JPH01296656A - Polysi resistor and semiconductor device - Google Patents

Polysi resistor and semiconductor device

Info

Publication number
JPH01296656A
JPH01296656A JP63125719A JP12571988A JPH01296656A JP H01296656 A JPH01296656 A JP H01296656A JP 63125719 A JP63125719 A JP 63125719A JP 12571988 A JP12571988 A JP 12571988A JP H01296656 A JPH01296656 A JP H01296656A
Authority
JP
Japan
Prior art keywords
resistor
polysilicon
resistance
film
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63125719A
Other languages
Japanese (ja)
Other versions
JP2685498B2 (en
Inventor
Mitsuo Nanba
難波 光夫
Masao Kondo
将夫 近藤
Takeo Shiba
健夫 芝
Toru Nakamura
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63125719A priority Critical patent/JP2685498B2/en
Priority to KR1019890007009A priority patent/KR0129127B1/en
Publication of JPH01296656A publication Critical patent/JPH01296656A/en
Priority to US07/681,664 priority patent/US5214497A/en
Application granted granted Critical
Publication of JP2685498B2 publication Critical patent/JP2685498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive the stability of a process and a reduction in an occupation area for forming a poly Si resistor by a method wherein the specific resistance of the poly Si resistor consisting of a poly Si layer formed on a semiconductor substrate and the like are specified. CONSTITUTION:A semiconductor device is constituted in a structure, wherein an Si3N4 film 3 is provided on an Si substrate 1 through an SiO2 film 2, a poly Si film 4 is provided thereon, then an Si3N4 film 5 is provided to wrap the film 4 in a sandwich form with the films 3 and 5. The specific resistance of this poly Si resistor is 0.1OMEGA.cm or lower, the sectional area of the resistor is 1X10<-10>cm<2> or wider, the length of the resistor is 5mum or longer, the width of the resistor is 0.8mum or narrower and moreover, the thickness of the resistor is 125Angstrom or thicker and the resistor is controlled at a resistance value of 40-800kOMEGA. Thereby, the stability of a process and a reduction in an area to monopolize for forming the resistor are contrived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にバイポーラ・メモリ回
路等で用いられる、およそ40にΩから800にΩの高
抵抗を実現するために好適なポリシリコン抵抗に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices, and in particular to semiconductor devices suitable for realizing high resistance from approximately 40 to 800 Ω, used in bipolar memory circuits, etc. Regarding polysilicon resistors.

〔従来の技術〕 ” 半導体集積回路装置に用いられる抵抗は寄生容量を低減
する目的と、高集積化を計る目的とより、アイソレーシ
ョンと呼ばれる素子分離のための領域に形成することが
一般的である。係る抵抗は通常、ポリシリコン(pla
y S、 i )層を用いて実現されているが、従来は
数にΩ以下の低抵抗用、あるいは数100Ω程度以上の
超高抵抗用として用いられていた。
[Prior Art] ”Resistors used in semiconductor integrated circuit devices are generally formed in regions for separating elements, called isolation, for the purpose of reducing parasitic capacitance and achieving higher integration. Such resistors are typically made of polysilicon (PLA).
y S, i ) layer, but conventionally it has been used for low resistance of several Ω or less, or for ultra-high resistance of about several 100 Ω or more.

前者については、例えばソリッド・ステイト・エレクト
ロニクス、20巻(1977年)、第883頁から第8
89頁(Solid−3tate Electroni
cs。
Regarding the former, see, for example, Solid State Electronics, Vol. 20 (1977), pp. 883-8.
Page 89 (Solid-3tate Electronic
cs.

voQ 、20 (1077) 、 pp、883−8
89)において論じられている。後者については、例え
ば、アイ・イー・デー・エム、テクニカル・ダイジェス
ト、 1986年、第300頁から第303頁(Tec
hical Digestof IEDM (1986
) 、 pp300−303)において論じられている
voQ, 20 (1077), pp, 883-8
89). Regarding the latter, see, for example, IEDM, Technical Digest, 1986, pp. 300-303 (Tec
hical Digestof IEDM (1986
), pp 300-303).

ところで最近、およそ40にΩから800にΩ領域の抵
抗について、特願昭62−128137 、同63−1
0641において温度特性改善のための対策が記述され
ている。
By the way, recently, regarding resistance in the range from approximately 40Ω to 800Ω, patent applications No. 128137/1986 and No. 63-1 have been published.
0641 describes measures for improving temperature characteristics.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

しかしながら、上記およそ40にΩから800にΩの抵
抗値を目差した技術はaプロセスの安定性、b抵抗形成
のために専有する面積、C信頼性に関する配慮が不足で
あり、効果的にLSI回路へ適用する上では問題が残さ
れていることが明らかになった。
However, the above-mentioned technology aiming at a resistance value of about 40Ω to 800Ω lacks consideration for process stability (a), area occupied for resistor formation (b), and reliability (c), and is not effective for LSI integration. It became clear that there were still problems in applying the method to circuits.

本発明の目的は、ポリシリコン抵抗に係る上記の如きn
pbpQの3課題を解決することである。
An object of the present invention is to provide the above-described n
The purpose is to solve three problems of pbpQ.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、a −cの8題それぞれによって規制され
る条件で、ポリシリコン抵抗の形成を行うことによって
達成される。
The above object is achieved by forming polysilicon resistors under conditions regulated by each of the eight problems a to c.

課題a:プロセスの安定性 第2図はポリシリコンの比抵抗ρとドーピング濃度との
関係を示す。0印は実験値である。実験値は11,12
.13で示した接線で示される3領域に分離できる。こ
の内、接線12はNが1桁変動するとρが5桁変動する
領域であり、プロセスの安定性は得られない。本技術の
目差す抵抗は、接線13で示される領域で可能となる。
Issue a: Process stability Figure 2 shows the relationship between the specific resistance ρ of polysilicon and the doping concentration. The 0 mark is an experimental value. Experimental value is 11,12
.. It can be separated into three regions indicated by tangent lines indicated by 13. Among these, the tangent line 12 is a region where ρ varies by five orders of magnitude when N varies by one order of magnitude, and process stability cannot be obtained. The resistance aimed at by the present technology is achieved in the region indicated by the tangent line 13.

これよりρが0.1Ω・1以下であることが本課題の条
件である。なおこの領域ではNが1桁変動してもρは1
桁変動するのみである。
From this, it is a condition for this problem that ρ is 0.1Ω·1 or less. Note that in this region, even if N changes by one order of magnitude, ρ is 1
It only changes by an order of magnitude.

課題b:専有面積 ポリシリコン抵抗の幅寸法をWとし、その長さ寸法をQ
とした。今Q / wを10と仮定する。この時に抵抗
形成のために専有する面積はwXflX3倍と仮定する
。さらにまた、抵抗を適用するメモリLSI回路におい
て、許容される抵抗専有面積を、メモリセル面積の17
10と仮定する。
Problem b: Let the width dimension of the occupied area polysilicon resistor be W, and its length dimension be Q.
And so. Now assume that Q/w is 10. At this time, it is assumed that the area occupied for forming the resistor is wXflX3 times. Furthermore, in a memory LSI circuit that uses a resistor, the allowable area occupied by the resistor is 17% of the memory cell area.
Assume 10.

第3図は典型的なメモリセル回路図である。ポリシリコ
ン抵抗はRMCと表わした抵抗として用いられる。係る
メモリセルの現行のセル面積は、〜500μイである。
FIG. 3 is a typical memory cell circuit diagram. A polysilicon resistor is used as a resistor denoted RMC. The current cell area of such memory cells is ~500 μm.

したがって許容される専有面積は50μイとなるが、第
3図より明らかなように通常は1個のメモリセル内に2
個のポリシリコン抵抗を有する。このことから最終的に
は1個のポリシリコン抵抗の面積は25μ−以下である
ことが条件となる。
Therefore, the allowable exclusive area is 50 μm, but as is clear from Figure 3, normally there are 2
polysilicon resistors. From this, the final condition is that the area of one polysilicon resistor is 25 .mu.- or less.

係る条件より、Wは0.8μm以下である制限が決まる
Based on these conditions, W is limited to 0.8 μm or less.

課題C:信頼性 ポリシリコン抵抗に高電流を通電すると、抵抗変動を生
じる。この上限は、5 X 10”A/dであるが、安
定性を見込む場合にはI X 10”A/cdを上限と
したと安心である。メモリLSI回路で使用される4O
KΩ〜800にΩの如きポリシリコン抵抗に流れる電流
は40にΩ時には最大で50μAである。100にΩ時
には20μA。
Issue C: Reliability When a high current is passed through a polysilicon resistor, resistance fluctuations occur. This upper limit is 5 x 10"A/d, but if stability is expected, it is safe to set the upper limit to I x 10"A/cd. 4O used in memory LSI circuits
The current flowing through a polysilicon resistor such as KΩ to 800Ω is at most 50 μA when the resistance is 40Ω. 20μA at 100Ω.

200KO時には10μAである。したがって、5X1
0’の電流密度Jを越えないための、ポリシリコン抵抗
の断面積Sは、40にΩ時には1X10−”a#、 1
00 KΩ時には4 X 10−11d。
At 200 KO, it is 10 μA. Therefore, 5X1
In order not to exceed the current density J of 0', the cross-sectional area S of the polysilicon resistor is 1X10-''a#, 1 when the current density is 40Ω.
4 X 10-11d at 00 KΩ.

200にΩ時には2 X 10−11cnf以上と決ま
る。
When the resistance is 200Ω, it is determined to be 2×10−11cnf or more.

課題すとCより、ポリシリコン抵抗の厚み寸法tの下限
は、w=0.8μmで、40にΩ時にはS = I X
 10−”cJ以上としたために、125人。
From problem C, the lower limit of the thickness t of the polysilicon resistor is w = 0.8 μm, and when it is 40Ω, S = I
125 people because it was 10-”cJ or more.

100にΩ時にはS =4 X 10−”c+J以上と
したために50人、200にΩ時にはS = 2 X 
1O−11d以上としたために25Å以上と決まる。
When 100 Ω, S = 4
Since it is 1O-11d or more, it is determined to be 25 Å or more.

さらに課題aのρ=0.1Ω・1以下であることより、
ポリシリコン抵抗のシート抵抗ρSは該厚み寸法より自
動的に決まる。ここで目的とした抵抗Rが40にΩより
800にΩであること、QZW比が〜10であることを
考慮すれば、好ましいpS値はおのずと制限される。こ
の観点より、該抵抗の厚み寸法tの上限値がR=40に
Ωの時には2500人と決まる。また、R=100にΩ
の時には1000人、R=200にΩの時には500人
と決まる。これよりポリシリコン抵抗の断面積の上限値
は、R=40にΩ以上の時には2×10″″Od以下、
R=100にΩ以上の時には8X10−10d以下、R
=200にΩ以上の時には4X10−”Od以下と決ま
る。しかしこの値はQ / w比によって変動する量で
ある。
Furthermore, since ρ in task a is less than 0.1Ω・1,
The sheet resistance ρS of the polysilicon resistor is automatically determined from the thickness dimension. Considering that the intended resistance R is 800 Ω rather than 40 Ω, and that the QZW ratio is ~10, the preferable pS value is naturally limited. From this point of view, when the upper limit of the thickness dimension t of the resistor is R=40 and Ω, the number of people is determined to be 2,500. Also, Ω to R=100
When R = 200 and Ω, there are 1,000 people, and when R = 200 and Ω, there are 500 people. From this, the upper limit of the cross-sectional area of polysilicon resistor is 2×10''Od or less when R=40Ω or more,
When R = 100 and Ω or more, 8X10-10d or less, R
When it is equal to or greater than Ω=200, it is determined to be equal to or less than 4×10−”Od. However, this value varies depending on the Q/w ratio.

信頼性に関しては上記の電流密度の外に、電界について
も考慮しなくてはいけない。この問題に関して検討した
結果、ポリシリコン両端に印加される電圧V (V)と
、ポリシリコン長Q〔μm〕の比、すなわちV/Qtt
o、4V/μm以下に制御することによって、抵抗のリ
ニアリティを保持できることがわかった。現行LSIの
電源電圧が5.2■で、将来共これが上昇することはな
いと見込まれている。しかし現実に印加される電圧は通
常は0.4V、最大でも2.0■程度である。したがっ
てV/Qを0.4に保つためにQは2.OV時に5.0
μm以上であることが必要である。
Regarding reliability, in addition to the current density mentioned above, electric field must also be considered. As a result of studying this problem, we found that the ratio of the voltage V (V) applied across polysilicon to the polysilicon length Q [μm], that is, V/Qtt
It was found that the linearity of the resistance could be maintained by controlling the resistance to 4 V/μm or less. The current LSI power supply voltage is 5.2■, and it is not expected that this will increase in the future. However, the voltage actually applied is usually 0.4V, and at most about 2.0V. Therefore, to keep V/Q at 0.4, Q is 2. 5.0 at OV
It is necessary that the thickness is μm or more.

〔作用〕[Effect]

ρを0.1Ω・1以下としていることによって、LSI
プロセスに要求される。プロセスのバラツキに伴う抵抗
変動の安定化が計られる。
By setting ρ to 0.1Ω・1 or less, LSI
required by the process. Stabilizes resistance fluctuations due to process variations.

抵抗の電流密度Jが5×10δA/cd以下、最適はI
 X 10’A/a#以下に制御すべく、該抵抗の断面
形状が規制されているので、信頼性に問題を生じない。
When the current density J of the resistor is 5×10δA/cd or less, the optimum value is I.
Since the cross-sectional shape of the resistor is regulated so as to be controlled to X 10'A/a# or less, there is no problem in reliability.

抵抗の専有面積はLSI回路に対してバランスを保つ範
囲に低減されているので、メモリセル等の微細化の妨げ
とはならない。
Since the area occupied by the resistor is reduced to a range that maintains balance with respect to the LSI circuit, it does not hinder miniaturization of memory cells and the like.

さらにまた電界も0.4V/μm以下に制御されるので
、抵抗のりニアリテイは保たれる。
Furthermore, since the electric field is also controlled to 0.4 V/μm or less, resistance linearity is maintained.

〔実施例〕〔Example〕

実施例1 以下、本発明の第1の実施例を第4図により説明する。 Example 1 A first embodiment of the present invention will be described below with reference to FIG.

a図はポリシリコン抵抗の縦断面図である。Figure a is a longitudinal cross-sectional view of a polysilicon resistor.

Si基板1上に、5iOz膜2を介して、 5iaN4
膜3を設け、その上に7X10”(!I11″″8濃度
で500人厚みのポリシリコン膜4を設け、次いで5i
aN4膜5を設け、ポリシリコン4を5iaNa膜でサ
ンドウィッチ状に包み込む構造とした。5iaNa膜5
の開孔6は、該抵抗の他素子への接続個所である。
5iaN4 on Si substrate 1 via 5iOz film 2
A polysilicon film 4 with a thickness of 500 μm at a concentration of 7×10” (!
An aN4 film 5 was provided, and the polysilicon 4 was wrapped in a sandwich-like structure with the 5iaNa film. 5iaNa membrane 5
The opening 6 is the connection point of the resistor to other elements.

b図は該抵抗の平面図である。抵抗幅寸法Wは0 、8
 p m 、長さQ′は10.4pmとした。ここでQ
’=10.4μmの内で、コンタクト部を除いた構造的
に抵抗として作用する長さQ′は7μmで、さらに実質
的に抵抗として作用する長さQは5μmである。これは
、後続プロセスで開孔6を通して侵入してくる不純物の
影響によるものである。したがって、g/w=6.3 
 となる。IX1lX10l9δにドーピングされてい
ることにより、第2図よりわかるようにρは0.032
Ω・1が得られる6破線で示した専有面積Bは0.8μ
mX10.4μmX3で25.0μMである。しかし実
質専有面積Aは16.8μMである。断面積Sは0.8
.umX500人で4 、 OX 10−”rm−”で
ある、したがって50μAが通電されても電流密度Jは
1.3 X 10”A/cdに抑えられた。
Figure b is a plan view of the resistor. Resistance width dimension W is 0,8
p m and length Q' were 10.4 pm. Here Q
' = 10.4 μm, the length Q' that structurally acts as a resistance excluding the contact portion is 7 μm, and the length Q that substantially acts as a resistance is 5 μm. This is due to the influence of impurities that enter through the openings 6 in subsequent processes. Therefore, g/w=6.3
becomes. By doping IX1lX10l9δ, as shown in Figure 2, ρ is 0.032.
The exclusive area B shown by the 6-dashed line where Ω・1 is obtained is 0.8μ
mX10.4μmX3 and 25.0μM. However, the actual occupied area A is 16.8 μM. Cross-sectional area S is 0.8
.. umX is 4 for 500 people, and OX is 10-"rm-", so even when 50 μA is applied, the current density J is suppressed to 1.3 x 10"A/cd.

係る、本実施例の抵抗は、先に記述した* !g a 
The resistance of this embodiment is as described above *! ga
.

b、cのすべてを満たした。したがって1本抵抗は好ま
しい抵抗の条件にかなった。なお本実施例で実現された
抵抗値は、(ρxQ)/(txw)より明らかなように
、40.3 KΩであった。さらにまた、0図は本実施
例の抵抗の、抵抗幅方向の断面図である。
Both b and c were met. Therefore, a single resistor met the conditions for a desirable resistance. Note that the resistance value achieved in this example was 40.3 KΩ, as is clear from (ρxQ)/(txw). Furthermore, FIG. 0 is a cross-sectional view of the resistor of this example in the resistor width direction.

なおV/Qは2 V / 5 p mで0.4V/μm
が確保された。
Note that V/Q is 0.4V/μm at 2V/5pm
was secured.

実施例2 実施例1において、ρ=0.1Ω・個とした。Example 2 In Example 1, ρ was set to 0.1Ω·piece.

20μAが通電されてもJは5.OX 10’A/dt
に抑えられた。これによって実現された抵抗は126に
Ωであった。実施例1においてはJの安定性ある制限値
ぎりぎりであったのに対して、本実施例2においてはJ
 = 5.OX 104A/cdであり、信頼性が向上
した。
Even if 20 μA is applied, J is 5. OX 10'A/dt
It was suppressed. The resistance thus achieved was 126Ω. In Example 1, the stability of J was close to a certain limit value, whereas in Example 2, J
= 5. OX 104A/cd with improved reliability.

実施例3 第5図は本発明の第3の実施例を示している。Example 3 FIG. 5 shows a third embodiment of the invention.

本実施例の特長は、ポリシリコン抵抗が、幅Wのライン
・アンド・スペースでレイアウトされている点である1
本実施例において、w=0.5μmが選択され、破線B
で囲まれた抵抗形成面積は25μ−1その内実動的抵抗
領域は一点鎖線Aで囲まれた〜21μ−であった。21
が抵抗体をなす領域で、22が他素子への接続個所であ
る。ρは0.033Ω・1、ポリシリコン厚みtは50
0人とした。係る抵抗においてQ / wは実質的に3
2が確保された。これによって実現できた抵抗は211
にΩであった。抵抗断面積は2,5 X 10″″10
dで、10μAの通電時にはその電流密度Jは4、OX
 10番A/alであった。またV/nは0.125V
/μmであった。ρ、J、V/、Q、それに抵抗面積と
もに、本発明の課題を達成しうる条件であることは、説
明を要しない。
The feature of this embodiment is that the polysilicon resistors are laid out in lines and spaces with a width of W.
In this example, w=0.5 μm is selected and the dashed line B
The resistance formation area surrounded by is 25μ-1, and the actual dynamic resistance area is ~21μ-1 surrounded by the dashed line A. 21
is a region forming a resistor, and 22 is a connection point to other elements. ρ is 0.033Ω・1, polysilicon thickness t is 50
There were 0 people. In such a resistance Q/w is essentially 3
2 was secured. The resistance achieved by this is 211
It was Ω. Resistance cross section is 2,5 x 10″″10
d, when a current of 10 μA is applied, the current density J is 4, OX
It was No. 10 A/al. Also, V/n is 0.125V
/μm. It is unnecessary to explain that ρ, J, V/, Q, and the resistance area are all conditions that can achieve the object of the present invention.

実施例4 第6図は本発明の第4の実施例を示している6本実施例
は第5図に示した第2の実施例と同一抵抗専有面積B条
件内で、抵抗レイアウト部分Aを微細化によって縮小し
、その公地素子への接続領域をゆるやかなレイアウトに
している。すなわち本実施例でポリSi抵抗の幅寸法W
は0.25μmとして、同一幅Wのスペースでレイアウ
トしている。本実施例ではポリシリコン厚500人、Q
lW比は64.Qは16μmとした。ρを0.064Ω
・Gに制御し、Rは820にΩを実現していた。
Embodiment 4 FIG. 6 shows a fourth embodiment of the present invention. This embodiment has the same resistance layout area A as the second embodiment shown in FIG. It has been reduced by miniaturization, and the connection area to the common ground element has a loose layout. That is, in this example, the width dimension W of the poly-Si resistor
is set to 0.25 μm, and the layout is performed using spaces of the same width W. In this example, the polysilicon thickness is 500, and the Q
The lW ratio is 64. Q was 16 μm. ρ to 0.064Ω
・Controlled to G, R achieved 820Ω.

実施例5 第1図は本発明の第5の実施例を示している。Example 5 FIG. 1 shows a fifth embodiment of the invention.

本実施例は第6図に示した第3の実施例と同一の幅Wと
スペースw (w=0.25μm)でレイアウトし、全
体として微細化が計られている。本実施例の場合、専有
面積Bは19μMで、抵抗部分Aは889μ−である。
This embodiment is laid out with the same width W and space w (w=0.25 μm) as the third embodiment shown in FIG. 6, and miniaturization is achieved as a whole. In the case of this embodiment, the occupied area B is 19 μM, and the resistance portion A is 889 μM.

しかしQ / w比は52.Q=13μmが確保できて
いる。つまり実施例2に比べると、24%の面積低減が
計られ、実現できる抵抗はほぼ同等の675にΩであっ
た。
However, the Q/w ratio is 52. Q=13 μm has been secured. In other words, compared to Example 2, the area was reduced by 24%, and the resistance that could be achieved was approximately the same, 675Ω.

次に本実施例のプロセスを、第4図にもとづいて説明す
る。
Next, the process of this embodiment will be explained based on FIG. 4.

Si基板1を熱酸化法によって4000人厚のSift
膜2を形成した。係る後に、CVD法によって5iaN
a膜3を5i)lzclz 、 N Hsをソースとし
て780℃で500人厚定形成し、続いてCVD法によ
ってポリシリコン膜4を500人厚定形50℃で5iH
aをソースとして形成し、ホトレジストを塗布し、これ
をパターンニングし、しかる後に公知のドライエツチン
グ法によって局所的にポリシリコン膜4を残存せしめた
。この後に、CVD法によって5iaN4膜5を形成し
、これの居所領域6をエッチ除去した。
The Si substrate 1 is Sifted to a thickness of 4000 mm using a thermal oxidation method.
Film 2 was formed. After that, 5iaN is applied by CVD method.
A film 3 was formed to a constant thickness of 500 cm at 780° C. using 5i)lzclz and N Hs as a source, and then a polysilicon film 4 was formed by CVD to a constant thickness of 500 cm at 50° C. for 5 iH.
A was formed as a source, photoresist was applied and patterned, and then polysilicon film 4 was locally left by a known dry etching method. Thereafter, a 5iaN4 film 5 was formed by the CVD method, and the region 6 of the film was etched away.

実施例6 第7図は本発明のポリシリコン抵抗をLSIデバイス用
トランジスタと組合せて適用した一実施例である。p型
半導体基板50の局所領域51にsbを熱拡散法で形成
し、続いてエピタキシャル層を形成し、さらにエピタキ
シャル層の局所領域52.53を凸型に残して他をエツ
チング除去した。次いで5iaN4膜の側壁残し法等に
よって、凹所には厚い5ift膜54を、凸型側壁部に
は薄い5iOz膜55を形成した。しかる後に、前出し
たポリシリコン抵抗形成のプロセスに従って。
Embodiment 6 FIG. 7 shows an embodiment in which the polysilicon resistor of the present invention is applied in combination with a transistor for an LSI device. SB was formed in a local region 51 of a p-type semiconductor substrate 50 by a thermal diffusion method, and then an epitaxial layer was formed, and further, local regions 52 and 53 of the epitaxial layer were left in a convex shape, and the others were removed by etching. Next, a thick 5ift film 54 was formed on the concave portions, and a thin 5iOz film 55 was formed on the convex sidewalls by a method such as leaving the sidewalls of the 5iaN4 film. After that, follow the process of forming the polysilicon resistor described above.

5iaN番膜56.ポリシリコン57,5iaNa膜5
8を形成し、Si3N4膜58の居所領域59を開孔し
た。次いで島52の上部に開孔60,61を設け、ポリ
シリコンロ2.63を島52の周辺に設け、これを酸化
処理することでポリシリコン表面にSiO2膜65膜設
5た。この時にポリシリコン66は、島52用ポリシリ
コンに比べて、ポリシリコン抵抗部57領域が凹所とな
ることを防ぐ、ダミーのポリシリコンである。
5iaN number membrane 56. Polysilicon 57, 5iaNa film 5
8 was formed, and a hole was opened in the region 59 of the Si3N4 film 58. Next, openings 60 and 61 were formed in the upper part of the island 52, and a polysilicon layer 2.63 was provided around the island 52, and this was oxidized to form a SiO2 film 65 on the surface of the polysilicon. At this time, the polysilicon 66 is a dummy polysilicon that prevents the polysilicon resistance portion 57 region from becoming a depression compared to the polysilicon for the island 52.

なお係るトランジスタの基本は、例えば特開昭56−1
556号の精神によって構築されるものであるが、ここ
で述べた本実施例の特長は、ポリシリコンロ2.63の
酸化時に生じる結晶欠陥が、該ポリシリコンロ2,63
が5iaNa膜と接しているために、その底面部の酸化
が生ぜず防げることである。これによる効果は多大なも
のである。つまり本実施例はポリシリコン抵抗の形成に
とどまらず、結果としてプロセスの改良にもつながる。
The basics of such a transistor are disclosed in, for example, Japanese Unexamined Patent Publication No. 56-1
556, the feature of this embodiment described here is that the crystal defects that occur during the oxidation of the polysilicon layers 2,63 are
Since it is in contact with the 5iaNa film, oxidation of the bottom surface can be prevented. The effects of this are enormous. In other words, this embodiment is not limited to forming polysilicon resistors, but also leads to process improvements.

なお、第7図において、島52と島53には各各ベース
層とコレクタ層、あるいはコレクタ層とベース層が形成
される。
In FIG. 7, a base layer and a collector layer, or a collector layer and a base layer are formed on each of the islands 52 and 53.

なお以上に述べた実施例においてはバイポーラメモリセ
ルおよびLSI回路に関連して述べたが、本発明のポリ
シリコン抵抗はそれらに限定されるものではなく、リニ
ア回路、アナログ回路等にも幅広く適用できることは言
うまでもない。
Although the embodiments described above have been described in relation to bipolar memory cells and LSI circuits, the polysilicon resistor of the present invention is not limited to these, and can be widely applied to linear circuits, analog circuits, etc. Needless to say.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来ポリシリコン抵抗で生じるプロセ
スの安定性が計られ、抵抗形成のための専有面積の低減
が計られ、電流密度と電界に関わる問題も解決される。
According to the present invention, the process stability that conventionally occurs with polysilicon resistors is improved, the area occupied for resistor formation is reduced, and problems related to current density and electric field are solved.

すなわち、比抵抗ρは0.1□ Ω・G以下に、専有面
積は25μ耐以下に、電流密度は5X106A/d以下
に、電界は0.4V/μm以下に抑えられる。
That is, the specific resistance ρ is suppressed to 0.1□ Ω·G or less, the exclusive area is suppressed to 25μ or less, the current density is suppressed to 5×10 6 A/d or less, and the electric field is suppressed to 0.4V/μm or less.

以上述べたように、本発明によって安定した抵抗値40
にΩより800にΩに至るポリシリコン抵抗が実現され
、とりわけバイポーラ・メモリ■、SI開回路おいて多
大の効果を発揮する。
As described above, the present invention provides a stable resistance value of 40
Polysilicon resistances ranging from Ω to 800 Ω have been realized, and are particularly effective in bipolar memories and SI open circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.第5.第6図は本発明の実施例を示す平面図であ
る。第2図はポリシリコン比抵抗とドーピング濃度との
関係を示す実験値のグラフ、第3図はバイポーラ・メモ
リセルの回路図、第4図はポリシリコン抵抗の構造との
形成プロセスを説明するための縦断面図、平面図および
横断面図、第7図は本発明の他の実施例になる半導体装
置の縦断面図である。 4.21,31.41・・・ポリシリコン抵抗、6゜2
2.32,42.59・・・開孔、62・・・ベース接
代理人 弁理士 小川勝男“、′ vl1図 第 7 図 41.57  木°リシリュ)J廼;ti16  7ミ
ー、lX6リンソフン ■ 2  図 ÷し°化″シフ°”4彦N cc4fL−s、)第 3
 回 Qxsr UJ?r)−ラ〉ジスク ¥0 4 図 3  ネ0リシリコン IL、5  Sε3tJ4万粱 t  コ〉7り#子ム ■ 5  図 ¥J z 図 B 抵抗簿渦面積
1st. Fifth. FIG. 6 is a plan view showing an embodiment of the present invention. Figure 2 is a graph of experimental values showing the relationship between polysilicon resistivity and doping concentration, Figure 3 is a circuit diagram of a bipolar memory cell, and Figure 4 is for explaining the structure and formation process of polysilicon resistors. FIG. 7 is a vertical cross-sectional view of a semiconductor device according to another embodiment of the present invention. 4.21, 31.41...Polysilicon resistance, 6°2
2.32, 42.59...Open hole, 62...Base contact agent Patent attorney Katsuo Ogawa",' vl1 Figure 7 Figure 41.57 Thurs. 2 Figure ÷ ° conversion "shift °" 4hikoN cc4fL-s,) 3rd
Times Qxsr UJ? r) - Ra〉Disk¥0 4 Fig. 3 Neorisilicon IL, 5 Sε3tJ4 million 粱t KO〉7ri#子mu■ 5 Fig.¥J z Fig. B Resistance register vortex area

Claims (1)

【特許請求の範囲】 1、半導体基板上に絶縁膜を介して形成された多結晶シ
リコン層よりなるポリシリコン抵抗において、該抵抗の
比抵抗が0.1Ω・cm以下で、該抵抗の断面積が1×
10^−^1^0cm^2以上で、該抵抗長が5μm以
上で、該抵抗の幅寸法が0.8μm以下で、かつ該抵抗
の厚みが125Å以上で、40KΩから800KΩの抵
抗値に制御されていることを特徴としたポリシリコン抵
抗。 2、該抵抗の断面積が4×10^−^1^1cm^2以
上で、該抵抗の厚みが50Å以上に制御され、100K
Ωより800KΩの範囲の抵抗値を有することを特徴と
した特許請求の範囲第1項に記載のポリシリコン抵抗。 3、該抵抗の断面積が2×10^−^1^1cm^2以
上で、該抵抗の厚みが25Å以上に制御され、200K
Ωより800KΩ範囲の抵抗値を有することを特徴とし
た、特許請求の範囲第1項記載のポリシリコン抵抗。 4、特許請求の範囲、第1項より第3項に記述したポリ
シリコン抵抗は、該表面がナイトライド膜でおおわれ、
上記ナイトライド膜に局所的に形成された開孔部を通し
て、他の異るポリシリコン膜を介してトランジスタのベ
ース領域、もしくはコレクタ領域に接続されていること
を特徴とした半導体装置。
[Claims] 1. A polysilicon resistor made of a polycrystalline silicon layer formed on a semiconductor substrate with an insulating film interposed therebetween, the resistor having a specific resistance of 0.1 Ω·cm or less and a cross-sectional area of the resistor. is 1×
10^-^1^0 cm^2 or more, the resistance length is 5 μm or more, the width of the resistor is 0.8 μm or less, and the thickness of the resistor is 125 Å or more, and the resistance value is controlled from 40 KΩ to 800 KΩ. A polysilicon resistor characterized by: 2. The cross-sectional area of the resistor is 4 x 10^-^1^1cm^2 or more, the thickness of the resistor is controlled to be 50 Å or more, and the resistance is 100K.
The polysilicon resistor according to claim 1, having a resistance value in the range of 800KΩ from Ω. 3. The cross-sectional area of the resistor is 2 x 10^-^1^1 cm^2 or more, the thickness of the resistor is controlled to be 25 Å or more, and the resistance is 200K.
The polysilicon resistor according to claim 1, having a resistance value in the range of 800KΩ to Ω. 4. The polysilicon resistor described in claims 1 to 3 has a surface covered with a nitride film,
A semiconductor device characterized in that the semiconductor device is connected to a base region or a collector region of a transistor via another different polysilicon film through an opening locally formed in the nitride film.
JP63125719A 1988-05-25 1988-05-25 Semiconductor device Expired - Fee Related JP2685498B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63125719A JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device
KR1019890007009A KR0129127B1 (en) 1988-05-25 1989-05-25 Semiconductor device
US07/681,664 US5214497A (en) 1988-05-25 1991-04-08 Polycrystalline silicon resistor for use in a semiconductor integrated circuit having a memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125719A JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01296656A true JPH01296656A (en) 1989-11-30
JP2685498B2 JP2685498B2 (en) 1997-12-03

Family

ID=14917063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125719A Expired - Fee Related JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2685498B2 (en)
KR (1) KR0129127B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240565A1 (en) * 1992-05-20 1993-11-25 Mitsubishi Electric Corp Semiconductor device and method for producing the semiconductor device
DE4244771C2 (en) * 1992-05-20 1996-05-30 Mitsubishi Electric Corp Method for producing a semiconductor device with polysilicon resistance layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609153A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Adjustment of resistance value of resistor inside semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609153A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Adjustment of resistance value of resistor inside semiconductor integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240565A1 (en) * 1992-05-20 1993-11-25 Mitsubishi Electric Corp Semiconductor device and method for producing the semiconductor device
US5327224A (en) * 1992-05-20 1994-07-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with hydrogen ion intercepting layer
US5470764A (en) * 1992-05-20 1995-11-28 Mitsubishi Denki Kabushik Kaisha Method of manufacturing a semiconductor device with hydrogen ion intercepting layer
DE4244771C2 (en) * 1992-05-20 1996-05-30 Mitsubishi Electric Corp Method for producing a semiconductor device with polysilicon resistance layers

Also Published As

Publication number Publication date
JP2685498B2 (en) 1997-12-03
KR890017783A (en) 1989-12-18
KR0129127B1 (en) 1998-04-06

Similar Documents

Publication Publication Date Title
KR20020008951A (en) Semiconductor device and Method for Manufacturing with recessed SOI structure
US3942241A (en) Semiconductor devices and methods of manufacturing same
US5462894A (en) Method for fabricating a polycrystalline silicon resistive load element in an integrated circuit
US5327224A (en) Semiconductor device with hydrogen ion intercepting layer
US5068201A (en) Method for forming a high valued resistive load element and low resistance interconnect for integrated circuits
JPH01296656A (en) Polysi resistor and semiconductor device
US5214497A (en) Polycrystalline silicon resistor for use in a semiconductor integrated circuit having a memory device
US4223335A (en) Semiconductor device body having identical isolated composite resistor regions
US5268325A (en) Method for fabricating a polycrystalline silicon resistive load element in an integrated circuit
JP4224149B2 (en) Nonvolatile semiconductor device manufacturing method
JP2003045983A (en) Semiconductor device and its manufacturing method
JPH05175428A (en) Integrated circuit device
JP2687469B2 (en) Semiconductor device
JP3132422B2 (en) Method for manufacturing semiconductor device
JPS59161861A (en) Semiconductor device
KR920010669B1 (en) Semiconductor device and its manufacturing method
JP3372109B2 (en) Semiconductor device
JPS62101073A (en) Charge transfer device and manufacture of the same
JP3272872B2 (en) Semiconductor device and manufacturing method thereof
JPH022298B2 (en)
JPS6132579A (en) Manufacture of semiconductor device
JP2717033B2 (en) Semiconductor integrated circuit
JPH0432264A (en) Semiconductor device and manufacture thereof
JPH0247868A (en) Nonvolatile semiconductor memory device
JPH06112436A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees