JP2685498B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2685498B2
JP2685498B2 JP63125719A JP12571988A JP2685498B2 JP 2685498 B2 JP2685498 B2 JP 2685498B2 JP 63125719 A JP63125719 A JP 63125719A JP 12571988 A JP12571988 A JP 12571988A JP 2685498 B2 JP2685498 B2 JP 2685498B2
Authority
JP
Japan
Prior art keywords
resistance
polysilicon
resistor
film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63125719A
Other languages
Japanese (ja)
Other versions
JPH01296656A (en
Inventor
光夫 難波
将夫 近藤
健夫 芝
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63125719A priority Critical patent/JP2685498B2/en
Priority to KR1019890007009A priority patent/KR0129127B1/en
Publication of JPH01296656A publication Critical patent/JPH01296656A/en
Priority to US07/681,664 priority patent/US5214497A/en
Application granted granted Critical
Publication of JP2685498B2 publication Critical patent/JP2685498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にバイポーラ・メモリ
回路等で用いられる、およそ40KΩから800KΩの高抵抗
を実現するために好適なポリシリコン抵抗に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device, and more particularly to a polysilicon resistance suitable for realizing a high resistance of about 40 KΩ to 800 KΩ used in a bipolar memory circuit or the like. .

〔従来の技術〕[Conventional technology]

半導体集積回路装置に用いられる抵抗は寄生容量を低
減する目的と、高集積化を計る目的とより、アイソレー
シヨンと呼ばれる素子分離のための領域に形成すること
が一般的である。係る抵抗は通常、ポリシリコン(poly
Si)層を用いて実現されているが、従来は数KΩ以下の
低抵抗用、あるいは数10GΩ程度以上の超高抵抗用とし
て用いられていた。
A resistor used in a semiconductor integrated circuit device is generally formed in a region for element isolation called isolation for the purpose of reducing parasitic capacitance and achieving high integration. Such a resistance is usually polysilicon (poly
Although it is realized by using a Si) layer, it has been conventionally used for low resistance of several KΩ or less or for ultra-high resistance of several tens of GΩ or more.

前者については、例えばソリツド・ステイト・エレク
トロニクス、20巻(1977年),第883頁から第889頁(So
lid-State Electronics,vol.20(1977),pp.883-889)
において論じられている。後者については、例えば、ア
イ・イー・デー・エム,テクニカル・ダイジエスト,198
6年,第300頁から第303頁(Techical Digest of IEDM
(1986),pp300-303)において論じられている。
Regarding the former, for example, Solid State Electronics, Volume 20 (1977), pages 883 to 889 (So
lid-State Electronics, vol.20 (1977), pp.883-889)
Are discussed in Regarding the latter, for example, IMD, Technical Digest, 198
6th year, pages 300 to 303 (Technical Digest of IEDM
(1986), pp300-303).

ところで最近、およそ40KΩから800KΩ領域の抵抗に
ついて、特願昭62-128137,同63-10641において温度特性
改善のための対策が記述されている。
By the way, recently, regarding resistance in the region of approximately 40 KΩ to 800 KΩ, Japanese Patent Application Nos. 62-128137 and 63-10641 describe measures for improving temperature characteristics.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記およそ40KΩから800KΩの抵抗値
を目差した技術はaプロセスの安定性、b抵抗形成のた
めに専用する面積、c信頼性に関する配慮が不足であ
り、効果的にLSI回路へ適用する上では問題が残されて
いることが明らかになつた。
However, the technology with a resistance value of about 40 KΩ to 800 KΩ is insufficient in consideration of stability of a process, area dedicated for b resistance formation, and c reliability, and is effectively applied to LSI circuits. Above it became clear that there was a problem.

本発明の目的は、ポリシリコン抵抗に係る上記の如き
a,b,cの3課題を解決することである。
An object of the present invention is to provide a polysilicon resistor as described above.
It is to solve the three problems of a, b, and c.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、a〜cの課題それぞれによつて規制され
る条件で、ポリシリコン抵抗の形成を行うことによつて
達成される。
The above object can be achieved by forming a polysilicon resistor under the conditions controlled by the respective problems a to c.

課題a:プロセスの安定性 第2図はポリシリコンの比抵抗ρとドーピング濃度と
の関係を示す。○印は実験値である。実験値は11,12,13
で示した接線で示される3領域に分離できる。この内、
接線12はNが1桁変動するとρが5桁変動する領域であ
り、プロセスの安定性は得られない。本技術の目差す抵
抗は、接線13で示される領域で可能となる。これよりρ
が0.1Ω・cm以下であることが本課題の条件である。な
おこの領域ではNが1桁変動してもρは1桁変動するの
みである。
Problem a: Process stability Fig. 2 shows the relationship between the resistivity ρ of polysilicon and the doping concentration. ○ marks are experimental values. Experimental value is 11, 12, 13
It can be divided into three regions indicated by the tangent lines. Of these,
The tangent line 12 is a region in which ρ changes by 5 digits when N changes by 1 digit, so that process stability cannot be obtained. The target resistance of the present technology is possible in the area indicated by the tangent line 13. From this ρ
Is a condition of this task. In this region, ρ only changes by one digit even if N changes by one digit.

課題b:専有面積 ポリシリコン抵抗の幅寸法をwとし、その長さ寸法を
lとする。今l/wを10と仮定する。この時に抵抗形成の
ために専有する面積はw×l×3倍と仮定する。さらに
また、抵抗を適用するメモリLSI回路において、許容さ
れる抵抗専有面積を、メモリセル面積の1/10と仮定す
る。
Problem b: Occupied area The width dimension of the polysilicon resistor is w, and its length dimension is l. Now assume that l / w is 10. At this time, it is assumed that the area occupied for forming the resistance is w × l × 3 times. Furthermore, in the memory LSI circuit to which the resistance is applied, the allowable resistance occupation area is assumed to be 1/10 of the memory cell area.

第3図は典型的なメモリセル回路図である。ポリシリ
コン抵抗はRMCと表わした抵抗として用いられる。係る
メモリセルの現行のセル面積は、〜500μm2である。し
たがつて許容される専有面積は50μm2となるが、第3
図より明らかなように通常は1個のメモリセル内に2個
のポリシリコン抵抗を有する。このことから最終的には
1個のポリシリコン抵抗の面積は25μm2以下であるこ
とが条件となる。
FIG. 3 is a typical memory cell circuit diagram. The polysilicon resistor is used as a resistor represented by RMC. The current cell area of such a memory cell is ˜500 μm 2 . Therefore, the occupation area allowed is 50 μm 2 , but
As is clear from the figure, normally, one memory cell has two polysilicon resistors. From this, the condition is that the area of one polysilicon resistor is finally 25 μm 2 or less.

係る条件より、wは0.8μm以下である制限が決ま
る。
From such a condition, the limit that w is 0.8 μm or less is determined.

課題c:信頼性 ポリシリコン抵抗に高電流を通電すると、抵抗変動を
生じる。この上限は、5×105A/cm2であるが、安定性を
見込む場合には1×105A/cm2を上限とすると安心であ
る。メモリLSI回路で使用される40KΩ〜800KΩの如きポ
リシリコン抵抗に流れる電流は40KΩ時には最大で50μ
Aである。100KΩ時には20μA,200KΩ時には10μAであ
る。したがつて、5×105の電流密度Jを越えないため
の、ポリシリコン抵抗の断面積Sは、40KΩ時には1×1
0-10cm2、100KΩ時には4×10-11cm2,200KΩ時には2×
10-11cm2以上と決まる。
Problem c: Reliability When a high current is applied to a polysilicon resistance, resistance fluctuation occurs. This upper limit is 5 × 10 5 A / cm 2 , but if stability is expected, it is safe to set 1 × 10 5 A / cm 2 as the upper limit. The maximum current that flows through a polysilicon resistor such as 40KΩ to 800KΩ used in memory LSI circuits is 40μ at 40KΩ.
A. It is 20 μA at 100 KΩ and 10 μA at 200 KΩ. Therefore, the cross-sectional area S of the polysilicon resistor, which does not exceed the current density J of 5 × 10 5 , is 1 × 1 at 40 KΩ.
0 -10 cm 2, 100KΩ sometimes 4 × 10 -11 cm 2, 200KΩ sometimes 2 ×
Determined to be 10 -11 cm 2 or more.

課題bとcより、ポリシリコン抵抗の厚み寸法tの下
限は、w=0.8μmで、40KΩ時にはS=1×10-10cm2
上とするために、125Å、100KΩ時にはS=4×10-11cm
2以上とするために50Å、200KΩ時にはS=2×10-11cm
2以上とするために25Å以上と決まる。
From the problems b and c, the lower limit of the thickness t of the polysilicon resistor is w = 0.8 μm and S = 1 × 10 −10 cm 2 or more at 40 KΩ, so S = 4 × 10 − at 125 Å and 100 KΩ. 11 cm
50 Å to be 2 or more, S = 2 × 10 -11 cm at 200 KΩ
To be 2 or more, it is determined to be 25Å or more.

さらに課題aのρ=0.1Ω・cm以下であることより、
ポリシリコン抵抗のシート抵抗ρsは該厚み寸法より自
動的に決まる。ここで目的とする抵抗Rが40KΩより800
KΩであること、l/w比が〜10であることを考慮すれば、
好ましいρs値はおのずと制限される。この観点より、
該抵抗の厚み寸法tの上限値がR=40KΩの時には2500
Åと決まる。また、R=100KΩの時には1000Å,R=200K
Ωの時には500Åと決まる。これよりポリシリコン抵抗
の断面積の上限値は、R=40KΩ以上の時には2×10-9c
m2以下、R=100KΩ以上の時には8×10-10cm2以下、R
=200KΩ以上の時には4×10-10cm2以下と決まる。しか
しこの値はl/w比によつて変動する量である。
Furthermore, since ρ = 0.1Ω · cm or less in task a,
The sheet resistance ρs of the polysilicon resistor is automatically determined from the thickness dimension. The target resistance R is 800 from 40KΩ.
Considering that it is KΩ and the l / w ratio is ~ 10,
The preferred ρs value is naturally limited. From this perspective,
2500 when the upper limit of thickness t of the resistor is R = 40KΩ
Determined as Å. When R = 100KΩ, 1000Å, R = 200K
When it is Ω, it is determined as 500Å. From this, the upper limit of the cross-sectional area of the polysilicon resistance is 2 × 10 -9 c when R = 40 KΩ or more.
8 x 10 -10 cm 2 or less, R when m 2 or less and R = 100 KΩ or more, R
= 200KΩ or more, it is determined to be 4 × 10 -10 cm 2 or less. However, this value varies depending on the l / w ratio.

信頼性に関しては上記の電流密度の外に、電界につい
ても考慮しなくてはいけない。この問題に関して検討し
た結果、ポリシリコン両端に印加される電圧V〔V〕
と、ポリシリコン長l〔μm〕の比、すなわちV/lを0.4
V/μm以下に制御することによつて、抵抗のリニアリテ
イを保持できることがわかつた。現行LSIの電源電圧が
5.2Vで、将来共これが上昇することはないと見込まれて
いる。しかし現実に印加される電圧は通常は0.4V,最大
でも2.0V程度である。したがつてV/lを0.4に保つために
lは2.0V時には5.0μm以上であることが必要である。
Regarding reliability, in addition to the above current density, an electric field must be taken into consideration. As a result of studying this problem, the voltage V [V] applied across the polysilicon is shown.
And the polysilicon length l [μm], that is, V / l is 0.4
It has been found that the linearity of the resistance can be maintained by controlling V / μm or less. The power supply voltage of the current LSI is
At 5.2V, this is not expected to rise in the future. However, the voltage actually applied is usually 0.4V, and the maximum voltage is about 2.0V. Therefore, in order to keep V / l at 0.4, l needs to be 5.0 μm or more at 2.0V.

〔作用〕[Action]

ρを0.1Ω・cm以下としていることによつて、LSIプロ
セスに要求される、プロセスのバラツキに伴う抵抗変動
の安定化が計られる。
By setting ρ to 0.1 Ω · cm or less, it is possible to stabilize resistance fluctuations due to process variations, which are required for LSI processes.

抵抗の電流密度Jが5×105A/cm2以下,最適は1×10
5A/cm2以下に制御すべく、該抵抗の断面形状が規制され
ているので、信頼性に問題を生じない。
Resistance current density J is 5 × 10 5 A / cm 2 or less, optimal is 1 × 10 5.
Since the cross-sectional shape of the resistor is regulated so as to be controlled to 5 A / cm 2 or less, there is no problem in reliability.

抵抗の専有面積はLSI回路に対してバランスを保つ範
囲に低減されているので、メモリセル等の微細化の妨げ
とはならない。
The area occupied by the resistors is reduced to a range that maintains a balance with the LSI circuit, so it does not hinder the miniaturization of memory cells and the like.

さらにまた電界も0.4V/μm以下に制御されるので、
抵抗のリニアリテイは保たれる。
Furthermore, since the electric field is controlled to 0.4 V / μm or less,
The linearity of resistance is maintained.

〔実施例〕〔Example〕

実施例1 以下、本発明の第1の実施例を第4図により説明す
る。
Example 1 Hereinafter, a first example of the present invention will be described with reference to FIG.

a図はポリシリコン抵抗の縦断面図である。Si基板1
上に、SiO2膜2を介して、Si3N4膜3を設け、その上に
7×1018cm-3濃度で500Å厚みのポリシリコン膜4を設
け、次いでSi3N4膜5を設け、ポリシリコン4をSi3N4
でサンドウイツチ状に包み混む構造とした。Si3N4膜5
の開孔6は、該抵抗の他素子への接続個所である。
FIG. 3A is a vertical sectional view of a polysilicon resistor. Si substrate 1
A Si 3 N 4 film 3 is provided on the SiO 2 film 2, a polysilicon film 4 having a concentration of 7 × 10 18 cm -3 and a thickness of 500 Å is provided thereon, and then a Si 3 N 4 film 5 is provided. It is provided with a structure in which the polysilicon 4 is wrapped with a Si 3 N 4 film in the form of a sandwich. Si 3 N 4 film 5
The opening 6 is a connection point of the resistor to another element.

b図は該抵抗の平面図である。抵抗幅寸法wは0.8μ
m,長さl″は10.4μmとした。ここでl″=10.4μmの
内で、コンタクト部を除いた構造的に抵抗として作用す
る長さl′は7μmで、さらに実質的に抵抗として作用
する長さlは5μmである。これは、後続プロセスで開
孔6を通して侵入してくる不純物の影響によるものであ
る。したがつて、l/w=6.3となる。1×1019cm-3にドー
ピングされていることにより、第2図よりわかるように
ρは0.032Ω・cmが得られる。破線で示した専有面積B
は0.8μm×10.4μm×3で25.0μm2である。しかし実
質専有面積Aは16.8μm2である。断面積Sは0.8μm×
500Åで4.0×10-10cm-2である。したがつて50μAが通
電されても電流密度Jは1.3×105A/cm2に抑えられた。
Figure b is a plan view of the resistor. Resistance width dimension w is 0.8μ
m and the length l ″ are 10.4 μm. Here, l ″ = 10.4 μm, and the length l ′ that acts structurally as a resistance excluding the contact portion is 7 μm, and further acts as substantially resistance. The length l to be performed is 5 μm. This is due to the influence of impurities that enter through the openings 6 in the subsequent process. Therefore, l / w = 6.3. Due to the doping of 1 × 10 19 cm −3 , as can be seen from FIG. 2, ρ is 0.032 Ω · cm. Exclusive area B shown by the broken line
Is 0.8 μm × 10.4 μm × 3 and 25.0 μm 2 . However, the substantially occupied area A is 16.8 μm 2 . Cross-sectional area S is 0.8 μm ×
It is 4.0 × 10 -10 cm -2 at 500 Å. Therefore, the current density J was suppressed to 1.3 × 10 5 A / cm 2 even when 50 μA was applied.

係る、本実施例の抵抗は、先に記述した課題a,b,cの
すべてを満たした。したがつて、本抵抗は好ましい抵抗
の条件にかなつた。なお本実施例で実現された抵抗値
は、(ρ×l)/(t×w)より明らかなように、40.3
KΩであつた。さらにまた、c図は本実施例の抵抗の、
抵抗幅方向の断面図である。
The resistance of this example satisfies all of the problems a, b, and c described above. Therefore, this resistance satisfies the preferable resistance condition. The resistance value realized in this example is 40.3, as is clear from (ρ × l) / (t × w).
It was KΩ. Furthermore, FIG. 7C shows the resistance of this embodiment,
It is sectional drawing of a resistance width direction.

なおV/lは2V/5μmで0.4V/μmが確保された。 The V / l was 2V / 5μm and 0.4V / μm was secured.

実施例2 実施例1において、ρ=0.1Ω・cmとした。20μAが
通電されてもJは5.0×104A/cm2に抑えられた。これに
よつて実現された抵抗は126KΩであつた。実施例1にお
いてはJの安定性ある制限値ぎりぎりであつたのに対し
て、本実施例2においてはJ=5.0×104A/cm2であり、
信頼性が向上した。
Example 2 In Example 1, ρ = 0.1 Ω · cm. Even when a current of 20 μA was applied, J was suppressed to 5.0 × 10 4 A / cm 2 . The resistance realized by this was 126 KΩ. In Example 1, the limit value of J was close to the limit value, whereas in Example 2, J = 5.0 × 10 4 A / cm 2 ,
Reliability has improved.

実施例3 第5図は本発明の第3の実施例を示している。本実施
例の特長は、ポリシリコン抵抗が、幅wのライン・アン
ド・スペースでレイアウトされている点である。本実施
例において、w=0.5μmが選択され、破線Bで囲まれ
た抵抗形成面積は25μm2、その内実効的抵抗領域は一
点鎖線Aで囲まれた〜21μm2であつた。21が抵抗体を
なす領域で、22が他素子への接続個所である。ρは0.03
3Ω・cm、ポリシリコン厚みtは500Åとした。係る抵抗
においてl/wは実質的に32が確保された。これによつて
実現できた抵抗は211KΩであつた。抵抗断面積は2.5×1
0-10cm2で、10μAの通電時にはその電流密度Jは4.0×
104A/cm2であつた。またV/lは0.125V/μmであつた。
ρ,J,V/l、それに抵抗面積ともに、本発明の課題を達成
しうる条件であることは、説明を要しない。
Embodiment 3 FIG. 5 shows a third embodiment of the present invention. The feature of this embodiment is that the polysilicon resistors are laid out in line and space of width w. In this example, w = 0.5 μm was selected, the resistance formation area surrounded by the broken line B was 25 μm 2 , and the effective resistance region was ˜21 μm 2 surrounded by the alternate long and short dash line A. Reference numeral 21 is a region forming a resistor, and 22 is a connection point to another element. ρ is 0.03
3Ω · cm, and polysilicon thickness t was set to 500Å. In this resistance, 32 was secured for l / w. The resulting resistance was 211 KΩ. Resistance cross section is 2.5 x 1
At 0 -10 cm 2 and current of 10 μA, the current density J is 4.0 ×
It was 10 4 A / cm 2 . The V / l was 0.125 V / μm.
It is not necessary to explain that ρ, J, V / l, and the resistance area are conditions that can achieve the object of the present invention.

実施例4 第6図は本発明の第4の実施例を示している。本実施
例は第5図に示した第2の実施例と同一抵抗専有面積B
条件内で、抵抗レイアウト部分Aを微細化によつて縮小
し、その分他素子への接続領域をゆるやかなレイアウト
にしている。すなわち本実施例でポリSi抵抗の幅寸法w
は0.25μmとして、同一幅wのスペースでレイアウトし
ている。本実施例ではポリシリコン厚500Å,l/w比は64,
lは16μmとした。ρを0.064Ω・cmに制御し、Rは820K
Ωを実現していた。
Embodiment 4 FIG. 6 shows a fourth embodiment of the present invention. This embodiment has the same resistance occupation area B as the second embodiment shown in FIG.
Within the conditions, the resistance layout portion A is reduced by miniaturization, and the connection region to other elements is made to have a gentle layout accordingly. That is, in this embodiment, the width dimension w of the poly-Si resistor is
Is 0.25 μm and is laid out in a space of the same width w. In this embodiment, the polysilicon thickness is 500Å, the l / w ratio is 64,
l was 16 μm. ρ is controlled to 0.064Ωcm, R is 820K
Was realized.

実施例5 第1図は本発明の第5の実施例を示している。本実施
例は第6図に示した第3の実施例と同一の幅wとスペー
スw(w=0.25μm)でレイアウトし、全体として微細
化が計られている。本実施例の場合、専有面積Bは19μ
2で、抵抗部分Aは8.9μm2である。しかしl/w比は5
2,l=13μmが確保できている。つまり実施例2に比べ
ると、24%の面積低減が計られ、実現できる抵抗はほぼ
同等の675KΩであつた。
Embodiment 5 FIG. 1 shows a fifth embodiment of the present invention. This embodiment is laid out with the same width w and space w (w = 0.25 μm) as the third embodiment shown in FIG. 6, and miniaturization is achieved as a whole. In the case of this embodiment, the occupation area B is 19μ
At m 2 , the resistance portion A is 8.9 μm 2 . But the l / w ratio is 5
2, l = 13μm is secured. That is, compared with Example 2, the area was reduced by 24%, and the achievable resistance was 675 KΩ, which was almost the same.

次に本実施例のプロセスを、第4図にもとづいて説明
する。
Next, the process of this embodiment will be described with reference to FIG.

Si基板1を熱酸化法によつて4000Å厚のSiO2膜2を形
成した。係る後に、CVD法によつてSi3N4膜3をSiH2Cl2,
NH3をソースとして780℃で500Å厚で形成し、続いてCVD
法によつてポリシリコン膜4を500Å厚で650℃でSiH4
ソースとして形成し、ホトレジストを塗布し、これをパ
ターンニングし、しかる後に公知のドライエツチング法
によつて局所的にポリシリコン膜4を残存せしめた。こ
の後に、CVD法によつてSi3N4膜5を形成し、これの局所
領域6をエツチ除去した。
A SiO 2 film 2 having a thickness of 4000 Å was formed on the Si substrate 1 by a thermal oxidation method. After that, the Si 3 N 4 film 3 was converted into SiH 2 Cl 2 ,
Using NH 3 as a source, a film with a thickness of 500Å is formed at 780 ℃, and then CVD
Method is used to form a polysilicon film 4 at a thickness of 500Å at 650 ° C. using SiH 4 as a source, a photoresist is applied, this is patterned, and then a polysilicon film is locally formed by a known dry etching method. 4 was left. After that, a Si 3 N 4 film 5 was formed by the CVD method and the local region 6 of the Si 3 N 4 film 5 was removed by etching.

実施例6 第7図は本発明のポリシリコン抵抗をLSIデバイス用
トランジスタと組合せて適用した一実施例である。p型
半導体基板50の局所領域51にSbを熱拡散法で形成し、続
いてエピタキシヤル層を形成し、さらにエピタキシヤル
層の局所領域52,53を凸型に残して他をエツチング除去
した。次いでSi3N4膜の側壁残し法等によつて、凹所に
は厚いSiO2膜54を、凸型側壁部には薄いSiO2膜55を形成
した。しかる後に、前出したポリシリコン抵抗形成のプ
ロセスに従つて、Si3N4膜56,ポリシリコン57,Si3N4膜58
を形成し、Si3N4膜58の局所領域59を開孔した。次いで
島52の上部に開孔60,61を設け、ポリシリコン62,63を島
52の周辺に設け、これを酸化処理することでポリシリコ
ン表面にSiO2膜65を設けた。この時にポリシリコン66
は、島52用ポリシリコンに比べて、ポリシリコン抵抗部
57領域が凹所となることを防ぐ、ダミーのポリシリコン
である。
Embodiment 6 FIG. 7 is an embodiment in which the polysilicon resistor of the present invention is applied in combination with a transistor for an LSI device. Sb was formed in the local region 51 of the p-type semiconductor substrate 50 by a thermal diffusion method, an epitaxial layer was subsequently formed, and the local regions 52 and 53 of the epitaxial layer were left in a convex shape and the others were removed by etching. Then, a thick SiO 2 film 54 was formed in the recess and a thin SiO 2 film 55 was formed in the convex side wall by the method of leaving the side wall of the Si 3 N 4 film. Then, following the process of forming the polysilicon resistance described above, the Si 3 N 4 film 56, the polysilicon 57, and the Si 3 N 4 film 58 are formed.
Was formed, and a local region 59 of the Si 3 N 4 film 58 was opened. Next, holes 60 and 61 are formed on the island 52, and polysilicon 62 and 63 are formed on the island.
A SiO 2 film 65 was provided on the surface of the polysilicon by providing it around 52 and oxidizing it. At this time polysilicon 66
Compared with the polysilicon for island 52,
Dummy polysilicon that prevents the 57 area from becoming a recess.

なお係るトランジスタの基本は、例えば特開昭56-155
6号の精神によつて構築されるものであるが、ここで述
べた本実施例の特長は、ポリシリコン62,63の酸化時に
生じる結晶欠陥が、該ポリシリコン62,63がSi3N4膜と接
しているために、その底面部の酸化が生せず防げること
である。これによる効果は多大なものである。つまり本
実施例はポリシリコン抵抗の形成にとどまらず、結果と
してプロセスの改良にもつながる。
The basics of such a transistor are disclosed in, for example, JP-A-56-155.
Although it is constructed according to the spirit of No. 6, the feature of the present embodiment described here is that the crystal defects generated during the oxidation of the polysilicon 62, 63 are caused by the polysilicon 62, 63 being Si 3 N 4 Since it is in contact with the film, the bottom surface of the film is not oxidized and can be prevented. The effect of this is enormous. That is, the present embodiment is not limited to the formation of the polysilicon resistance, and as a result, it leads to the improvement of the process.

なお、第7図において、島52と島53には各各ベース層
とコレクタ層、あるいはコレクタ層とベース層が形成さ
れる。
In FIG. 7, each of the base layer and the collector layer, or the collector layer and the base layer is formed on the island 52 and the island 53.

なお以上に述べた実施例においてはバイポーラメモリ
セルおよびLSI回路に関連して述べたが、本発明のポリ
シリコン抵抗はそれらに限定されるものではなく、リニ
ア回路,アナログ回路等にも幅広く適用できることは言
うまでもない。
Although the embodiments described above have been described in relation to the bipolar memory cell and the LSI circuit, the polysilicon resistor of the present invention is not limited to them and can be widely applied to linear circuits, analog circuits and the like. Needless to say.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来ポリシリコン抵抗で生じるプロ
セスの安定性が計られ、抵抗形成のための専有面積の低
減が計られ、電流密度と電界に関わる問題も解決され
る。すなわち、比抵抗ρは0.1Ω・cm以下に、専有面積
は25μm2以下に、電流密度は5×105A/cm2以下に、電
界は0.4V/μm以下に抑えられる。
According to the present invention, the stability of the process that has been conventionally caused by a polysilicon resistor can be measured, the area occupied by the resistor can be reduced, and the problems relating to the current density and the electric field can be solved. That is, the specific resistance ρ can be suppressed to 0.1 Ω · cm or less, the occupied area to 25 μm 2 or less, the current density to 5 × 10 5 A / cm 2 or less, and the electric field to 0.4 V / μm or less.

以上述べたように、本発明によつて安定した抵抗値40
KΩより800KΩに至るポリシリコン抵抗が実現され、と
りわけバイポーラ・メモリLSI回路において多大の効果
を発揮する。
As described above, according to the present invention, the stable resistance value 40
Polysilicon resistance from KΩ to 800KΩ has been realized, and it is particularly effective in bipolar memory LSI circuits.

【図面の簡単な説明】[Brief description of the drawings]

第1,第5,第6図は本発明の実施例を示す平面図である。
第2図はポリシリコン比抵抗とドーピング濃度との関係
を示す実験値のグラフ、第3図はバイポーラ・メモリセ
ルの回路図、第4図はポリシリコン抵抗の構造との形成
プロセスを説明するための縦断面図、平面図および横断
面図、第7図は本発明の他の実施例になる半導体装置の
縦断面図である。 4,21,31,41……ポリシリコン抵抗、6,22,32,42,59……
開孔、62……ベース接続ポリシリコン。
1, 5, and 6 are plan views showing an embodiment of the present invention.
FIG. 2 is a graph of experimental values showing the relationship between the polysilicon specific resistance and the doping concentration, FIG. 3 is a circuit diagram of a bipolar memory cell, and FIG. 4 is a process for forming a structure of a polysilicon resistor. FIG. 7 is a vertical sectional view, a plan view and a horizontal sectional view, and FIG. 7 is a vertical sectional view of a semiconductor device according to another embodiment of the present invention. 4,21,31,41 …… Polysilicon resistance, 6,22,32,42,59 ……
Opening, 62 ... Base connection polysilicon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 徹 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭60−9135(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Nakamura 1-280, Higashi Koikekubo, Kokubunji City, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (56) References JP-A-60-9135 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と 該半導体基板上に絶縁膜を介して形成され且つ40KΩか
ら800KΩの範囲のいずれかの抵抗値を有する多結晶シリ
コン抵抗と、 該多結晶ポリシリコン抵抗と接続されるトランジスタを
含めて構成され、 上記多結晶シリコン抵抗は、比抵抗が0.1Ω・cm以下、
断面積が2×10-11cm2以上、長さが5μm以上、幅が0.
8μm以下、且つ厚みが25Åから2500Åの範囲に夫々設
定されていることを特徴とする半導体装置。
1. A semiconductor substrate, a polycrystalline silicon resistor formed on the semiconductor substrate via an insulating film and having a resistance value in the range of 40 KΩ to 800 KΩ, and connected to the polycrystalline polysilicon resistor. Comprised of a transistor, the polycrystalline silicon resistor has a specific resistance of 0.1 Ω · cm or less,
The cross-sectional area is 2 × 10 -11 cm 2 or more, the length is 5 μm or more, and the width is 0.
A semiconductor device having a thickness of 8 μm or less and a thickness of 25 Å to 2500 Å, respectively.
JP63125719A 1988-05-25 1988-05-25 Semiconductor device Expired - Fee Related JP2685498B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63125719A JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device
KR1019890007009A KR0129127B1 (en) 1988-05-25 1989-05-25 Semiconductor device
US07/681,664 US5214497A (en) 1988-05-25 1991-04-08 Polycrystalline silicon resistor for use in a semiconductor integrated circuit having a memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125719A JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01296656A JPH01296656A (en) 1989-11-30
JP2685498B2 true JP2685498B2 (en) 1997-12-03

Family

ID=14917063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125719A Expired - Fee Related JP2685498B2 (en) 1988-05-25 1988-05-25 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2685498B2 (en)
KR (1) KR0129127B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748070B2 (en) * 1992-05-20 1998-05-06 三菱電機株式会社 Semiconductor device and manufacturing method thereof
DE4244771C2 (en) * 1992-05-20 1996-05-30 Mitsubishi Electric Corp Method for producing a semiconductor device with polysilicon resistance layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609153A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Adjustment of resistance value of resistor inside semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH01296656A (en) 1989-11-30
KR0129127B1 (en) 1998-04-06
KR890017783A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
EP0435457A1 (en) Semiconductor memory device and preparation of the same
US4825281A (en) Bipolar transistor with sidewall bare contact structure
US5462894A (en) Method for fabricating a polycrystalline silicon resistive load element in an integrated circuit
KR960010004B1 (en) Static random access memory having structure of first-, second-and third-level conductive films
JP2685498B2 (en) Semiconductor device
JPS6329832B2 (en)
US5214497A (en) Polycrystalline silicon resistor for use in a semiconductor integrated circuit having a memory device
JP3316103B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS61220371A (en) Mos type integrated circuit device on insulating substrate
JP2859363B2 (en) Semiconductor device and manufacturing method thereof
US4186408A (en) IGFET with partial planar oxide
JP2773205B2 (en) Semiconductor memory
JP3417482B2 (en) Method for manufacturing semiconductor device
JPS6238865B2 (en)
JP2546297B2 (en) Semiconductor memory device
JPH0247868A (en) Nonvolatile semiconductor memory device
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JPH022298B2 (en)
JPH05152332A (en) Mos transistor and manufacturing method thereof
JPS6342532Y2 (en)
JP2993041B2 (en) Complementary MOS semiconductor device
JPH079938B2 (en) Semiconductor integrated circuit
JPH0562999A (en) Semiconductor device and manufacture thereof
JPH05218338A (en) Semiconductor device and manufacture thereof
JPH0569325B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees