JPH0129069B2 - - Google Patents

Info

Publication number
JPH0129069B2
JPH0129069B2 JP58117322A JP11732283A JPH0129069B2 JP H0129069 B2 JPH0129069 B2 JP H0129069B2 JP 58117322 A JP58117322 A JP 58117322A JP 11732283 A JP11732283 A JP 11732283A JP H0129069 B2 JPH0129069 B2 JP H0129069B2
Authority
JP
Japan
Prior art keywords
cooling
semiconductor element
heat dissipation
compound
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58117322A
Other languages
Japanese (ja)
Other versions
JPS609148A (en
Inventor
Mitsuhiko Nakada
Haruhiko Yamamoto
Yoshiaki Udagawa
Tsugio Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11732283A priority Critical patent/JPS609148A/en
Publication of JPS609148A publication Critical patent/JPS609148A/en
Publication of JPH0129069B2 publication Critical patent/JPH0129069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 a 発明の技術分野 本発明は半導体素子の冷却方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION a. Technical Field of the Invention The present invention relates to a cooling method for semiconductor devices.

b 技術の背景 電子機器に於いて、ICやLSI等の半導体素子を
多数用いる装置では、回路基板上に半導体素子を
配設して実装するのが一般的である。しかしなが
ら近年、半導体素子の高密度化につれ半導体素子
の発熱密度も増加の一途にある。そこで、半導体
素子のジヤンクシヨン温度の上昇による素子破壊
等の危険を防止するために、冷却能力の大きな半
導体素子の冷却方式が必要とされている。
b. Background of the Technology In electronic devices that use a large number of semiconductor elements such as ICs and LSIs, it is common to arrange and mount the semiconductor elements on a circuit board. However, in recent years, as the density of semiconductor devices has increased, the heat generation density of semiconductor devices has also been increasing. Therefore, in order to prevent the risk of element destruction due to an increase in the junction temperature of the semiconductor element, a cooling method for semiconductor elements with a large cooling capacity is required.

c 従来技術と問題点 第1図、第2図は従来の冷却方式を示す図であ
る。
c. Prior Art and Problems Figures 1 and 2 are diagrams showing a conventional cooling system.

第1図は従来の一冷却方式である空冷方式を行
う場合の半導体素子、及び回路基板の構成を示
し、1は半導体素子、2は放熱フイン、3,4は
回路基板をそれぞれ示す。
FIG. 1 shows the configuration of a semiconductor element and a circuit board when an air cooling method, which is one conventional cooling method, is used. Reference numeral 1 indicates the semiconductor element, 2 indicates a heat dissipation fin, and 3 and 4 indicate the circuit board, respectively.

この方式において冷却能力を上げるためには、
冷却風を給送する送風機能力を向上させるか、放
熱フインの型状を大型化する必要がある。しか
し、送風機能力を向上させるためには、送風機
を大型化しなければならない 送風機から発生
する騒音値が大きくなつてしまう 送風機電力
が増大する等種々の不都合が生じる。又、放熱フ
インの型状を大型化すると、そのための空間を必
要とし、実装密度の向上を阻害することになる。
さらに最近の発熱密度の増大に対しては送風能力
を増しても放熱フインの形状を大型化しても対処
することが困難になつてきている。
In order to increase the cooling capacity with this method,
It is necessary to improve the ability of the blower to supply cooling air, or to increase the size of the heat dissipation fins. However, in order to improve the blower function, the blower must be made larger, the noise level generated by the blower becomes larger, the blower power increases, and various other problems arise. Furthermore, if the shape of the heat dissipation fins is made larger, a space is required for the heat dissipation fins, which impedes improvement in packaging density.
Furthermore, it has become difficult to cope with the recent increase in heat generation density, even if the air blowing capacity is increased or the shape of the heat dissipation fins is made larger.

第2図は、従来のもう一つの一冷却方式である
伝導方式を行う場合の回路基板と半導体素子の構
成を示し、11は半導体素子、12はサーマルコ
ンパウンド(以降、コンパウンドと呼ぶ)、13
は回路基板、14は冷却板をそれぞれ示す。
FIG. 2 shows the configuration of a circuit board and a semiconductor element when conducting the conduction method, which is another conventional cooling method, in which 11 is a semiconductor element, 12 is a thermal compound (hereinafter referred to as compound), and 13 is a semiconductor element.
14 indicates a circuit board and 14 indicates a cooling plate, respectively.

このような冷却方式では、冷却板14の内部に
水等冷媒液を流し、冷却板14の一面を半導体素
子11に接合させ、接合面を介して半導体素子1
1の熱を冷媒液に逃がす。このような伝導方式に
おいては、冷却板14と半導体素子11とを接触
させるにあたり、半導体素子11の熱を効率よく
冷却板に伝える必要がある。そこで、接触面の熱
抵抗(ここでは接触面にできる空間により抵抗)
をできる限り少なくするために、接触面にコンパ
ウンドを塗布し、接触面のすきまをなくしてい
る。
In such a cooling method, a refrigerant liquid such as water is flowed inside the cooling plate 14, one surface of the cooling plate 14 is bonded to the semiconductor element 11, and the semiconductor element 1 is bonded to the semiconductor element 1 through the bonded surface.
The heat from 1 is released to the refrigerant liquid. In such a conduction method, when the cooling plate 14 and the semiconductor element 11 are brought into contact with each other, it is necessary to efficiently transfer the heat of the semiconductor element 11 to the cooling plate. Therefore, the thermal resistance of the contact surface (here resistance due to the space created on the contact surface)
In order to reduce this as much as possible, a compound is applied to the contact surfaces to eliminate gaps between them.

このような伝導方式において、冷却効率を向上
させるためには、半導体素子表面が冷却板表面に
密着するように接触させることが重要となる。
In such a conduction method, in order to improve cooling efficiency, it is important to bring the semiconductor element surface into close contact with the cooling plate surface.

ところが、回路基板の機械的なそりや、半導体
素子の回路基板への装着の不ぞろい(かたむき、
高低)、また冷却板接触面の平面度、半導体素子
の表面の平面度等の関係から、冷却板と複数の半
導体素子表面との接触の程度にばらつきが発生す
る。すなわち、その接触のばらつきはコンパウン
ドの厚さのばらつき(コンパウンドによる熱伝導
に対する熱抵抗のばらつき)となり、接触状態の
良くない部分においては、コンパウンドの厚さが
大きくなつてしまい、全体の半導体素子に対して
一様な冷却効果が得られない(コンパウンドの厚
さによつて熱伝導に対する熱抵抗が決定するた
め)。従つて、規定以上のジヤンクシヨン温度の
上昇を招く半導体素子が現われ、信頼性に欠ける
という問題があつた。
However, mechanical warping of the circuit board and uneven mounting of semiconductor elements on the circuit board are common problems.
Variation occurs in the degree of contact between the cooling plate and the surfaces of the plurality of semiconductor elements due to relationships such as height), flatness of the cooling plate contact surface, flatness of the surface of the semiconductor element, etc. In other words, variations in contact result in variations in compound thickness (variations in thermal resistance to heat conduction through the compound), and in areas with poor contact, the thickness of the compound increases, which affects the overall semiconductor device. However, a uniform cooling effect cannot be obtained (because the thermal resistance to heat conduction is determined by the thickness of the compound). Therefore, semiconductor devices have appeared in which the juncture temperature rises above a specified value, resulting in a problem of lack of reliability.

d 発明の目的 そこで本発明では、上述の問題点に対して、半
導体素子の冷却のバラツキを無くして安定度を上
げ、信頼性を向上させ、かつ、冷却効率を高める
半導体素子の冷却方式を提案する。
d.Purpose of the Invention Therefore, in order to solve the above-mentioned problems, the present invention proposes a cooling method for semiconductor elements that eliminates variations in cooling of semiconductor elements, increases stability, improves reliability, and improves cooling efficiency. do.

e 発明の構成 そのため本発明は、回路基板上に搭載された放
熱フインを有する半導体素子の前記放熱フインに
接して、内部に冷媒液を有する冷却板を設け、前
記冷却板により前記半導体素子を冷却するととも
に、前記放熱フインに冷却風を送り前記半導体素
子を冷却することを特徴とする半導体素子の冷却
方式を提案する。
e Structure of the Invention Therefore, the present invention provides a cooling plate having a refrigerant liquid therein in contact with the heat radiation fins of a semiconductor element having heat radiation fins mounted on a circuit board, and cooling the semiconductor element with the cooling plate. At the same time, a method for cooling a semiconductor device is proposed, characterized in that the semiconductor device is cooled by sending cooling air to the heat dissipation fins.

f 発明の実施例 第3図は本発明の一実施例である半導体素子の
冷却方式を実施する場合の半導体素子、回路基板
等の構成を示し、21は素子、22は放熱フイ
ン、23は回路基板、24はコンパウンド、25
は冷却板をそれぞれ示す。
f Embodiment of the Invention FIG. 3 shows the configuration of a semiconductor element, a circuit board, etc. when implementing a cooling method for a semiconductor element according to an embodiment of the present invention, where 21 is an element, 22 is a heat dissipation fin, and 23 is a circuit. Substrate, 24 is compound, 25
indicate cooling plates, respectively.

放熱フイン22にはコンパウンド24(シリコ
ングリース等、熱伝導のよい物質)を介して冷却
板25が設けられている。素子21はコンパウン
ド24、放熱フイン22を介して冷却板25(こ
の冷却板25の内部に水等冷媒液を流す)により
冷却される。又、半導体素子21は放熱フイン2
2に送り込まれた冷却風によつても冷却されてい
る。
A cooling plate 25 is provided on the heat dissipation fin 22 via a compound 24 (a material with good thermal conductivity such as silicone grease). The element 21 is cooled by a cooling plate 25 (a coolant liquid such as water is caused to flow inside this cooling plate 25) via a compound 24 and a radiation fin 22. Further, the semiconductor element 21 has a heat dissipation fin 2.
It is also cooled by the cooling air sent into 2.

第4図、第5図は本実施例の冷却実験結果を示
すグラフであり、又、第6図は本実施例における
放熱パスの概略経路を示す。
FIGS. 4 and 5 are graphs showing the results of a cooling experiment in this example, and FIG. 6 shows a schematic route of a heat dissipation path in this example.

第4図より分る様に、本実施例では従来の空冷
方式に比べ熱抵抗が低減され、冷却効率が向上さ
れた。
As can be seen from FIG. 4, in this example, the thermal resistance was reduced and the cooling efficiency was improved compared to the conventional air cooling system.

第5図より分る様に本実施例では従来の伝導方
式に比べ接触具合のバラツキ、すなわちコンパウ
ンドの厚さのバラツキによる半導体素子のジヤン
クシヨン温度の変動を小さくおさえることが可能
である。
As can be seen from FIG. 5, in this embodiment, compared to the conventional conduction method, it is possible to suppress fluctuations in the junction temperature of the semiconductor element due to variations in the contact condition, that is, variations in the thickness of the compound.

又、第5図においてコンパウンドの厚さが薄い
場合に伝導方式に比べ半導体素子のジヤンクシヨ
ン温度が高くなつているが、これを第6図に基づ
き説明する。
Furthermore, in FIG. 5, when the thickness of the compound is thin, the junction temperature of the semiconductor device is higher than that in the conduction method. This will be explained based on FIG. 6.

第6図において、Qは半導体素子21の発する
熱量、Q1は冷却板25内部の冷媒液への放熱量、
Q2は冷却風への放熱量、R1は半導体素子の内部
熱抵抗、R2は放熱フイン22の熱抵抗、R3は接
触熱抵抗(大部分はコンパウンドの熱抵抗、その
他接触面にできる空間による抵抗等)、R4は放熱
フイン22表面から冷却風までの熱抵抗を示す。
In FIG. 6, Q is the amount of heat generated by the semiconductor element 21, Q1 is the amount of heat radiated to the refrigerant liquid inside the cooling plate 25,
Q 2 is the amount of heat dissipated to the cooling air, R 1 is the internal thermal resistance of the semiconductor element, R 2 is the thermal resistance of the heat dissipation fin 22, and R 3 is the contact thermal resistance (mostly the thermal resistance of the compound and other contact surfaces) (resistance due to space, etc.), and R 4 indicates the thermal resistance from the surface of the heat dissipation fin 22 to the cooling air.

第6図より分かるように、半導体素子の熱は冷
却板中の冷媒液と冷却風に放熱される。この内、
熱抵抗R4,R2は風速、及びフインの形状、材質
が決められると、ほぼ一定の熱抵抗となり、熱抵
抗R1も半導体素子の構造によりほぼ決定されて
しまう。
As can be seen from FIG. 6, the heat of the semiconductor element is radiated to the refrigerant liquid in the cooling plate and the cooling air. Of these,
The thermal resistances R 4 and R 2 become approximately constant thermal resistances when the wind speed and the shape and material of the fins are determined, and the thermal resistance R 1 is also approximately determined by the structure of the semiconductor element.

すなわち、冷媒液、及び冷却風への放熱量の割
合はコンパウンドの熱抵抗(厚さにより変動)と
熱抵抗R4の比率でほぼ決定されてしまう。従つ
てコンパウンドの厚さが薄い場合は、R3<R4
なり、冷媒液への放熱依存度が大きくなる(熱伝
導による放熱)。ところがこの場合、従来の伝導
方式に比べ本実施例は、冷媒液に半導体素子で発
生した熱を伝導するまでに放熱フインの熱抵抗
R2が存在し(従来の伝導方式ではR3とR1だけで
ある)伝導効率が悪くなるため、ジヤンクシヨン
温度が高くなる(R3<R2の場合は、R3+R2>R3
となるためR2は無視できない)。
That is, the ratio of the amount of heat released to the refrigerant liquid and the cooling air is almost determined by the ratio between the thermal resistance of the compound (which varies depending on the thickness) and the thermal resistance R4 . Therefore, when the thickness of the compound is thin, R 3 <R 4 and the dependence of heat radiation on the refrigerant liquid increases (heat radiation due to thermal conduction). However, in this case, compared to the conventional conduction method, in this embodiment, the thermal resistance of the heat dissipation fins is reduced before the heat generated in the semiconductor element is transferred to the refrigerant liquid.
The presence of R 2 (in the conventional conduction method, only R 3 and R 1 ) reduces the conduction efficiency, which increases the juncture temperature (if R 3 < R 2 , then R 3 + R 2 > R 3
Therefore, R 2 cannot be ignored).

但しコンパウンドが厚い場合はR3>R2となり、
(R3+R2)がR3に極めて近くなるため、R2は問
題とならない。従つて従来の伝導方式よりも、冷
却風による放熱を有する本実施例のほうが冷却効
率が良くなる。
However, if the compound is thick, R 3 > R 2 ,
R 2 is not a problem because (R 3 +R 2 ) is very close to R 3 . Therefore, the cooling efficiency of this embodiment, which has heat dissipation by cooling air, is better than that of the conventional conduction method.

g 発明の効果 本発明によれば、回路基板のそり、半導体素子
の回路基板への装着程度、冷却板接触面の平面度
等の関係から冷却板と放熱フイン間の接触具合が
ばらついても(コンパウンドの厚さがばらついて
も)、冷却風により半導体素子が冷却されるため
に、従来の伝導方式のように接触不良による急激
な温度上昇が起こることはなく、半導体素子の信
頼性の低下、及び破壊が防止できる。又、半導体
素子の熱は冷却風だけでなく、冷却板にも放熱さ
れるため、従来の空冷方式に比べ冷却効率も向上
する。
g. Effects of the Invention According to the present invention, even if the degree of contact between the cooling plate and the heat dissipation fins varies due to the warpage of the circuit board, the degree of attachment of the semiconductor element to the circuit board, the flatness of the contact surface of the cooling plate, etc. Even if the thickness of the compound varies), the semiconductor element is cooled by the cooling air, so there is no sudden temperature rise due to poor contact as in the conventional conduction method, which reduces the reliability of the semiconductor element. and destruction can be prevented. Furthermore, since the heat of the semiconductor element is radiated not only to the cooling air but also to the cooling plate, the cooling efficiency is improved compared to the conventional air cooling method.

更に、伝導方式においては冷却効率を上げるた
め、熱抵抗を小さくする方法として、コンパウン
ドを薄くすることが考えられるが、そのためには
複雑な構造が必要となり、それが高価になること
を考えると、本発明は簡単な構造であるにもかか
わらず、大きな冷却効率を得ることができる。
Furthermore, in the conduction method, one way to increase cooling efficiency and reduce thermal resistance is to make the compound thinner, but considering that this requires a complicated structure and is expensive. Although the present invention has a simple structure, it is possible to obtain high cooling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の冷却方法を示す図であ
り、1,11は半導体素子、2は放熱フイン、
3,4,13は回路基板、12はコンパウンド、
14は冷却板をそれぞれ示す。 第3図は本発明の一実施例の半導体素子の冷却
方式を行う場合の回路基板、及び、半導体素子を
示し、21は半導体素子、22は放熱フイン、2
3は回路基板、24はコンパウンド、25は冷却
板を示す。 第4図、第5図は本実施例の冷却実験結果を示
すグラフであり、又、第6図は本実施例における
放熱パスの概略経路を示す。
1 and 2 are diagrams showing a conventional cooling method, in which 1 and 11 are semiconductor elements, 2 is a heat dissipation fin,
3, 4, 13 are circuit boards, 12 is a compound,
14 indicates a cooling plate, respectively. FIG. 3 shows a circuit board and a semiconductor element when performing a cooling method for a semiconductor element according to an embodiment of the present invention, 21 is a semiconductor element, 22 is a heat dissipation fin, 2
3 is a circuit board, 24 is a compound, and 25 is a cooling plate. FIGS. 4 and 5 are graphs showing the results of a cooling experiment in this example, and FIG. 6 shows a schematic route of a heat dissipation path in this example.

Claims (1)

【特許請求の範囲】[Claims] 1 回路基板上に搭載された放熱フインを有する
半導体素子の前記放熱フインに接して、内部に冷
媒液を有する冷却板を設け、前記冷却板により前
記半導体素子を冷却するとともに、前記放熱フイ
ンに冷却風を送り前記半導体素子を冷却すること
を特徴とする半導体素子の冷却方式。
1. A cooling plate having a refrigerant liquid inside is provided in contact with the heat dissipation fin of a semiconductor element having heat dissipation fins mounted on a circuit board, and the semiconductor element is cooled by the cooling plate, and the cooling plate is cooled by the heat dissipation fin. A method for cooling a semiconductor device, characterized in that the semiconductor device is cooled by blowing air.
JP11732283A 1983-06-29 1983-06-29 Cooling system of semiconductor element Granted JPS609148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11732283A JPS609148A (en) 1983-06-29 1983-06-29 Cooling system of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11732283A JPS609148A (en) 1983-06-29 1983-06-29 Cooling system of semiconductor element

Publications (2)

Publication Number Publication Date
JPS609148A JPS609148A (en) 1985-01-18
JPH0129069B2 true JPH0129069B2 (en) 1989-06-07

Family

ID=14708872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11732283A Granted JPS609148A (en) 1983-06-29 1983-06-29 Cooling system of semiconductor element

Country Status (1)

Country Link
JP (1) JPS609148A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131624A (en) * 1984-07-23 1986-02-14 Kazutoshi Mori Thermal engine equipped with expander mechanism built-in

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131624A (en) * 1984-07-23 1986-02-14 Kazutoshi Mori Thermal engine equipped with expander mechanism built-in

Also Published As

Publication number Publication date
JPS609148A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
JP2894243B2 (en) Heat sink with excellent heat dissipation characteristics
JP2928236B1 (en) Heat dissipating member for heating element
JPH05335454A (en) Cooler for electronic apparatus
JPH06163758A (en) Heat-dissipating structure by ic socket using spring made of shape memory alloy
JPS62139346A (en) Cooling structure for integrated circuit
JPH04294570A (en) Heat sink
JPH0129069B2 (en)
JPS58188188A (en) Printed circuit board heat sink structure
JP2811884B2 (en) Integrated circuit cooling device
JP2002026214A (en) Electronic component cooling apparatus
JPH07111378A (en) Packaging structure of double-sided packaging board
JP4404861B2 (en) Apparatus for cooling a heat generating component and method for manufacturing an apparatus for cooling a heat generating component
JPH0983165A (en) Cooling device for electronic apparatus
JPH0677347A (en) Substrate
JPS6089946A (en) Semiconductor element cooling structure
JPH02244748A (en) Heat pipe type cooler
JPH04139863A (en) Shielding case for semiconductor element served also for heat dissipation
JPS6144450Y2 (en)
JPS624349A (en) Method of cooling semiconductor component
JPH065749A (en) Heat dissipating device
JPS61272954A (en) Cooling structure using magnetic fluid
JPH06181395A (en) Heat dissipation printed-wiring board
JPH07106782A (en) Cooling structure of electronic equipment
JPH0715962B2 (en) Semiconductor device
JPH04259246A (en) Cooling mechanism for integrated circuit