JP2535037B2 - Multi-layer film mirror for X-ray / VUV - Google Patents

Multi-layer film mirror for X-ray / VUV

Info

Publication number
JP2535037B2
JP2535037B2 JP62249696A JP24969687A JP2535037B2 JP 2535037 B2 JP2535037 B2 JP 2535037B2 JP 62249696 A JP62249696 A JP 62249696A JP 24969687 A JP24969687 A JP 24969687A JP 2535037 B2 JP2535037 B2 JP 2535037B2
Authority
JP
Japan
Prior art keywords
reflectance
layer
substrate
ray
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62249696A
Other languages
Japanese (ja)
Other versions
JPH0192699A (en
Inventor
雅美 林田
豊 渡辺
繁太郎 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62249696A priority Critical patent/JP2535037B2/en
Publication of JPH0192699A publication Critical patent/JPH0192699A/en
Application granted granted Critical
Publication of JP2535037B2 publication Critical patent/JP2535037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学装置、特にX線から真空紫外線と称され
る波長200nm以下の光を対象とし、入射角が鏡面に対し
垂直に近い正入射反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is directed to an optical device, in particular, to light having a wavelength of 200 nm or less, which is called vacuum ultraviolet light from X-rays. It relates to a reflector.

〔従来の技術〕[Conventional technology]

従来、真空紫外と称される領域より短波長の光に対し
て、面に垂直もしくはそれに近い角度で入射したときに
高い反射率をするような反射鏡は存在せず、垂直入射に
近い入射角でも1%以下の反射率しか得られていなかっ
た。
Conventionally, there is no reflector that has a high reflectance for light with a shorter wavelength than the region called vacuum ultraviolet when it is incident at an angle perpendicular to or close to the surface. However, only a reflectance of 1% or less was obtained.

一方、比較的高い反射率を有する斜入射反射鏡でさえ
も入射角を鏡面から1゜以下もしくは2〜3゜の範囲に
調整する必要があった。そしてこれでも光束を面に対し
小さい角度で入射させるために細い光束に対しても非常
に大きな反射面を必要とし、その装置の使用は困難かつ
限定されるものであった。
On the other hand, even with an oblique-incidence reflecting mirror having a relatively high reflectance, it was necessary to adjust the incident angle within 1 ° or less or 2 to 3 ° from the mirror surface. Even in this case, since the light beam is incident on the surface at a small angle, a very large reflecting surface is required even for a thin light beam, and the use of the device is difficult and limited.

また、斜入射鏡では光学系構成の自由度が少なく、反
射鏡の作製に関しても大面積にわたり高精度の平面度が
要求され実際の使用にあたっても制限が多かった。な
お、可視域から2000Åの波長域では多層薄膜の干渉を利
用した多層膜の反射鏡が提案されている。例えば第2図
に反射率特性を示したように2000Å以上の可視域ではMg
F2とZnSなどを初めとする2つの誘電体の組合わせで多
層交互層を形成させてほぼ80〜100%の反射率が正入射
で得ている。
In addition, the oblique incidence mirror has a small degree of freedom in the optical system configuration, and even in the production of the reflecting mirror, highly accurate flatness is required over a large area, and there are many restrictions in actual use. In the wavelength range from the visible region to 2000 Å, a multi-layered film reflecting mirror utilizing interference of multi-layered thin films has been proposed. For example, as shown in the reflectance characteristics in Fig. 2, Mg is visible in the visible range of 2000 Å or higher.
By forming a multilayer alternating layer with a combination of two dielectrics such as F 2 and ZnS, a reflectance of approximately 80 to 100% is obtained at a normal incidence.

しかしながら誘電体交互層の場合には2000Å以下の波
長域では吸収が急激に増加し1000Å以下では反射鏡とし
て使用できる材料の組合わせはほとんど存在しなくな
る。また第2図に特性を示しているAl、Au、Pt等の金属
単層膜でも700Åより短い波長ではλに比例して急激
に反射率が減少し、500Åさらに200Åより短い波長域で
は1%以下の反射率しか正入射では得られない。
However, in the case of a dielectric alternating layer, the absorption increases sharply in the wavelength range of 2000 Å or less, and at 1000 Å or less, there is almost no combination of materials that can be used as a reflecting mirror. Even in the case of a metal single layer film such as Al, Au, Pt, etc., whose characteristics are shown in Fig. 2 , the reflectance decreases sharply in proportion to λ 2 at wavelengths shorter than 700 Å, and becomes 1 at wavelengths shorter than 500 Å and 200 Å. Only a reflectance of less than% can be obtained with normal incidence.

一方、異なる複素屈折率をもつ2つの金属材料を交互
に積層した金属多層膜反射鏡が試みられるようになって
いるが、X線および真空紫外光の領域ではほとんどの物
質についてその反射率は吸収を表わす虚数部分Kをもつ
複素屈折率(n+ik、以下屈折率と呼ぶ)で表わされ、
実数部分nはほぼ1.0(n=1−δ、δ=10-1〜10-3
となるため真空と物質薄膜との境界におけるフレネルの
反射率は非常に小さく0.1%以下のオーダーである。ま
た異種材料の積層薄膜の境界においても反射率は単一の
境界面あたり数%を越えることが無い。
On the other hand, a metal multi-layered film reflecting mirror in which two metal materials having different complex refractive indexes are alternately laminated has been tried, but the reflectivity of most substances is absorbed in the X-ray and VUV region. Is represented by a complex refractive index (n + ik, hereinafter referred to as refractive index) having an imaginary part K representing
Real part n is approximately 1.0 (n = 1-δ, δ = 10 -1 to 10 -3 ).
Therefore, the reflectance of Fresnel at the boundary between the vacuum and the material thin film is very small, on the order of 0.1% or less. Further, even at the boundary between laminated thin films of different materials, the reflectance does not exceed several% per single boundary surface.

しかるに、異種材料を交互に多層積層構造とし、各々
の層境界からの反射光が干渉により強め合い、多層膜全
体としての反射率が最大となるような膜厚構成をとるこ
とにより、高い反射率を得ることが可能となる。さらに
隣接する層間での屈折率の差が大きくなるような異種材
料の組合わせを選択し、先の膜厚構成と合わせて反射率
の高い反射鏡が実現できることが知られている。
However, high reflectivity is achieved by using a multilayer structure in which different materials are alternately stacked and the reflected light from each layer boundary is strengthened by interference to maximize the reflectivity of the entire multilayer film. Can be obtained. Further, it is known that it is possible to realize a reflecting mirror having a high reflectance by selecting a combination of different kinds of materials such that the difference in refractive index between adjacent layers becomes large and combining with the above film thickness constitution.

現在までに多層膜の構成につき知られている材料の組
合わせとしては、低屈折率材料として遷移金属があり、
高屈折率材料としての多くは炭素、シリコン等の半導体
元素を用いたものであった。代表的な例をあげると、タ
ングステン(W)と炭素(C)との組合わせやモリブテ
ン(Mo)とシリコン(Si)の組合わせ等がある。
As a combination of materials known to date for the structure of a multilayer film, there is a transition metal as a low refractive index material,
Most of the high refractive index materials have used semiconductor elements such as carbon and silicon. Typical examples are a combination of tungsten (W) and carbon (C), a combination of molybdenum (Mo) and silicon (Si), and the like.

この種の多層膜反射鏡において高い反射率を得るため
には、基板表面と、作成された多層膜反射鏡の各層とそ
れに隣接する層の界面及び作成された多層膜反射鏡の表
面の面荒さを小さくすることが重要である。その評価方
法として例えばヘテロダイン干渉式面荒さ計等の広い領
域すなわち数平方μmの領域の荒さを平均化する方式の
面荒さ計によって基板表面及び作成された多層膜反射鏡
の表面の面荒さを測定する方式が従来はとられていた。
しかしながらこの方式では広い領域での平均化された情
報しか得られないばかりでなく、多層膜反射鏡の各層と
それに隣接する層の界面の面荒さについては直接には全
く知ることができない。このためX線・真空紫外線の反
射率を低減させる重要な原因となる各層とそれに隣接す
る層の界面及び表面の面に平向な方向に数十Å以上数千
Å以下の大きさを持つ凹凸には考慮が払われず、従って
そのような凹凸をおさえる工夫もなされなかった。
In order to obtain a high reflectance in this type of multilayer reflector, in order to obtain a high reflectance, the surface of the substrate, the interface between each layer of the multilayer reflector and the layer adjacent to it, and the surface roughness of the surface of the multilayer reflector are created. Is important to be small. As the evaluation method, for example, the surface roughness of the substrate surface and the surface of the multilayer film reflecting mirror produced is measured by a surface roughness meter of a method of averaging the roughness of a wide area such as a heterodyne interferometric surface roughness meter, that is, an area of several square μm. The method of doing was used conventionally.
However, in this method, not only the averaged information in a wide area can be obtained, but also the surface roughness of the interface between each layer of the multilayer mirror and the layer adjacent thereto cannot be directly known at all. For this reason, unevenness with a size of several tens of Å or more and several thousand Å or less in the direction parallel to the interface between each layer and the layer adjacent to it, which is an important cause for reducing the reflectance of X-rays and VUV Was not taken into account, and no effort was made to control such irregularities.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来例では、広い領域すなわち数平方μmの領域
を平均化する方式で測定した面荒さは十分制御してある
にもかかわらず、期待される反射率と測定された反射率
には大きな開きがあり、多層膜反射鏡としてその反射率
が低いものしか得られないという欠点があった。例えば
基板表面、作製された多層膜反射鏡の各層とそれに隣接
する層の界面および作製された多層膜反射鏡の表面の面
荒さがrms値で10Åの多層膜反射鏡と20Åのそれの反射
率を比較すると、例えば波長124Åの軟X線をRuとSiの4
1層からなる多層膜反射鏡に垂直に入射した時、面荒さ2
0Åの多層膜反射鏡の反射率は面荒さ10Åの多層膜反射
鏡の反射率の1/10程度しか得られない。
In the above conventional example, although the surface roughness measured by a method of averaging a wide area, that is, an area of several square μm is sufficiently controlled, there is a large difference between the expected reflectance and the measured reflectance. However, there is a drawback in that only a multilayer reflective mirror having a low reflectance can be obtained. For example, the surface of the substrate, the interface between each layer of the produced multilayer reflector and its adjacent layers, and the surface roughness of the produced multilayer reflector with a surface roughness of 10 Å in terms of rms value and its reflectance of 20 Å Comparing the two, for example, soft X-ray with a wavelength of 124 Å
Surface roughness 2 when vertically incident on a single-layer multilayer mirror
The reflectance of a 0 Å multilayer mirror is only about 1/10 of the reflectance of a 10 Å multilayer reflector.

基板表面及び多層構造の界面の面荒さは、反射光の光
路差には最大2倍となって反映さえる。従って、使用波
長の1/8面荒さを持つ反射鏡では反射されたX線又は真
空紫外線は波長の最大1/4の光路差のずれを持ち、反射
率を低下させる。数十Åから数千ÅのX線又は真空紫外
線が干渉性を持つような領域内では、面荒さにより位相
ずれによって干渉的に反射率の減少を引起す。例えば前
述のRuとSiの41層からなる多層膜反射率に124Åの軟X
線を入射した場合、透過電子顕微鏡で断面を観察したと
きに波長124Åの約1/8の15Åの面荒さを持つ多層膜反射
鏡の反射率は、ほとんど面荒さのない多層膜反射鏡の約
1/4程しか得られない。一般に面荒さが使用波長の1/15
よりも大きくなると反射率は急減しはじめ、面荒さが使
用波長の1/8程になると反射率は1/4程になってしまう。
The surface roughness of the substrate surface and the interface of the multi-layered structure can be reflected in the optical path difference of the reflected light by up to twice. Therefore, the X-rays or the vacuum ultraviolet rays reflected by the reflecting mirror having a surface roughness of 1/8 of the used wavelength have a shift of the optical path difference of 1/4 of the wavelength at the maximum and reduce the reflectance. In a region where tens to thousands of X-rays or vacuum ultraviolet rays have coherence, the surface roughness causes phase shifts and causes a coherent decrease in reflectance. For example, the multilayer film consisting of 41 layers of Ru and Si mentioned above has a soft X of 124 Å
When a line is incident, when a cross section is observed with a transmission electron microscope, the reflectance of a multilayer film mirror with a surface roughness of 15Å, which is approximately 1/8 of a wavelength of 124Å, is about that of a multilayer film mirror with almost no surface roughness.
You can only get about 1/4. Generally, surface roughness is 1/15 of wavelength used
When the surface roughness becomes 1/8 of the wavelength used, the reflectance becomes 1/4 when the surface roughness becomes 1/8.

本発明の目的は、X線や真空紫外線に対して高い反射
率の鏡面を得て、従来にない光学特性の光学装置を提供
することにある。
It is an object of the present invention to provide a mirror surface having a high reflectance with respect to X-rays and vacuum ultraviolet rays, and to provide an optical device having an optical characteristic which is not available in the past.

〔問題点を解決するための手段〕[Means for solving problems]

上記に詳しく述べた従来技術の問題点は、互いに屈折
率の異なる物質の交互層よりなる多層構造の反射鏡を基
板上に有するX線・真空紫外線用多層膜反射鏡におい
て、その多層構造における界面および反射鏡の表面の面
荒さ値が、透過電子顕微鏡による100Å以上700Å以下の
厚さ試料についての断面観察時rms値で使用波長の1/8以
下であるX線・真空紫外線用多層膜反射鏡により解決さ
れた。ここで、上記の試料について透過電子顕微鏡観察
する場合、多層膜反射鏡の各層とそれに隣接する層の界
面とは第3図にその1例を示したように透過電子顕微鏡
観察により得た多層膜反射鏡の透過電子顕微鏡像のネガ
写真フィルムをマイクロデンシトメーターにより面に垂
直な方向に測定し、その濃度を基板表面からの関数とし
て平滑化し、濃度の山と谷の中間の濃度の点として決ま
るものである。
The problem of the prior art described in detail above is that in a multilayer film reflecting mirror for X-ray / vacuum UV having a reflecting mirror having a multilayer structure composed of alternating layers of substances having different refractive indexes on a substrate, an interface in the multilayer structure is provided. And the surface roughness of the reflecting mirror is a multilayer film reflecting mirror for X-ray / vacuum UV whose rms value is 1/8 or less of the operating wavelength when observing a cross section of a sample with a thickness of 100 Å or more and 700 Å or less by a transmission electron microscope. Solved by. Here, in the case of observing the above sample with a transmission electron microscope, the interfaces between the layers of the multilayer-film reflective mirror and the layers adjacent thereto are as shown in FIG. A negative photographic film of a transmission electron microscope image of a reflecting mirror was measured by a microdensitometer in a direction perpendicular to the surface, and the density was smoothed as a function from the substrate surface, and the density was determined as a point between the peaks and valleys of the density. It is decided.

以下本発明を、図面も参照しながら詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明のX線・真空紫外線用多層膜反射鏡の
断面の模式図である。ここでは基板1の上に互いに屈折
率の異なる第1の物質の層2,4…および第2の物質の層
3,5…が交互に厚さをそれぞれd2、d4…およびd3、d5
として積層されている。そして本発明の反射鏡では、透
過電子顕微鏡観察した時に、界面及び最終的に作製され
た表面の荒さがrms値で使用波長の1/8以下になるように
積層される。
FIG. 1 is a schematic view of a cross section of a multilayer film reflecting mirror for X-ray / VUV rays according to the present invention. Here, on the substrate 1, first material layers 2, 4 ...
3,5 ... alternate thicknesses d 2 , d 4 ... and d 3 , d 5 ... respectively.
Are stacked as. Then, in the reflecting mirror of the present invention, the layers are laminated so that the roughness of the interface and the finally produced surface is 1/8 or less of the used wavelength in rms value when observed by a transmission electron microscope.

基板1の表面は、製作された鏡面の組み込まれた光学
器械の用途に応じて、平面、凸面、凹面、非球面形状に
加工され、ダイヤモンドペーストによる研磨を経た後、
フローティング研磨法、化学研磨法、超高真空中におい
て基板材料の融点よりわずかに低い温度における長時間
加熱または、フラッシュ加熱などにより充分な面荒さに
おさまるまで繰り返し研磨する。この過程では基板表面
に付着した不純物も除去される。
The surface of the substrate 1 is processed into a flat surface, a convex surface, a concave surface, or an aspherical surface according to the use of the optical instrument in which the manufactured mirror surface is incorporated, and after polishing with a diamond paste,
Floating polishing, chemical polishing, long-time heating at a temperature slightly lower than the melting point of the substrate material in ultra-high vacuum, flash heating, or the like is repeated until the surface roughness is sufficiently reduced. In this process, impurities attached to the substrate surface are also removed.

界面の面荒さを必要な範囲内におさめるためには、第
1の物質、第2の物質の組成の組合わせ、その成膜法に
より異なるが、背圧を低くすること、成膜材料の純度を
上げること、および基板を冷却して微結晶の成長を抑え
ることにより均一なアモルファスの膜とすること、逆
に、基板を加熱して結晶性の膜を作るなどの方法があ
る。
In order to keep the surface roughness of the interface within the required range, it depends on the combination of the composition of the first substance and the second substance and the film forming method, but the back pressure should be low and the purity of the film forming material should be low. There are methods such as increasing the temperature, cooling the substrate to suppress the growth of fine crystals to form a uniform amorphous film, and conversely, heating the substrate to form a crystalline film.

また基板表面の荒れが多層膜に影響を与えないよう
に、基板表面と多層膜との間に緩衝層を設け、その上の
層では各層とそれに隣接する層の界面及び表面の面荒さ
が所定の値より小さくなるようにする。また全層数を多
くし反射率に大きな影響を与える表面近くの層(少なく
とも表面より0.1μm以内の層)では各層とそれに隣接
する層の界面及び表面の面荒さが所定の値より小さくな
るようにする、等の方法もある。
In order to prevent the roughness of the substrate surface from affecting the multilayer film, a buffer layer is provided between the substrate surface and the multilayer film, and in the layer thereabove, the interface between each layer and the adjacent layer and the surface roughness of the surface are predetermined. Be smaller than the value of. In addition, in the case of layers near the surface (at least layers within 0.1 μm from the surface) that increase the total number of layers and have a large effect on reflectance, the interface between each layer and the layers adjacent to it and the surface roughness of the surface should be smaller than the specified value. There is also a method such as.

本発明のX線・真空紫外線用多層膜反射鏡が発現する
反射率は、相互層を形成する屈折率の異なる2種の物質
の屈折率の差、各層の吸収率、積層される層の数、照射
する光の波長等によって異なるが、その屈折率の差は例
えば層数を100層対とすると実用的には少なくとも0.01
以上あることが好ましい。
The reflectance developed by the multilayer mirror for X-ray / vacuum ultraviolet ray of the present invention is the difference in the refractive index between two types of substances having different refractive indexes forming the mutual layers, the absorptance of each layer, and the number of layers to be laminated. , It depends on the wavelength of the light to be irradiated, but the difference in the refractive index is practically at least 0.01 when the number of layers is 100 pairs.
It is preferable to have the above.

交互層の各層に屈折率の差をもたせるためには本発明
で対象とするX線・真空紫外線の領域の光に対して高屈
折率の物質と低屈折率の物質とを用いて交互層を形成す
ればよい。
In order to give each of the alternating layers a difference in refractive index, the alternating layers are formed by using a substance having a high refractive index and a substance having a low refractive index with respect to light in the X-ray / vacuum ultraviolet region, which is the object of the present invention. It may be formed.

各々の層の平均化した膜厚d2、d3…は対象となる波長
のほぼ1/4であり、交互に同一の材質よりなる積層膜で
あって、その膜厚は各層間の境界における反射光がすべ
て強め合うように干渉する条件を満たすか、もしくは、
各層内における吸収損と位相ずれによる反射率低下を比
較したときに多層膜全体としての反射率の低下がより少
なくなる条件を満たすかのいずれかあるいは両方により
決まるものとする。その際、膜厚は同一材料層について
はすべて等しくしても良いし各層毎に変化させ反射率が
最大となるような必ずしも等しくはない厚さとしても良
い。
The averaged film thicknesses d 2 , d 3, ... Of the respective layers are approximately 1/4 of the target wavelength, and they are alternately laminated films made of the same material. Meet the condition that all reflected light interferes constructively, or
When the absorption loss in each layer and the reflectance decrease due to the phase shift are compared, it is determined by either or both of the conditions that the reflectance decrease of the entire multilayer film is smaller. At that time, the film thicknesses may be the same for all the same material layers, or may be different for each layer so that the reflectance is maximized, and the thicknesses are not necessarily equal.

積層の構成としては、気体または真空に接する層であ
る最終層の屈折率と気体または真空の屈折率との差が大
きくなる材料を選択することが望ましい。また基板と基
板に接する層との屈折率の差が大きくなるようにするこ
とも好ましい。
As a laminated structure, it is desirable to select a material that has a large difference between the refractive index of the final layer, which is a layer in contact with gas or vacuum, and the refractive index of gas or vacuum. It is also preferable that the difference in refractive index between the substrate and the layer in contact with the substrate be large.

また、交互層の層数が多いほど反射率は増大するため
層数は5層対以上であることが好ましいが、あまり多く
なると吸収層の影響が顕著となるため、作製の容易さも
考慮して200層対程度までが良い。また、最終層の上に
は吸収の少ない安定な材料による保護層を設けても良
い。
Further, it is preferable that the number of layers is 5 pairs or more because the reflectance increases as the number of alternating layers increases, but if the number is too large, the effect of the absorption layer becomes remarkable, and therefore, considering the ease of production, too. About 200 layers pair is good. Further, a protective layer made of a stable material with little absorption may be provided on the final layer.

また、本発明のX線・真空紫外線用多層膜反射鏡を作
製する際の成膜法としては、超高真空中における電子ビ
ーム法が好ましく用いられるが、特に化合物材料を用い
る場合は、残留酸素等の量が充分少ない真空中における
スパッタリング法が有効な手法である。さらに、膜強度
の高い膜作製法としてイオンプレーティング法、半導体
超格子作製で注目を浴びている有機金属気相成長法(MO
CVD)などを用いて多層膜を形成してもよいことはいう
までもない。
As a film forming method for producing the multilayer mirror for X-ray / vacuum ultraviolet ray of the present invention, an electron beam method in an ultra-high vacuum is preferably used. In particular, when a compound material is used, residual oxygen is used. A sputtering method in a vacuum with a sufficiently small amount is an effective method. Furthermore, as a film forming method with high film strength, an ion plating method and a metal organic chemical vapor deposition method (MO
Needless to say, the multilayer film may be formed using CVD or the like.

〔実施例〕〔Example〕

実施例1 面精度λ/20(λ=6328Å)に加工したシリコン基板
(2″φ、10mmt)を、ダイヤモンドペーストにより研
磨した。ヘテロダイン干渉式面荒さ計で面荒さを測定し
たところrms値で7.09Åであった。
Example 1 A silicon substrate (2 ″ φ, 10 mmt) processed to have a surface accuracy of λ / 20 (λ = 6328Å) was polished with diamond paste. When the surface roughness was measured with a heterodyne interferometric surface roughness meter, the rms value was 7.09. It was Å.

面荒さを測定した基板と同一ロットの基板を背圧1×
10-10torrにした第4図に示した装置の基板ホルダーの
ヒーター面にセットし、あらかじめ蒸着に先だって1400
℃まで加熱(2時間)した。その後放置により室温まで
冷却し、次に液体窒素シュラウドから出ている銅製の爪
に基板を3時間接しておき、熱電対式の温度計で基板温
度を測定したところ−150℃になっていた。
Back pressure of the same lot as the substrate whose surface roughness was measured 1 x
Set it on the heater surface of the substrate holder of the device shown in Fig. 4 at 10 -10 torr, and set it to 1400 in advance before vapor deposition.
Heated to ° C (2 hours). After that, the substrate was left to cool to room temperature, then the substrate was kept in contact with a copper claw protruding from the liquid nitrogen shroud for 3 hours, and the substrate temperature was measured with a thermocouple type thermometer.

第4図に示した装置には電子ビームの蒸発源が3台基
板に対して対称な位置になるように配置され(第4図で
は1台が向こう側にある。)、各々の電子銃ハースに9
9.9%のルテニウム(以下Ru)と99.999%のケイ素(以
下Si)と99.999%の炭素(以下C)をあらかじめセット
しておいた。真空度が3×10-10torrに回復するまで待
った後、蒸着を開始した。
In the apparatus shown in FIG. 4, three electron beam evaporation sources are arranged symmetrically with respect to the substrate (in FIG. 4, one is on the other side). At 9
9.9% ruthenium (hereinafter Ru), 99.999% silicon (hereinafter Si), and 99.999% carbon (hereinafter C) were set in advance. After waiting until the degree of vacuum was restored to 3 × 10 -10 torr, vapor deposition was started.

Ru、Si、C共にあらかじめ電子ビームで予備加熱をし
ておき(各ハース上のシャッター、及びメインシャッタ
ーは閉じた状態で)、30分から1時間予備加熱後、各々
の蒸着レートが3Å/min、5Å/min、3Å/minになるよ
うに各ハース近傍に設置した水晶振動子(図には示して
いない)で上記した蒸着レートが保持されるようフィー
ドバックした。その後、8×10-10torrの真空度を保持
しながら蒸着を行なった。第5図に示したように最初に
緩衝層としてCを200Å成膜し、その後RuとSiをそれぞ
れの膜厚27.2Åと36.2Åとし交互に41層成膜した。Cの
上の層及び最表面の層はRuとし反射鏡Aを得た。
Ru, Si, and C were preheated with an electron beam in advance (shutters on each hearth and the main shutter were closed), and after preheating for 30 minutes to 1 hour, each deposition rate was 3Å / min, A crystal oscillator (not shown) installed near each hearth at 5 Å / min and 3 Å / min was fed back so that the above deposition rate was maintained. Then, vapor deposition was performed while maintaining a vacuum degree of 8 × 10 -10 torr. As shown in FIG. 5, first, 200 Å of C was formed as a buffer layer, and then 41 layers of Ru and Si were alternately formed with the respective film thicknesses of 27.2 Å and 36.2 Å. The upper layer and the uppermost layer of C were Ru, and a reflecting mirror A was obtained.

作製した多層膜反射鏡に波長124Åの軟X線を面に対
して垂直な軸から10゜の傾きで入射したところ59.7%の
反射率が得られた。Cの緩衝層がなく、また基板を何ら
冷却することなく上記実施例と同じ膜厚だけ蒸着して得
た試料Bについての軟X線の反射率(10.2%)に対して
約6倍の反射率となった。またCの緩衝層はないが、基
板を冷却して上記実施例と同じ膜厚だけ蒸着して得た試
料Cについての軟X線の反射率(23.7%)に対しても約
2.5倍の反射率だった。この結果は炭素の緩衝層を基板
と多層膜構造との間い入れることによって基板の荒れが
多層膜には影響を及ぼさなかったことと、蒸着時に基板
を冷却しておいたために蒸着面での原子の運動が抑えら
れ島状構造の生成を抑制したことによって、多層部分の
各層とそれに隣接する層との界面の荒れを減少させたこ
とによる。
When a soft X-ray having a wavelength of 124 Å was made incident on the manufactured multilayer film reflecting mirror at an inclination of 10 ° from an axis perpendicular to the plane, a reflectance of 59.7% was obtained. There is no buffer layer of C, and the reflectance of the soft X-ray is about 6 times as high as the reflectance (10.2%) of the soft X-ray of the sample B obtained by vapor-depositing the same film thickness as in the above embodiment without cooling the substrate. Became a rate. Although there is no buffer layer for C, the soft X-ray reflectance (23.7%) of the sample C obtained by cooling the substrate and depositing the same film thickness as in the above embodiment was about
The reflectance was 2.5 times. This result indicates that the roughening of the substrate did not affect the multilayer film by inserting the carbon buffer layer between the substrate and the multilayer film structure, and that the substrate was cooled during the evaporation, so that This is because the movement of atoms was suppressed and the formation of island-shaped structures was suppressed, so that the roughness of the interface between each layer in the multilayer portion and the layer adjacent thereto was reduced.

試料Cについてヘテロダイン干渉式面荒さ計で作成し
た多層膜表面を測定したところrms値で3.1Åであった。
厚さ約500Åの断面観察用試料を作り透過電子顕微鏡に
より像の写真をとり面荒さを測定したところ、基板とC
の緩衝層との界面の荒れはrms値で15.9Åあり、波長124
Åの1/8より大きかったが、緩衝層の上の多層膜部分に
ついては界面の荒れが小さくなり、最上層とその下の層
との界面でrms値で7.2Åあった。多層膜部分の他の層の
界面についてもほぼ同程度であった。
When the surface of the multilayer film prepared by the heterodyne interferometric surface roughness meter was measured for sample C, the rms value was 3.1Å.
When a sample for cross-section observation with a thickness of about 500Å was made and a picture of the image was taken with a transmission electron microscope and the surface roughness was measured,
Roughness of the interface with the buffer layer of 15.9 Å in rms value, wavelength 124
Although it was larger than 1/8 of Å, the roughness of the interface was small in the multilayer film above the buffer layer, and the rms value was 7.2 Å at the interface between the uppermost layer and the layer below it. The interfaces of the other layers in the multilayer film portion were almost the same.

〔発明の効果〕〔The invention's effect〕

以上説明のように本発明のX線・真空紫外線用多層膜
反射鏡は、その多層膜の各層とそれに隣接する層との界
面及び作成された多層膜の表面で数Å以上数千Å以下の
大きさを持つ凹凸にまで注目し、それらを特許請求の範
囲に特定したように使用波長の1/8以下にしたことによ
り、反射率を数倍から10倍まであげることができる効果
がある。同時に散乱光が減少したために反射鏡としての
光学特性も向上させるという効果もある。
As described above, the multilayer mirror for X-ray / vacuum ultraviolet ray of the present invention has several Å or more and several thousand Å or less at the interface between each layer of the multilayer film and the layer adjacent thereto and the surface of the formed multilayer film. By paying attention to even unevenness having a size and setting them to 1/8 or less of the used wavelength as specified in the claims, there is an effect that the reflectance can be increased from several times to 10 times. At the same time, since the scattered light is reduced, there is also an effect of improving the optical characteristics as a reflecting mirror.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のX線・真空紫外線用多層膜反射鏡の断
面の模式図、第2図は誘電体多層、金属単層の照射光波
長に対する反射率を示す図、第3図は実施例の試料につ
いて透過電子顕微鏡による多層膜反射鏡の像のネガフィ
ルムをマイクロデンシトメータにより濃度測定を行った
結果から界面を決定する原理図、第4図は本発明の実施
に用いうる超高真空電子ビーム蒸着装置を示す図、第5
図は第3物質を緩衝層としたX線・真空紫外線用多層膜
反射鏡の断面の模式図である。 1は基板、2,4は第1物質、3,5は第2物質、6は誘電体
多層の反射率曲線、7は金属単層の反射率曲線、8はマ
イクロデンシトメータにより測定された濃度、9は平滑
化された濃度、10は界面、11は液体窒素シュラウド、12
はヒーターを備えた基板ホルダー、13は基板、14は基板
冷却用の爪、15はメインシャッタ、16はシャッタ、17,1
8および19はそれぞれ電子銃ハースであり17にRuを、18
にCを、19にSiをセットしてある。20は水晶振動子、21
はC、22は緩衝層とした第3物質を表わす。
FIG. 1 is a schematic diagram of a cross section of a multilayer film reflecting mirror for X-ray / vacuum ultraviolet ray according to the present invention, FIG. 2 is a diagram showing the reflectance with respect to the irradiation light wavelength of a dielectric multilayer or a metal single layer, and FIG. About the sample of the example, the principle diagram for determining the interface from the result of the density measurement of the negative film of the image of the multilayer film mirror by the transmission electron microscope by the microdensitometer, and FIG. The figure which shows a vacuum electron beam vapor deposition apparatus, 5th
The figure is a schematic view of a cross section of a multilayer film reflecting mirror for X-ray / vacuum ultraviolet rays having a buffer layer of a third substance. 1 is the substrate, 2 and 4 are the first substance, 3 and 5 are the second substance, 6 is the reflectance curve of the dielectric multilayer, 7 is the reflectance curve of the metal single layer, and 8 is measured by a microdensitometer. Concentration, 9 is smoothed concentration, 10 is interface, 11 is liquid nitrogen shroud, 12
Is a substrate holder provided with a heater, 13 is a substrate, 14 is a claw for cooling the substrate, 15 is a main shutter, 16 is a shutter, 17,1
8 and 19 are electron gun hearths, 17 to Ru, 18
C is set in and C is set in 19. 20 is a crystal oscillator, 21
Represents C and 22 represents a third substance used as a buffer layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに屈折率の異なる物質の交互層よりな
る多層構造の反射鏡を基板上に有するX線・真空紫外線
用多層膜反射鏡において、その多層構造における界面お
よび反射鏡の表面の面荒さ値が、透過電子顕微鏡による
100Å以上700Å以下の厚さ試料についての断面観察時rm
s値で使用波長の1/8以下であるX線・真空紫外線用多層
膜反射鏡。
1. A multilayer film reflection mirror for X-ray / vacuum ultraviolet light, comprising a substrate having a reflection mirror having a multi-layer structure composed of alternating layers of substances having different refractive indexes, the interface of the multi-layer structure and the surface of the surface of the reflection mirror. Roughness value by transmission electron microscope
Rm when observing a cross section of a sample with a thickness of 100Å or more and 700Å or less
Multi-layer film mirror for X-rays and VUV rays with an s value that is 1/8 or less of the wavelength used.
JP62249696A 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV Expired - Fee Related JP2535037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249696A JP2535037B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249696A JP2535037B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Publications (2)

Publication Number Publication Date
JPH0192699A JPH0192699A (en) 1989-04-11
JP2535037B2 true JP2535037B2 (en) 1996-09-18

Family

ID=17196844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249696A Expired - Fee Related JP2535037B2 (en) 1987-10-05 1987-10-05 Multi-layer film mirror for X-ray / VUV

Country Status (1)

Country Link
JP (1) JP2535037B2 (en)

Also Published As

Publication number Publication date
JPH0192699A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US6228512B1 (en) MoRu/Be multilayers for extreme ultraviolet applications
Heavens Optical properties of thin films
US5310603A (en) Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
JP2535038B2 (en) Multi-layer film mirror for X-ray / VUV
JPH0534500A (en) X-ray multilayered film reflecting mirror
JPH0727198B2 (en) Multi-layer reflective mask
JP2566564B2 (en) Multi-layer mirror for soft X-rays or vacuum ultraviolet rays
JPH075296A (en) Mutlilayered film for soft x-ray
JP2723955B2 (en) Multilayer reflector for soft X-ray and vacuum ultraviolet
JP2535037B2 (en) Multi-layer film mirror for X-ray / VUV
JP2692881B2 (en) Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element
JPH01175736A (en) Reflective mask
JP2648599B2 (en) Method of making multilayer reflector for X-ray or vacuum ultraviolet
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP2995371B2 (en) X-ray reflector material
Shiraishi et al. Low-stress molybdenum/silicon multilayer coatings for extreme ultraviolet lithography
JPS63106703A (en) Optical element
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
JPS6388503A (en) Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray
JP2993261B2 (en) X-ray multilayer reflector
JPS63266398A (en) X-ray reflecting mirror
Takenaka et al. Evaluation of Mo-based multilayer EUV mirrors
JPS63266400A (en) Multi-layered x-ray reflecting
JPH01304400A (en) Production of reflecting mirror consisting of multilayered film for x-ray and vacuum ultraviolet ray

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees