10Åの多層膜反射鏡の反射率の1/10程度しか得ら
れない。
Therefore, in the above-mentioned conventional example, although the surface roughness measured by the method of averaging a wide area, that is, an area of several square μm is sufficiently controlled, the expected reflectance and the measured reflectance are large. There is a drawback that there is a gap and only a mirror having a low reflectance as a multilayer-film reflective mirror can be obtained. For example, the surface of the substrate, the interface between each layer of the manufactured multilayer reflective mirror and its adjacent layers, and the surface roughness of the surface of the multilayer reflective mirror manufactured is 10 Å in terms of rms value and its reflectance of 20 Å Comparing the two, when a soft X-ray with a wavelength of 124 Å is vertically incident on a multilayer film mirror consisting of 41 layers of ruthenium (hereinafter Ru) and Si, the reflectance of a multilayer film mirror with a surface roughness of 20 Å has a surface roughness of 10 Å. Only about 1/10 of the reflectance of the multilayer film mirror can be obtained.

基板表面、多層構造の界面及び反射鏡表面の面荒さ
は、反射光の光路差には最大2倍となって反映される。
従って、使用波長の1/8の面荒さを持つ反射鏡では反射
されたX線又は真空紫外線は波長の最大1/4の光路差の
ずれを持ち、反射率を低下させる。数+Åから数千Åの
X線又は真空紫外線が干渉性を持つような領域内では、
面荒さによる位相ずれによって干渉的に反射率の減少を
引起す。例えば前述のRuとSiの41層からなる多層膜反射
率に124Åの軟X線を入射した場合、透過電子顕微鏡で
断面を観察したときに波長124Åの約1/8の15Åの面荒さ
を持つ多層膜反射鏡の反射率は、ほとんど面荒さのない
多層膜反射鏡の約1/4程しか得られない。一般に面荒さ
が使用波長の1/15よりも大きくなると、反射率は急減し
はじめ、面荒さが使用波長の1/8程になると反射率は1/4
程になってしまう。
The surface roughness of the substrate surface, the interface of the multilayer structure, and the surface of the reflecting mirror is reflected in the optical path difference of the reflected light at a maximum of 2 times.
Therefore, the X-ray or the vacuum ultraviolet ray reflected by the reflecting mirror having the surface roughness of 1/8 of the used wavelength has a deviation of the optical path difference of 1/4 of the wavelength at the maximum, and reduces the reflectance. In a region where a few + Å to a few thousand Å X-rays or vacuum ultraviolet rays have coherence,
The phase shift caused by the surface roughness causes the interference to decrease the reflectance. For example, when 124 Å soft X-rays are incident on the reflectance of 41 layers of Ru and Si described above, when the cross section is observed with a transmission electron microscope, it has a surface roughness of 15 Å which is about 1/8 of the wavelength 124 Å. The reflectance of the multi-layered film mirror is about 1/4 that of the multi-layered film mirror with almost no surface roughness. Generally, when the surface roughness becomes larger than 1/15 of the used wavelength, the reflectance starts to decrease sharply, and when the surface roughness becomes about 1/8 of the used wavelength, the reflectance becomes 1/4.
It will be about.

またヘテロダイン干渉式面荒さを計等のような数平方
μmの広い領域を平均化するような方式で測定した面荒
さは、乱反射として非干渉的に反射率を低下させる。こ
れによる反射率の低下は数+Å〜数千Åの荒れによる干
渉的な反射率の低下よりも若干影響が大きい。基板表面
及び多層膜表面の面荒さが波長の1/16程の反射率では、
ほとんど面荒さのない反射率に比べて反射率が約1/2.5
になる。
Further, the surface roughness measured by a method in which the heterodyne interferometric surface roughness is averaged over a wide area of several square μm, such as a meter, non-interferingly reduces the reflectance as irregular reflection. The decrease in reflectance due to this is a little larger than the interference-induced decrease in reflectance due to the roughness of several + Å to several thousand Å. When the surface roughness of the substrate surface and the multilayer film surface is about 1/16 of the wavelength,
The reflectance is about 1 / 2.5 compared to the reflectance with almost no surface roughness.
become.

本発明の目的は、X線や真空紫外線に対して高い反射
率の鏡面を得て、従来にない光学特性の光学装置を提供
することにある。
It is an object of the present invention to provide a mirror surface having a high reflectance with respect to X-rays and vacuum ultraviolet rays, and to provide an optical device having an optical characteristic which is not available in the past.

〔問題点を解決するための手段〕[Means for solving problems]

上記に詳しく述べた従来技術の問題点い、互いに屈折
率の異なる物質の交互層によりなる多層構造の反射鏡を
基板上に有するX線・真空紫外線用多層膜反射鏡におい
て、その基板表面および反射鏡表面の各面荒さ値をヘテ
ロダイン干渉式面荒さ計のrms値でいづれも使用波長の1
/16以下とし、かつ基板表面、多層構造の各界面および
反射鏡表面の各面荒さ値を透過電子顕微鏡による100Å
以上700Å以下の厚さ試料についての断面観察時rms値で
いづれも使用波長の1/8以下としたX線・真空紫外線用
多層膜反射鏡によって解決された。ここで上記の試料に
ついて透過電子顕微鏡観察する場合に、多層膜反射鏡の
各層とそれに隣接する層の界面とは、第3図にその1例
を示すように透過電子顕微鏡観察により得た多層膜反射
鏡の透過電子顕微鏡像のネガ写真フィルムを、マイクロ
デンシトメータにより面に垂直な方向に測定し、その濃
度を基板表面からの関数として平滑化し、濃度の山と谷
の中間の濃度の点として決まるものである。
The problem of the prior art described in detail above is that in a multilayer film reflecting mirror for X-ray / VUV light having a reflecting mirror having a multi-layer structure composed of alternating layers of substances having different refractive indexes on the substrate, the substrate surface and reflection The roughness value of each surface of the mirror surface is the rms value of the heterodyne interferometric surface roughness meter.
/ 16 or less, and the surface roughness values of the substrate surface, each interface of the multi-layer structure and the mirror surface are 100Å by transmission electron microscope.
The problem was solved by the multilayer mirror for X-ray / vacuum ultraviolet rays, in which the rms value when observing the cross section of the sample having a thickness of 700 Å or less was set to 1/8 or less of the working wavelength. Here, in the case of observing the above sample with a transmission electron microscope, the interface between each layer of the multilayer-film reflective mirror and the layer adjacent thereto is the multi-layer film obtained by the transmission-electron microscope observation as shown in FIG. A negative photographic film of a transmission electron microscope image of a reflecting mirror is measured by a microdensitometer in a direction perpendicular to the surface, and the density is smoothed as a function from the substrate surface, and a density point between the peaks and valleys of the density is measured. Is decided as.

以下本発明を図面も参照しながら詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明のX線・真空紫外線用多層膜反射鏡の
断面の模式図である。
FIG. 1 is a schematic view of a cross section of a multilayer film reflecting mirror for X-ray / VUV rays according to the present invention.

ここではヘテロダイン干渉式面荒さ計でrms値で使用
波長の1/16以下に、透過電子顕微鏡観察により面荒さが
rms値で使用波長の1/8以下に研磨された基板1上に、互
いに屈折率の異なる第1の物質の層2,4…および第2の
物質の層3,5…が交互に、透過電子顕微鏡観察した時
に、界面の荒さがrms値で使用波長の1/8以下になるよう
に積層され、最終的に作製された表面がヘテロダイン干
渉式面荒さ計でrms値で使用波長の1/16以下に、透過電
子顕微鏡観察により面荒さがrms値で使用波長の1/8以下
になるように構成される。
Here, with a heterodyne interferometer type surface roughness meter, the surface roughness was reduced to 1/16 or less of the operating wavelength in terms of rms value by observation with a transmission electron microscope.
Layers 1 and 2 of the first substance and layers 3 and 5 of the second substance, which have different refractive indexes, are alternately transmitted on the substrate 1 that has been polished to 1/8 or less of the wavelength used at the rms value. When observing with an electron microscope, the roughness of the interface is laminated so that the rms value is 1/8 or less of the used wavelength, and the finally manufactured surface is 1 / of the used wavelength at the rms value with a heterodyne interferometric surface roughness meter. The surface roughness is set to 16 or less by observing with a transmission electron microscope so that the surface roughness becomes 1/8 or less of the used wavelength in rms value.

使用する基板1の表面は、製作された鏡面の組み込ま
れた光学器械の用途に応じて、平面、凸面、凹面、非球
面形状に加工され、ダイヤモンドペーストによる研磨を
経た後、フローティング研磨法、化学研磨法、超高真空
中において基板材料の融点によりわずかに低い温度にお
ける長時間加熱または、フラッシュ加熱などにより必要
な面荒さにおさまるまで繰り返し研磨する。この過程に
は基板表面に付着した不純物の除去も含まれる。
The surface of the substrate 1 to be used is processed into a flat surface, a convex surface, a concave surface, or an aspherical surface according to the use of the manufactured optical instrument having a mirror surface, and after polishing with a diamond paste, a floating polishing method, a chemical Polishing is repeated, such as heating for a long time at a temperature slightly lower than the melting point of the substrate material in ultra-high vacuum, or flash heating until the surface roughness is reduced to the required level. This process also includes removing impurities adhering to the substrate surface.

界面の面荒さを所定の範囲内におさめるためには、第
1の物質、第2の物質の組成の組合わせ、その成膜法に
より異なるが、背圧を低くすること、成膜材料の純度を
上げること、および、基板を冷却して微結晶の成長を抑
えることにより均一なアモルファスの膜とすること、逆
に、基板を加熱して結晶性の膜を作るなどの方法があ
る。
In order to keep the surface roughness of the interface within a predetermined range, it depends on the combination of the composition of the first substance and the second substance and the film-forming method, but the back pressure should be low and the purity of the film-forming material should be low. There are methods such as increasing the temperature, cooling the substrate to suppress the growth of fine crystals to form a uniform amorphous film, and conversely, heating the substrate to form a crystalline film.

本発明のX線・真空紫外線用多層膜反射鏡が発現する
反射率は、交互層を形成する屈折率の異なる2種の物質
の屈折率の差、各層の吸収率、積層される層の数、照射
する光の波長等によって異なるが、その屈折率の差は例
えば層数を100層対とすると実用的には少なくとも0.01
以上あることが好ましい。
The reflectance developed by the multilayer mirror for X-ray / vacuum ultraviolet ray of the present invention is the difference in the refractive index between two kinds of substances having different refractive indexes forming the alternating layers, the absorptance of each layer, and the number of layers to be laminated. , It depends on the wavelength of the light to be irradiated, but the difference in the refractive index is practically at least 0.01 when the number of layers is 100 pairs.
It is preferable to have the above.

交互層の各層に屈折率の差をもたせるためには本発明
で対象とするX線・真空紫外線の領域の光に対して高屈
折率の物質と低屈折率の物質とを用いて交互層を形成す
ればよい。
In order to give each of the alternating layers a difference in refractive index, the alternating layers are formed by using a substance having a high refractive index and a substance having a low refractive index with respect to light in the X-ray / vacuum ultraviolet region, which is the object of the present invention. It may be formed.

各々の層の膜厚d2、d3、…は対象となる波長のほぼ1/
4であり、交互に同一の材質よりなる積層膜であって、
その膜厚は各層間の境界における反射光がすべて強め合
うように干渉する条件を満たすか、もしくは、各層内に
おける吸収損と位相ずれによる反射率低下を比較したと
きに多層膜全体としての反射率の低下がより少なくなる
条件を満たすかのいずれかあるいは両方により決まるも
のとする。その際、膜厚は同一材料層についてはすべて
等しくしても良いし各層毎に変化させ反射率が最大とな
るような必ずしも等しくはない厚さとしても良い。
The film thickness d 2 , d 3 , ... Of each layer is approximately 1 / of the target wavelength.
4 is a laminated film made of the same material alternately,
The film thickness satisfies the condition that all reflected lights at the boundaries between the layers interfere with each other so as to constructively strengthen each other, or the reflectance of the entire multilayer film is compared when the absorption loss in each layer and the reflectance decrease due to the phase shift are compared. It is determined by either or both of the conditions that reduce the decrease of At that time, the film thicknesses may be the same for all the same material layers, or may be different for each layer so that the reflectance is maximized, and the thicknesses are not necessarily equal.

積層の構成としては、気体または真空に接する層であ
る最終層の屈折率と気体または真空の屈折率との差が大
きくなる材料を選択することが望ましい。また基板と基
板に接する層との屈折率の差が大きくなるようにするこ
とも好ましい。
As a laminated structure, it is desirable to select a material that has a large difference between the refractive index of the final layer, which is a layer in contact with gas or vacuum, and the refractive index of gas or vacuum. It is also preferable that the difference in refractive index between the substrate and the layer in contact with the substrate be large.

また、交互層の層数が多いほど反射率は増大するため
層数は5層以上あることが好ましいが、あまり多くなる
と吸収層の影響が顕著となるため、製作の容易さも考慮
して200層対程度までが良い。また最終層の上には吸収
の少ない安定な材料による保護層を設けても良い。
Also, the reflectivity increases as the number of alternating layers increases, so it is preferable that the number of layers is 5 or more. Good up to a pair. Further, a protective layer made of a stable material with little absorption may be provided on the final layer.

また、本発明のX線・真空紫外線用多層膜反射鏡を作
製する際の成膜法としては、超高真空中における電子ビ
ーム法が好ましく用いられるが、特に化合物材料を用い
る場合は、残留酸素等の量が充分少ない真空中における
スパッタリング法が有効な手法である。さらに、膜強度
の高い膜作製法としてイオンプレーティング法、半導体
超格子作製で注目を浴びている有機金属気相成長法(MO
CVD)などを用いて多層膜を形成してもよいことはいう
までもない。
As a film forming method for producing the multilayer mirror for X-ray / vacuum ultraviolet ray of the present invention, an electron beam method in an ultra-high vacuum is preferably used. In particular, when a compound material is used, residual oxygen is used. A sputtering method in a vacuum with a sufficiently small amount is an effective method. Furthermore, as a film forming method with high film strength, an ion plating method and a metal organic chemical vapor deposition method (MO
Needless to say, the multilayer film may be formed using CVD or the like.

〔実施例〕〔Example〕

実施例1 面精度λ/20(λ=6328Å)に加工した100μm厚のシ
リコンカーバイト(以下SiC)がコーティングされてい
るシリコン基板(2″φ、10mmt)を、ダイヤモンドペ
ーストにより研磨し、その後フローティング研磨を行っ
た。ヘテロダイン干渉式面荒さ計で面荒さを測定したと
ころrms値で2.3Åであり、使用波長124Åの1/16より小
さかった。厚さ約500Åの透過電子顕微鏡用の試料を作
り透過電子顕微鏡により像の写真をとり面荒さを測定し
たところ面の荒れはほとんどみられなかった。
Example 1 A silicon substrate (2 ″ φ, 10 mmt) coated with 100 μm thick silicon carbide (hereinafter SiC) processed to have a surface accuracy of λ / 20 (λ = 6328Å) was polished with diamond paste, and then floated. When the surface roughness was measured with a heterodyne interferometric surface roughness meter, the rms value was 2.3Å, which was smaller than 1/16 of the wavelength used 124Å. A sample for a transmission electron microscope with a thickness of about 500Å was made. When the surface roughness was measured by taking a photograph of an image with a transmission electron microscope, almost no surface roughness was observed.

これを、第4図に示した装置の基板ホルダーのヒータ
ー面にセットし、真空度を1×10-10torrとした。あら
かじめ蒸着に先だって1400℃まで加熱(2時間)した。
その後放置して室温まで冷却し、次に液体窒素シュラウ
ドから出ている銅製の爪に基板を3時間接しておき、熱
電対式の温度計で基板温度を測定したところ−150℃に
なっていた。
This was set on the heater surface of the substrate holder of the apparatus shown in FIG. 4, and the degree of vacuum was set to 1 × 10 -10 torr. Prior to vapor deposition, it was heated to 1400 ° C. (2 hours).
After that, the substrate was left to cool to room temperature, and then the substrate was kept in contact with the copper claw protruding from the liquid nitrogen shroud for 3 hours, and the substrate temperature was measured with a thermocouple type thermometer. .

第4図に示した装置には電子ビームの蒸発源が2台基
板に対して対称な位置になるよう配置され、各々の電子
銃ハースに99.9%のルテニウム(以下Ru)と99.999%の
ケイ素(以下Si)をセットしておいた。真空度が3×10
-10torrに回復するまで待った後、蒸着を開始した。
In the device shown in FIG. 4, the electron beam evaporation sources are arranged symmetrically with respect to the two substrates, and each electron gun hearth has 99.9% ruthenium (Ru) and 99.999% silicon ( (Si) has been set. Vacuum degree is 3 × 10
After waiting until it recovered to -10 torr, vapor deposition was started.

Ru、Si共にあらかじめ電子ビームで予備加熱をしてお
き(各ハース上のシャッター、及びメインシャッター
閉)、30分から1時間予熱後、各々の蒸着レートが3Å
/min、5Å/minになるよう各ハース近傍に設置した水晶
振動子(図には示していない)で上記した蒸着レートが
保持できるようフィードバックした。この後各ハースの
シャッターを交互に開け、第1図の第1物質をRu、第2
物質をSiとしてそれぞれの膜厚を27.2Å、36.2Åとし、
かつ全部で41層の成膜を行なった。成膜中の真空度は8
×10-10torrを保持した。
Both Ru and Si are preheated by electron beam in advance (shutters on each hearth and main shutter are closed), and after preheating for 30 minutes to 1 hour, each deposition rate is 3Å
Feedback was made so that the above-mentioned vapor deposition rate could be maintained with a crystal oscillator (not shown) installed near each hearth so that the flow rate would be / min, 5Å / min. After this, the shutters of each hearth are opened alternately, and the first substance shown in FIG.
The material is Si and the film thickness is 27.2Å, 36.2Å,
And 41 layers were formed in total. Vacuum degree during film formation is 8
Holds × 10 -10 torr.

このようにして得られた多層膜反射鏡に、波長124Å
の軟X線を面に対して垂直な軸から10゜の傾きで入射し
たところ反射率61.2%が得られた。
The multilayer reflector obtained in this way has a wavelength of 124Å
When the soft X-ray of was incident at an inclination of 10 ° from the axis perpendicular to the plane, a reflectance of 61.2% was obtained.

この値は市販のシリコンウェハーを基板とし、その基
板を何ら冷却することなく上記実施例と同じ膜厚だけ蒸
着した時の軟X線の反射率(11.9%)に比較して約5倍
の反射率となった。この結果は基板の面荒さが小さかっ
たと同時に、蒸着時に基板を冷却しておいたため、蒸着
された原子が蒸着面内において動きまわりその結果島状
構造を生成するという機構を抑え、界面の荒れを抑制し
たことによる。
This value is about 5 times as high as the reflectance (11.9%) of the soft X-ray when a commercially available silicon wafer is used as a substrate and the substrate is vapor-deposited to the same film thickness as the above-mentioned embodiment without cooling. Became a rate. The result is that the surface roughness of the substrate was small, and at the same time, the substrate was cooled during vapor deposition, so the mechanism in which the vapor-deposited atoms move around in the vapor-deposition plane to form an island-like structure as a result, and the interface is roughened. Due to the suppression.

本発明の方法で作製された多層膜反射鏡を、ヘテロダ
イン干渉式面荒さ計で表面を測定したところrms値で2.6
Åであり、使用波長の1/16より充分に小さかった。厚さ
約500Åの透過電子顕微鏡用の試料を作り透過電子顕微
鏡により像の写真をとり面荒さを測定したところ界面の
荒さは上層にいくほど大きかったが、最上層とその下の
層との界面でもrms値で9.8Åであった。また、表面の荒
さもrms値で9.8Åであり、どちらも使用波長の1/8より
小さかった。
Multilayer film mirror produced by the method of the present invention, the surface was measured with a heterodyne interferometric surface roughness meter 2.6 rms value
Å, which was sufficiently smaller than 1/16 of the wavelength used. A sample of a transmission electron microscope with a thickness of about 500 Å was made, and a photograph of the image was taken with a transmission electron microscope to measure the surface roughness. The surface roughness was higher toward the upper layer, but the interface between the uppermost layer and the layer below it. But the rms value was 9.8Å. The surface roughness was 9.8 Å in rms value, both of which were smaller than 1/8 of the wavelength used.

実施例2 実施例1に用いたと同一の基板を第4図に示した装置
の基板ホルダーのヒーター面にセットした。
Example 2 The same substrate as that used in Example 1 was set on the heater surface of the substrate holder of the apparatus shown in FIG.

電子銃ハースには99.99%のMoと99.999%のSiをセッ
トした。また、液体窒素シュラウドから出ている銅製の
爪は外しておいた。
99.99% Mo and 99.999% Si were set in the electron gun hearth. Also, the copper nails protruding from the liquid nitrogen shroud were removed.

背圧1×10-10torrまで真空を引いた後、あらかじ
め、蒸着に先だって1400℃まで加熱(2時間)した。こ
の後真空度が8×10-10torrまで回復するまで待った
後、基板温度を800℃にセットし蒸着中この温度を維持
した。Mo、Si共にあらかじめ電子ビームで予備加熱をし
ておき(各ハース上のシャッター、及びメインシャッタ
ー閉)、30分から1時間予熱後、各々の蒸着レートが3
Å/min、5Å/minになるよう各ハース近傍に配設した水
晶振動子(図には示していない)で上記の蒸着レートが
保持できるようフィードバックした。この後各ハースの
シャッターを交互に開け、第1図の第1物質をMo、第2
物質をSiとしてそれぞれの膜厚を26、9Å、36.0Åと
し、かつ全部で41層の成膜を行った。成膜中の真空度は
1×10-10torrを保持した。
After drawing a vacuum to a back pressure of 1 × 10 -10 torr, the material was heated to 1400 ° C. (2 hours) in advance before vapor deposition. After waiting until the degree of vacuum was recovered to 8 × 10 -10 torr, the substrate temperature was set to 800 ° C. and this temperature was maintained during vapor deposition. Both Mo and Si are preheated by electron beam in advance (shutter on each hearth and main shutter are closed), and after 30 minutes to 1 hour preheating, each evaporation rate is 3
A crystal oscillator (not shown) arranged near each hearth at Å / min and 5 Å / min was fed back so that the above vapor deposition rate could be maintained. After that, the shutters of each hearth are opened alternately, and the first substance in FIG.
The material was Si, the respective film thicknesses were 26, 9Å and 36.0Å, and a total of 41 layers were formed. The degree of vacuum during film formation was maintained at 1 × 10 -10 torr.

電子線回析を行ったところ、スポットライクのMoおよ
びSiの単結晶に等しい交互層が観察され、かつ透過電子
顕微鏡写真で結晶粒界がMoで350Å、Siで200Å程度であ
ることが確認された。また界面の荒さは上層にいくほど
大きかったが、最上層とその下の層との界面でrms値で
も11.3Åであった。また表面の荒さはrms値で11.5Åで
あり、どちらも使用波長の1/8より小さかった。ヘテロ
ダイン干渉式面荒さ計で多層膜表面を測定したところrm
s値で2.7Åであり、使用波長の1/16より小さかった。
When electron diffraction was performed, spot-like alternating layers of Mo and Si single crystals were observed, and transmission electron micrographs confirmed that the grain boundaries were about 350Å for Mo and 200Å for Si. It was The roughness of the interface was larger toward the upper layer, but the rms value at the interface between the uppermost layer and the layer below it was 11.3Å. The surface roughness was 11.5 Å in rms value, and both were less than 1/8 of the wavelength used. When measuring the surface of the multilayer film with a heterodyne interferometric surface roughness meter, rm
The s value was 2.7Å, which was smaller than 1/16 of the wavelength used.

シンクロトロン放射光を分光して124Åの波長の軟X
線を面に対して垂直な軸から10゜の傾きで入射したとこ
ろ反射率57.3%が得られた。
Synchrotron radiation is separated into soft X with a wavelength of 124Å
When the line was incident at an angle of 10 ° from the axis perpendicular to the plane, a reflectance of 57.3% was obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明のX線・真空紫外線用多
層膜反射鏡はその基板、多層膜の界面、表面ともに、特
許請求の範囲に特定した値にまで数平方μmの領域を平
均化する方式により測定した面荒さおよび多層膜表面の
面に平行な方向に数十Å以上数千Å以上の大きさをもつ
凹凸に起因する面荒さまでrms値で使用波長の1/16ない
し1/8以下にしたから鏡面の反射鏡を数倍から10倍まで
あげることができる効果が得られた。このことは同時に
錯乱光が減少したために、反射鏡としての光学特性も向
上したという効果もある。
As described above, in the multilayer mirror for X-ray / vacuum ultraviolet ray according to the present invention, the substrate, the interface of the multilayer film, and the surface average the area of several square μm to the value specified in the claims. The surface roughness measured by the method and the surface roughness caused by irregularities with a size of several tens of Å or more and several thousand Å or more in the direction parallel to the surface of the multilayer film are 1/16 to 1/8 of the operating wavelength in rms value. Because of the following, the effect that the number of mirror reflectors can be increased from several times to 10 times was obtained. At the same time, since the confusion light is reduced, the optical characteristics of the reflecting mirror are also improved.

【図面の簡単な説明】[Brief description of drawings]

第1図の本発明のX線・真空紫外線用多層膜反射鏡の断
面の模式図、第2図は誘電体多層、金属単層の照射光波
長に対する反射率を示す図、第3図は実施例に用いたシ
リコン基板の透過電子顕微鏡による多層膜反射鏡の像の
ネガフィルムをマイクロデンシトメータにより濃度測定
を行った結果から界面を決定する原理図、第4図は本発
明の実施に用いうる超高真空電子ビーム蒸着装置の模式
図である。 1は基板、2,4は第1物質、3,5は第2物質、6は誘電体
多層の反射率曲線、、7は金属単層の反射率曲線、8は
マイクロデンシトメータにより測定された濃度、9は平
滑化された濃度、10は界面、11は液体窒素シュラウド、
12はヒーターを備えた基板ホルダー、13は基板、14は基
板冷却用の爪、15はメインシャッタ、16はシャッタ、17
と19は電子銃ハースで17にRuまたはモリブデンを19にSi
をセットする。20は水晶振動子を表わす。
FIG. 1 is a schematic view of a cross section of a multilayer film reflecting mirror for X-ray / vacuum ultraviolet ray of the present invention in FIG. 1, FIG. 2 is a diagram showing the reflectance with respect to the irradiation light wavelength of a dielectric multilayer, a metal single layer, and FIG. The principle diagram for determining the interface from the result of the density measurement of the negative film of the image of the multilayer film reflection mirror by the transmission electron microscope of the silicon substrate used in the example, FIG. 4 is used for the implementation of the present invention. It is a schematic diagram of an ultra-high vacuum electron beam vapor deposition apparatus. 1 is the substrate, 2 and 4 are the first substance, 3 and 5 are the second substance, 6 is the reflectivity curve of the dielectric multilayer, 7 is the reflectivity curve of the single metal layer, and 8 is measured by a microdensitometer. Concentration, 9 is smoothed concentration, 10 is interface, 11 is liquid nitrogen shroud,
12 is a substrate holder provided with a heater, 13 is a substrate, 14 is a claw for cooling the substrate, 15 is a main shutter, 16 is a shutter, 17
And 19 are electron gun hearths 17 to Ru or molybdenum 19 to Si
Set. 20 represents a crystal oscillator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに屈折率の異なる物質の交互層よりな
る多構造の反射鏡を基板上に有するX線・真空紫外線用
多層膜反射鏡について、その基板表面および反射鏡表面
の各面荒さ値をヘテロダイン干渉式面荒さ計のrms値で
いづれも使用波長の1/16以下とし、かつ基板表面、多層
構造の界面および反射鏡表面の各面荒さ値を透過電子顕
微鏡による100Å以上700Å以下の厚さ試料についての断
面観察時rms値でいづれも使用波長の1/8以下としたX線
・真空紫外線用多層膜反射鏡。
1. A multilayer film reflecting mirror for X-ray / vacuum ultraviolet ray, comprising a substrate having a multi-structured reflecting mirror comprising alternating layers of substances having different refractive indexes, on each of the substrate surface and the reflecting mirror surface. Rms value of heterodyne interferometric surface roughness meter is 1/16 or less of the operating wavelength, and the surface roughness values of the substrate surface, the interface of the multilayer structure and the surface of the reflector are 100 Å or more and 700 Å or less by the transmission electron microscope. A multilayer film mirror for X-ray and vacuum ultraviolet rays, whose rms value when observing the cross section of a sample is 1/8 or less of the wavelength used.
JP62249697A 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV Expired - Fee Related JP2535038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249697A JP2535038B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249697A JP2535038B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Publications (2)

Publication Number Publication Date
JPH0192700A JPH0192700A (en) 1989-04-11
JP2535038B2 true JP2535038B2 (en) 1996-09-18

Family

ID=17196860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249697A Expired - Fee Related JP2535038B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Country Status (1)

Country Link
JP (1) JP2535038B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69305936T3 (en) * 1992-07-11 2004-07-22 Pilkington United Kingdom Ltd., St. Helens Process for the production of reflective layers on glass
GB9400323D0 (en) * 1994-01-10 1994-03-09 Pilkington Glass Ltd Coatings on glass
GB9400320D0 (en) * 1994-01-10 1994-03-09 Pilkington Glass Ltd Coating on glass
JP4518078B2 (en) * 2004-09-22 2010-08-04 株式会社ニコン Illumination apparatus, exposure apparatus, and microdevice manufacturing method

Also Published As

Publication number Publication date
JPH0192700A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US6228512B1 (en) MoRu/Be multilayers for extreme ultraviolet applications
TWI417647B (en) Reflective mask blank for euv lithography and substrate with functional film for the same
US9983333B2 (en) Hafnium or zirconium oxide coating
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
US6229652B1 (en) High reflectance and low stress Mo2C/Be multilayers
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
Namioka Current research activities in the field of multilayers for soft X-rays in Japan
JP2566564B2 (en) Multi-layer mirror for soft X-rays or vacuum ultraviolet rays
US6521101B1 (en) Method for fabricating beryllium-based multilayer structures
JPH01175736A (en) Reflective mask
JP2648599B2 (en) Method of making multilayer reflector for X-ray or vacuum ultraviolet
JPH02242201A (en) Multilayered film reflecting mirror for soft x-ray and vacuum ultraviolet ray
JP2692881B2 (en) Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element
JP2535037B2 (en) Multi-layer film mirror for X-ray / VUV
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP2995371B2 (en) X-ray reflector material
JP5665751B2 (en) Hafnium oxide-coating
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
Yakshin et al. Fabrication, structure and reflectivity of WC and WB4C multilayers for hard X-ray
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
Glebov et al. Optical properties of complex fluoride films obtained using vacuum electron-beam evaporation
JPH01304400A (en) Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray
US11934093B2 (en) Reflective mask blank for EUV lithography and substrate with conductive film
JP2993261B2 (en) X-ray multilayer reflector
Yamamoto et al. Reflectance degradation of soft X-ray multilayer filters upon exposure to synchrotron radiation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees