JPH01301512A - 臨界電流密度の高い酸化物超電導体 - Google Patents

臨界電流密度の高い酸化物超電導体

Info

Publication number
JPH01301512A
JPH01301512A JP88197084A JP19708488A JPH01301512A JP H01301512 A JPH01301512 A JP H01301512A JP 88197084 A JP88197084 A JP 88197084A JP 19708488 A JP19708488 A JP 19708488A JP H01301512 A JPH01301512 A JP H01301512A
Authority
JP
Japan
Prior art keywords
current density
critical current
oxide superconductor
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88197084A
Other languages
English (en)
Inventor
Kenji Doi
土井 健司
Masahito Murakami
雅人 村上
Akio Takayama
高山 秋夫
Hidekazu Tejima
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP88197084A priority Critical patent/JPH01301512A/ja
Publication of JPH01301512A publication Critical patent/JPH01301512A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、臨界電流密度の高い酸化物超電導体の合成
に関する。
この発明により製造された成形体は、超電導線材などに
用いられる。
[従来の技術] YBa2Cu3O7を代表的な組成とするYを含む希土
類元素、Ba、 Cuの酸化物からなる超電導材料は9
0にを越す高い臨界温度を有している。ここでYを含む
希土類元素としてはY、 Nd、 Sad、 Eu、 
Gd、 Dy。
11o、Er(以下、RE)か超電導を示す。このため
冷加削として、沸点が77にの液体窒素が使用I〒I能
なので、液体ヘリウムを利用せざるを得ない従来の金属
材料に比べて利用範囲が大きく拡大することが期待され
ている。
ところが、この酸化物超電導体は従来の材料に比べて臨
界電流密度が低く、実用上の大きな問題となっている(
例えば山[FJら、jp口、 J、 Apρ1゜Phy
s、、 26 (+987) 1865.)。
[発明が解決しようとする課題] 酸化物超電導体の臨界電流密度を向トさせるためには、
酸化物の密度を上昇させなければならない。しかし、密
度をトげるために高温で焼結すると、粒界に第−相(1
)aCu02 、Gum)か形成されて、臨界電流密度
は大きく損なわれてしまう。これは、現在の酸化物超電
導材料の化学量論組成が厳しく、少しの組成のずれで焼
結中に粒界に沿って超電導物質でない液相が形成される
ことか原因である。そこで、本発明は、酸化物超7「導
体の臨界電流密度を向上させるために、臨界電流密度を
大きく損なう原因となる粒界の液相の生成を抑制しよう
とするものである。
[課題を解決するための手段コ 本発明による酸化物超電導体はY、 Ho、 Dyなど
のI(EおよびBa、 Cuからなる酸化物超電導体で
、原子−比でRE++xBa2+yCu3−gon (
但し、x = 0.01〜0.20. y =0.05
〜0.15.  z =0.05〜0.50. n =
6.8〜7.0)なる組成、または、RE、、、口a2
、Cu3On(但し、x = 0.01〜0.20. 
n = 6.8〜7.0)なる組成、または、RE[l
a2+y、Cu3On (但し、y= 0.05〜0.
+5゜n = 6.8〜7.0)なる組成、または、R
EBa2Cu3−.0゜(但し、z =0.05〜0.
50. n =  6.8〜7.0)なる組成を有する
ことを特徴とする。
以下本発明について詳細に説明する。
この発明の酸化物超電導体は、あらかじめ組成を化学量
論組成から、液相が生成しにくい側にずらしておくこと
によって、液相の生成を抑制しながら、密度が高く、ま
た、粒界の接合性の高い焼結体を得ることによって臨界
電流密度の向上を図ったものである。
この材料の擬二元系状態図は、第1図のようになってい
る。液相が生成するのは図でIIEBa2、Cu3On
(+23) (RE:希土類元素)の化学量論組成から
右側にずれた側である。そこであらかじめ組成をRE、
[1aか多い側、Gunが少ない側にずらせておくと、
液相の生成が抑制されるという知見を得た。この組成の
ずれによって生成するRE2BaCuO5相(211相
)は超電導性を示さず、粒界に生成すると超電導材の臨
界電流密度を低下させる原因となっていたが、本発明に
より、この211相は粒界ではなく、粒内に生成する傾
向が認められ臨界電流密度の低下を防皇にできるという
知見も得た。
[作用] すなわち、本発明のように超電導体の組成をあらかじめ
RE、 Baが多い側、およびCuの少ない側へずらし
ておけば、粒内に211相は、生成するものの粒界は清
浄となり、直接超電導材の結晶が粒界で結合する割合か
増加するため、大きな臨界電流密度の低Fが防げ、密度
上昇による臨界電流の向トを図ることが可能となり、臨
界電流密度が77にで1300A/cm2以トの高い酸
化物超電導体をつくることができる。たたし、RE 、
 +、fla2Gu30.の組成においてXか0.旧未
満では顕著な効果はみとめられない。またXか0.2を
越えると超電導相の体積率か減少するために逆に臨界電
流密度は、低下してしまうので望ましくない。Xを0.
05以上で0.15以Fとするときが本発明の効果が最
も顕著に生ずる。同様に1IEBa2+、Cu、0.の
組成においてyが0.05未満では顕著な効果はみとめ
られない。またyが0.15を越えると超電導相の体積
率が減少するために逆に臨界電流密度は低下してしまう
ので望ましくない。またREBa、Cu、−30nの組
成において2が0.05未満では、顕著な効果は認めら
れず、2が0.5を越えると超電導相の体積率か減少す
るために逆に臨界電流密度は低下してしまうので望まし
くない。
旧4 + +xBa2+yC’J3−zOnの組成にお
いてもXは0.旧ないし0.20、yが0.05ないし
0.15、Zが0.05ないし0.50とするときが本
発明の効果が最も顕著に生ずる。
また、本発明の材料において臨界電流密度が向上する理
由の一つとして、液相が発生しない側、すなわち融点の
高い側にずらした結果、 920〜950℃と比較的高
い温度で焼結することが可能となり、結晶構造か整うこ
と、Baの増加により、結晶粒が数μl程度まで微細化
することなどがあげられる。
[実hh例1] Y++xIla2LL+30n (ただし、x =  
0〜0.:10.  n =6.8〜7.0)の原料粉
末を混合し、925℃で8h酸素中で仮焼したのち、粉
砕し、酸素中で925℃で81焼結し、100℃/hで
徐冷した。これら試料を四端子法により77にでの臨界
電流密度を測定した結果を第2図に示す。これによると
、Xが0.05以トかつ0.15以下の領域で、臨界電
流密度はいずれも100O八/cm2を超えており、特
に好適な条件であることかわかる。
いずれの場合にもYを増量することによって臨界電流密
度は向トする。しかしXの値が0.2を越えると逆に臨
界電流密度は低下しだす。これは組成がずれたことによ
って超電導相の体積率が低下したことによると考えられ
る。
[実施例2] 1(IE++xlla、Cu30o(RE:Nd、 S
m、 Eu、 Gd、 Dy、 llo。
Er)酸化物(×=0〜0.30)の原料粉末を混合し
、925℃で811酸素中で仮焼したのち、粉砕し、酸
素中で、925℃で8h酸素中で焼結後、100℃/h
で徐冷した。これら試料の778での臨界電流密度を四
端子法を用いて測定した結果を第1表に示す。
旧(の濃度を増大させることによって臨界電流密度は向
上する。しかし、Yの場合と同様にXの値が0.2を越
えると低下しだす。実施例2における各原料元素(Nd
、 SlI+、・・・)についても第1表からx=o、
IO近傍で最適となることがわかるが、Xが0.05以
上かつ0.15以下のときに(実施例1の場合と同様に
)特に好適であることが確認されている。
第1表 REt+、8a2Cu、、0.のXの値と77
Kにおける臨界電流密度(^/CII+2)の関係[実
施例3] Y[la2+y、Cu3On (たたし、y = 0.
05〜0.15.  n =6.8〜7.0)の原料粉
末を混合し、925℃で8h酸素中で、仮焼したのち、
粉砕し、酸素中で950℃で8h焼結し、100℃/h
で徐冷した。これら試料を四端子法により77にでの臨
界電流密度を測定した結果を第3図に示す。これによる
と、yか0.10の近傍で、臨界電流密度はいずれも1
30O八/cm2以上となっており特に好適な条件であ
ることがわかる。
しかしyの値が0.20を越えると逆に臨界電流密度は
低下しだす。これは組成がずれたことによって超電導相
の体積率が低下したことによると考えられる。
[実h’ts例4] RE[la2+、CuaOn (RE=Nd、 SIl
、 Eu、 Gd、 Dy、 Ilo。
F、 r )酸化物(y=0〜0.30)の原料粉末を
混合し、925℃で、8h酸素中で仮焼したのち、粉砕
し、酸素中で、950℃で8h酸素中で焼結後、100
℃/hて徐冷した。これら試料の77にでの臨界電流密
度を四端子法を用いて測定した結果を第2表に示す。
11aの濃度を増大させることによって臨界電流密度は
向上する。しかし、Yの場合と同様にyの値が0.lO
を越えると低下しだす。実施例4における各元素(Nd
、 SR,−)についても、第2表からy= 0.10
近傍で、最適となることがわかる。
第2表 REBa2+yCIJ30nのyの値と77K
における臨界電流密度(A/cm’)の関係 [実施例5] YBa211:u*−zOn (たたし、z = 0.
05〜0.50.  n =6.8〜7.0)の原料粉
末を混合し、925℃て8h酸素中で、仮焼したのち、
粉砕し、酸素中で950℃で8h焼結し、100℃/h
で徐冷した。これら試料を四端子法により、77にでの
臨界hfp流密流密側定した結果を第4図に示す。これ
によると、2が0.20以Fかつ0.30以下の領域で
、臨界電流密度はいずれも+ 300^/cm’以上と
なっており特に好適な条件であることがわかる。
[実施例6] Rli II a 2 に u 3− t On  (
旧’、−Nd、Sm、Eu、Gd、Dy、llo。
1(r)酸化物(z=0〜0.50)の原料粉末を混合
し、925℃で、8h酸素中で仮焼したのち、粉砕し、
酸素中で、950℃で8h酸素中で焼結後、100℃/
hで徐冷した。これら試料の77にでの臨界電流密度を
四端子法を用いて測定した結果を第3表に示す。
Cuの濃度を減少させることによって臨界電流密度は向
上する。しかし、Yの場合と同様に2の値が0.30を
越えると低下しだす。実施例6における各元素(Nd、
 Ss、 ・・・)についても、第3表から2= 0.
20〜0.30領域で、最適となることがわかる。
第3表 11EBaz[:u3−tonの2の値と77
Kにおける臨界電流密度(A/cmりの関係 [実施例7] Y 1oxBa2+y(iu3−zOn(二元系状態図
を示す第5図中のaからnで表される点)なる組成の原
料粉を混合し、925℃で8h酸素中で仮焼したのち、
粉砕し酸素中で、950℃で8hW;1素中で焼結後+
00”C/hで徐冷した。これら試料の77にでの臨界
電流密度を四端子法を用いて測定した結果を第4表に示
す。
これによると図中の斜線部にあたる組成のところで臨界
電流密度は1300A/cm2以上となっており好適な
条件であることがわかる。
第4表  第5図中の点a〜nの77Kにおける[発明
の効果] この発明の酸化物超電導体は、酸化物の密度が高く、ま
た粒界の接合性も高いので、臨界電流密度の向上を図る
ことができる。
【図面の簡単な説明】
第1図は−RE2BaCuOs相とBa(:uO□+ 
CuO相に挟まれた1lEBa2Gu、0.を含む擬二
元系状態図、第2図はY、+、lla、Cu30oのX
の変化に対する臨界電流密度(77K)の変化を示すグ
ラフ、第3図はYOa2゜、Cu、。 Onのyの変化に対する臨界電流密度(77に)の変化
を示すグラフ、第4図はYBazCu、、−、Ooの2
の変化に対する臨界電流密度(77K)の変化を示すグ
ラフ、および第5図はY1+xBa2+y(:us−z
Onの組成の変化に対する臨界電流密度(77に)の変
化を示すグラフである。

Claims (1)

  1. 【特許請求の範囲】 1、Yを含む希土類元素(RE)、Ba、Cuの酸化物
    からなる酸化物超電導体において原子比でRE_1_+
    _xBa_2_+_yCu_3_−_zO_n(但し、
    x=0.01〜0.20、y=0.05〜0.15、z
    =0.05〜0.50、n=6.8〜7.0)なる組成
    を有することを特徴とする臨界電流密度の高い酸化物超
    電導体。 2、Yを含む希土類元素(RE)、Ba、Cuの酸化物
    からなる酸化物超電導体において原子比でRE_1_+
    _xBa_2Cu_3O_n(但し、x=0.01〜0
    .20、n=6.8〜7.0)なる組成を有することを
    特徴とする臨界電流密度の高い酸化物超電導体。 3、Yを含む希土類元素(RE)、Ba、Cuの酸化物
    からなる酸化物超電導体において原子比でREBa_2
    _+_y、Cu_3O_n(但し、y:0.05〜0.
    15、n=6.8〜7.0)なる組成を有することを特
    徴とする臨界電流密度の高い酸化物超電導体。 4、Yを含む希土類元素(RE)、Ba、Cuの酸化物
    からなる酸化物超電導体において原子比でREBa_2
    Cu_3_−_zO_n(但し、z=0.05〜0.5
    0、n=6.8〜7.0)なる組成を有することを特徴
    とする臨界電流密度の高い酸化物超電導体。 5、REがY、Nd、Sm、Eu、Gd、Dy、Ho、
    Erである請求項1、2、3または4記載の酸化物超電
    導体。
JP88197084A 1988-01-08 1988-08-09 臨界電流密度の高い酸化物超電導体 Pending JPH01301512A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88197084A JPH01301512A (ja) 1988-01-08 1988-08-09 臨界電流密度の高い酸化物超電導体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP118888 1988-01-08
JP63-1188 1988-01-08
JP88197084A JPH01301512A (ja) 1988-01-08 1988-08-09 臨界電流密度の高い酸化物超電導体

Publications (1)

Publication Number Publication Date
JPH01301512A true JPH01301512A (ja) 1989-12-05

Family

ID=26332916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88197084A Pending JPH01301512A (ja) 1988-01-08 1988-08-09 臨界電流密度の高い酸化物超電導体

Country Status (1)

Country Link
JP (1) JPH01301512A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (ja) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 酸化物超電導体及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (ja) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 酸化物超電導体及びその製造方法

Similar Documents

Publication Publication Date Title
Cava et al. Bulk superconductivity at 36 K in La 1.8 Sr 0.2 CuO 4
US5145831A (en) High-tc oxide superconductor and method for producing the same
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
EP0536730A1 (en) Oxide superconducting material and method for producing the same
EP0296893B1 (en) Superconducting material and a process for preparing the same
JPH01301512A (ja) 臨界電流密度の高い酸化物超電導体
JP3217905B2 (ja) 金属酸化物材料及びその製造方法
EP0869563B1 (en) Superconductor; current lead and method of manufacturing the superconductor
Sadakata et al. Critical current density of Y-Ba-Cu oxide superconductor prepared by a diffusion process
JP2803819B2 (ja) 酸化物超電導体の製造方法
JP3681768B2 (ja) 層状銅酸化物およびその製造方法
JP2523928B2 (ja) 酸化物超伝導体およびその製造方法
JP2828396B2 (ja) 酸化物超電導体及びその製造方法
JP2590242B2 (ja) 酸化物超電導体の作製方法
JP2821568B2 (ja) 超電導ウィスカー複合体の製造方法
JP2854338B2 (ja) 銅系酸化物超電導体
JP2855126B2 (ja) 酸化物超電導体
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
JP2709000B2 (ja) 超電導体及びその製造方法
JPH11180765A (ja) 銀を含む酸化物超電導体及びその製造方法
JPH0230618A (ja) 酸化物高温超電導体
Xianhui et al. The synthesis and structure of a new Bi-based copper oxide with (Bi, M) O monolayers:(Bi, M) Sr2 (R, Ce) 3Cu2O11− δ
JPH01208319A (ja) 酸化物超伝導材料
Sakuyama et al. (Pb, Cu) Sr/sub 2/(Y, Ca) Cu/sub 2/O/sub z/, new superconducting layered copper oxides
JPH0769637A (ja) Bi系超伝導物質