JPH04294570A - Heat sink - Google Patents

Heat sink

Info

Publication number
JPH04294570A
JPH04294570A JP3060014A JP6001491A JPH04294570A JP H04294570 A JPH04294570 A JP H04294570A JP 3060014 A JP3060014 A JP 3060014A JP 6001491 A JP6001491 A JP 6001491A JP H04294570 A JPH04294570 A JP H04294570A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
semiconductor element
fin
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3060014A
Other languages
Japanese (ja)
Inventor
Katsumi Kuno
勝美 久野
Hiroshi Mizukami
浩 水上
Koichiro Kawano
浩一郎 川野
Tomiya Sasaki
富也 佐々木
Hideo Iwasaki
秀夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3060014A priority Critical patent/JPH04294570A/en
Publication of JPH04294570A publication Critical patent/JPH04294570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enhance heat radiating effect by increasing fin efficiency. CONSTITUTION:A pin type fin 4 is connected to heat radiating member connecting surfaces 3a, 3b formed almost perpendicular to the upper surface (heat conducting surface) 2a of a semiconductor element 2 of the heat conducting member 3 connected to the upper surface (heat conducting surface) 2a of a semiconductor element 2. The heat generated from the semiconductor element 2 is transferred to each fin 4 through the heat conducting member 3 and is then radiated effectively from the surface of fin 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、半導体素子等の発熱素
子の冷却に使用されるヒートシンクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink used for cooling heat generating elements such as semiconductor elements.

【0003】0003

【従来の技術】半導体素子等の発熱素子は動作時に発熱
するので、性能を維持するためにヒートシンクによって
冷却が行われる。
2. Description of the Related Art Heat-generating elements such as semiconductor devices generate heat during operation, so they are cooled by a heat sink in order to maintain performance.

【0004】図5は、従来の半導体素子の冷却に使用さ
れるヒートシンクの一例を示す断面図である。この図に
示すように、半導体素子101の上部に接続されている
ヒートシンク102は、半導体素子101に熱的に接続
されている板状のベース103と、ベース103上に接
続されている複数のピン状のフィン104とで構成され
ている。半導体素子101は、複数の配線ピン105を
介して基板106上に実装されている。
FIG. 5 is a sectional view showing an example of a conventional heat sink used for cooling semiconductor devices. As shown in this figure, a heat sink 102 connected to the top of a semiconductor element 101 has a plate-shaped base 103 that is thermally connected to the semiconductor element 101, and a plurality of pins connected to the base 103. It is composed of fins 104 having a shape. The semiconductor element 101 is mounted on a substrate 106 via a plurality of wiring pins 105.

【0005】従来のヒートシンク102は上記のように
構成されており、半導体素子101で発熱が生じると、
この熱はベース103に伝えられてピン状のフィン10
4によって放熱されることにより半導体素子101の冷
却が行われる。
The conventional heat sink 102 is constructed as described above, and when heat is generated in the semiconductor element 101,
This heat is transferred to the base 103 and the pin-shaped fins 10
4 cools the semiconductor element 101.

【0006】[0006]

【発明が解決しようとする課題】上記したように、従来
のヒートシンク102ではピン状のフィン104による
放熱によって半導体素子101の冷却が行われている。
As described above, in the conventional heat sink 102, the semiconductor element 101 is cooled by heat dissipation by the pin-shaped fins 104.

【0007】ところで、前記したピン状のフィン104
は径が細いので表面での局所的な熱伝達率を大きくする
ことはできるが、フィン104内部の熱伝導に関しては
好ましくない。従って、フィン104の先端側にいくに
つれて表面温度の低下が大きくなり、フィン効率が低下
する。
By the way, the pin-shaped fin 104 mentioned above
Since the diameter of the fins is small, the local heat transfer coefficient on the surface can be increased, but this is not preferable in terms of heat conduction inside the fins 104. Therefore, the surface temperature decreases more toward the tip of the fin 104, and the fin efficiency decreases.

【0008】このため、フィン104の高さ(長さ)は
その径の細さによって制限され、しかも、ヒートシンク
102の横方向の広がりはスペースの関係で半導体素子
101の上面の範囲内に収めることが望ましいため、十
分な放熱性能を得ることができず、効率のよい冷却を行
うことができなかった。
For this reason, the height (length) of the fin 104 is limited by the narrowness of its diameter, and the lateral extent of the heat sink 102 must be kept within the upper surface of the semiconductor element 101 due to space considerations. is desirable, so sufficient heat dissipation performance could not be obtained and efficient cooling could not be achieved.

【0009】また、半導体素子101は表面がセラミッ
ク等で形成され、半導体素子101に接続されるヒート
シンク102のベース103はアルミニウムや銅等で形
成されている。このため、半導体素子101とベース1
03の熱膨張率には大きな違いがあるので半導体素子1
01の発熱により、半導体素子101とベース103と
の接続面に熱膨張率の違いによって熱応力が作用する。
The surface of the semiconductor element 101 is made of ceramic or the like, and the base 103 of the heat sink 102 connected to the semiconductor element 101 is made of aluminum, copper, or the like. Therefore, the semiconductor element 101 and the base 1
Since there is a large difference in the coefficient of thermal expansion of 03, semiconductor element 1
Due to the heat generation of 01, thermal stress acts on the connection surface between the semiconductor element 101 and the base 103 due to the difference in coefficient of thermal expansion.

【0010】このため、高発熱量の半導体素子101で
は、ベース103との接合面に作用する熱応力が大きく
なるので、半導体素子101とベース103との接続が
難しく、最悪の場合には接続面が剥がれる虞れがある。
For this reason, in the semiconductor element 101 that generates a high amount of heat, the thermal stress acting on the joint surface with the base 103 becomes large, making it difficult to connect the semiconductor element 101 and the base 103, and in the worst case, the connection surface There is a risk that it may peel off.

【0011】本発明は上記した課題を解決する目的でな
され、効率のよい発熱体の冷却と、熱応力を低減して発
熱体との接続を良好に行うことができるヒートシンクを
提供しようとするものである。
The present invention has been made to solve the above-mentioned problems, and aims to provide a heat sink that can efficiently cool a heating element, reduce thermal stress, and connect well to the heating element. It is.

【0012】[発明の構成][Configuration of the invention]

【0013】[0013]

【課題を解決するための手段】前記した課題を解決する
ために第1の本発明は、発熱体の伝熱面に熱的に接続さ
れ前記発熱体の伝熱面に対してほぼ垂直方向に形成され
た放熱部材接続面を有する伝熱部材と、該伝熱部材の放
熱部材接続面に接続された複数の放熱部材とを具備した
ことを特徴とするヒートシンク。
[Means for Solving the Problems] In order to solve the above-mentioned problems, a first aspect of the present invention provides a device that is thermally connected to a heat transfer surface of a heating element and that extends in a direction substantially perpendicular to the heat transfer surface of the heating element. A heat sink comprising: a heat transfer member having a formed heat dissipation member connection surface; and a plurality of heat dissipation members connected to the heat dissipation member connection surface of the heat transfer member.

【0014】第2の本発明は、発熱体の伝熱面に熱的に
接続され前記発熱体の伝熱面に対してほぼ平行方向に形
成された少なくとも2つの放熱部材接続面を有する伝熱
部材と、該伝熱部材の前記少なくとも2つの放熱部材接
続面に各々の端部近傍が接続された複数の放熱部材とを
具備したことを特徴とするヒートシンク。
[0014] A second aspect of the present invention provides a heat transfer device having at least two heat dissipating member connecting surfaces that are thermally connected to a heat transfer surface of a heat generating element and formed in a direction substantially parallel to the heat transfer surface of the heat generating element. A heat sink comprising: a member; and a plurality of heat radiating members, each of which has its end portion connected to the at least two heat radiating member connecting surfaces of the heat transmitting member.

【0015】第3の本発明は、一端側が発熱体に熱的に
接続された可撓性を有する複数の放熱部材と、該放熱部
材の他端側に接続された保持部材とを具備したことを特
徴としている。
[0015] The third aspect of the present invention includes a plurality of flexible heat radiating members whose one end side is thermally connected to a heating element, and a holding member connected to the other end side of the heat radiating member. It is characterized by

【0016】[0016]

【作用】第1の本発明によれば、発熱体から発せられる
熱の大部分は、発熱体の伝熱面に対してほぼ垂直方向に
形成された伝熱部材の放熱部材接続面に伝えられること
によって、放熱部材接続面に接続した放熱部材により効
率よく放熱を行うことができる。
[Operation] According to the first aspect of the present invention, most of the heat emitted from the heating element is transmitted to the heat radiating member connecting surface of the heat transmitting member, which is formed in a direction substantially perpendicular to the heat transmitting surface of the heating element. By this, heat can be efficiently radiated by the heat radiating member connected to the heat radiating member connecting surface.

【0017】第2の本発明によれば、発熱体から発せら
れる熱の大部分は発熱体の伝熱面に対してほぼ平行方向
に形成された少なくとも2つの伝熱部材の放熱部材接続
面に各々の端部近傍を接続した放熱部材により、この放
熱部材の両端側から効率よく放熱を行うことができる。
According to the second aspect of the invention, most of the heat emitted from the heating element is transferred to the heat radiating member connecting surfaces of at least two heat transmitting members that are formed in a direction substantially parallel to the heat transmitting surface of the heating element. With the heat radiating member connected near each end, heat can be efficiently radiated from both ends of the heat radiating member.

【0018】第3の本発明によれば、発熱体の発熱によ
る熱膨張率によって発熱体と放熱部材との接続面に熱応
力が生じた場合でも、可撓性を有する放熱部材が撓むこ
とにより、熱応力を吸収することができる。
According to the third aspect of the present invention, even when thermal stress is generated on the connection surface between the heat generating element and the heat radiating member due to the coefficient of thermal expansion due to the heat generated by the heat generating element, the flexible heat radiating member does not bend. This makes it possible to absorb thermal stress.

【0019】[0019]

【実施例】以下、本発明を図示の一実施例に基づいて詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below based on an embodiment shown in the drawings.

【0020】図1は、本発明の第1の実施例に係わるヒ
ートシンクを示す斜視図である。この図に示すように、
本実施例に係るヒートシンク1は、発熱体である半導体
素子2の上面(伝熱面)2aの中央部に沿ってほぼ垂直
に熱的に接続されている板状の伝熱部材(例えば銅板)
3と、伝熱部材3の放熱部材接続面3a,3bにほぼ垂
直に熱的に接続されている複数のピン状のフィン4とで
構成されている。
FIG. 1 is a perspective view showing a heat sink according to a first embodiment of the present invention. As shown in this figure,
The heat sink 1 according to this embodiment is a plate-shaped heat transfer member (for example, a copper plate) that is thermally connected almost vertically along the center of the upper surface (heat transfer surface) 2a of a semiconductor element 2, which is a heat generating element.
3, and a plurality of pin-shaped fins 4 that are thermally connected substantially perpendicularly to the heat dissipation member connecting surfaces 3a, 3b of the heat transfer member 3.

【0021】伝熱部材3は、半導体素子2の中央部に封
入されている半導体チップ(不図示)上に位置し、放熱
部材接続面3a,3bは半導体素子2の上面(伝熱面)
2aに対してほぼ垂直方向に形成されている。また、放
熱部材接続面3aと3bの縦横幅は半導体チップ(不図
示)の大きさに対応して形成されている。よって、半導
体素子2の発熱によって生じる熱の大部分は、伝熱部材
3を通して半導体素子2の上面(伝熱面)2aに対して
はほぼ垂直方向に伝わる。
The heat transfer member 3 is located on a semiconductor chip (not shown) sealed in the center of the semiconductor element 2, and the heat dissipation member connecting surfaces 3a and 3b are the upper surfaces (heat transfer surfaces) of the semiconductor element 2.
It is formed in a direction substantially perpendicular to 2a. Further, the vertical and horizontal widths of the heat dissipating member connecting surfaces 3a and 3b are formed to correspond to the size of a semiconductor chip (not shown). Therefore, most of the heat generated by the heat generated by the semiconductor element 2 is transmitted through the heat transfer member 3 in a direction substantially perpendicular to the upper surface (heat transfer surface) 2a of the semiconductor element 2.

【0022】フィン4は、半導体素子2の上面(伝熱面
)2a上に位置するようにして伝熱部材3の放熱部材接
続面3a,3bにほぼ垂直に接続されている。フィン4
の長さは、半導体素子2の上面(伝熱面)2aから突出
しないように短く(従来のほぼ半分の長さ)形成されて
いる。
The fin 4 is located on the upper surface (heat transfer surface) 2a of the semiconductor element 2 and is connected almost perpendicularly to the heat dissipation member connection surfaces 3a, 3b of the heat transfer member 3. fin 4
The length is short (approximately half the length of the conventional one) so as not to protrude from the upper surface (heat transfer surface) 2a of the semiconductor element 2.

【0023】本実施例に係るヒートシンク1は上記のよ
うに構成されており、半導体素子2で発熱が生じると、
この熱は伝熱部材3を通して各フィン4に伝わり、フィ
ン3の表面から放熱される。
The heat sink 1 according to this embodiment is constructed as described above, and when heat is generated in the semiconductor element 2,
This heat is transmitted to each fin 4 through the heat transfer member 3, and is radiated from the surface of the fin 3.

【0024】このように、半導体素子2で発生した熱の
大部分は、伝熱部材3を通して半導体素子2の上面(伝
熱面)2aに対してほぼ垂直方向に伝わることにより、
伝熱部材3の放熱部材接続面3a,3bに接続した短め
のピン状のフィン4によって効率よく放熱される。
In this way, most of the heat generated in the semiconductor element 2 is transmitted through the heat transfer member 3 in a direction substantially perpendicular to the upper surface (heat transfer surface) 2a of the semiconductor element 2.
Heat is efficiently radiated by short pin-shaped fins 4 connected to the heat radiating member connection surfaces 3a and 3b of the heat transfer member 3.

【0025】また、伝熱部材3の放熱部材接続面3a,
3bに短く形成されたピン状のフィン4を半導体素子2
の上面(伝熱面)2aとほぼ平行に多数接続することが
できるので、フィン効率の向上を図ることができる。
[0025] Furthermore, the heat dissipation member connecting surface 3a of the heat transfer member 3,
The pin-shaped fin 4 formed short on the semiconductor element 2
Since a large number of fins can be connected substantially parallel to the upper surface (heat transfer surface) 2a, the fin efficiency can be improved.

【0026】図2は、第1の実施例の変形例を示す断面
図である。本実施例では前記した伝熱部材3の下部に、
半導体素子2の上面(伝熱面)2aのほぼ全面に熱的に
接続されるベース部3cを一体に形成した構成である。
FIG. 2 is a sectional view showing a modification of the first embodiment. In this embodiment, at the bottom of the heat transfer member 3 described above,
It has a structure in which a base portion 3c that is thermally connected to substantially the entire upper surface (heat transfer surface) 2a of the semiconductor element 2 is integrally formed.

【0027】本実施例においても前記実施例同様、半導
体素子2で発生した熱の大部分は、伝熱部材3のベース
部3cから半導体素子2の上面(伝熱面)2aに対して
ほぼ垂直方向に伝わることにより、伝熱部材3の放熱部
材接続面3a,3bに接続した短めのピン状のフィン4
によって効率よく放熱される。
In this embodiment, as in the previous embodiment, most of the heat generated in the semiconductor element 2 is transmitted from the base portion 3c of the heat transfer member 3 almost perpendicularly to the upper surface (heat transfer surface) 2a of the semiconductor element 2. By being transmitted in the direction, short pin-shaped fins 4 connected to the heat dissipation member connection surfaces 3a and 3b of the heat transfer member 3
Heat is dissipated efficiently.

【0028】図3は、本発明の第2の実施例に係わるヒ
ートシンクを示す断面図である。本実施例に係るヒート
シンク10では、半導体素子11の上面(伝熱面)11
aの中央部に円柱状の第1の伝熱部材(例えば銅棒)1
2が、半導体素子11の上面(伝熱面)11aに対して
はほぼ垂直に熱的に接続されており、半導体素子11の
上面(伝熱面)11aに対してほぼ垂直方向に位置する
第1の伝熱部材12の上部と下部側の半導体素子11の
上面(伝熱面)11a上の伝熱部材接続面12a,12
bには、それぞれ円盤状の第2の伝熱部材(例えば銅板
)13a,13bが対向して接続されている。これら第
2の伝熱部材13a,13bは半導体素子11の伝熱面
11aとほぼ平行に設置されるもので、第1の伝熱部材
12と予め一体に形成したものでもよい。よって、半導
体素子11の発熱によって生じる熱の大部分は、伝熱部
材12を通して半導体素子11の上面(伝熱面)11a
に対してほぼ垂直方向に伝わり、更に伝熱部材接続面1
2a,12bを通して第2の伝熱部材13a,13bに
伝わる。第2の伝熱部材13a,13b間には、ピン状
のフィン14が複数接続されている。
FIG. 3 is a sectional view showing a heat sink according to a second embodiment of the present invention. In the heat sink 10 according to this embodiment, the upper surface (heat transfer surface) 11 of the semiconductor element 11
A cylindrical first heat transfer member (for example, a copper rod) 1 is placed in the center of a.
2 is thermally connected almost perpendicularly to the upper surface (heat transfer surface) 11a of the semiconductor element 11; Heat transfer member connection surfaces 12a, 12 on the upper surface (heat transfer surface) 11a of the semiconductor element 11 on the upper and lower sides of the heat transfer member 12 of No. 1
Disk-shaped second heat transfer members (for example, copper plates) 13a and 13b are connected to b, facing each other. These second heat transfer members 13a and 13b are installed substantially parallel to the heat transfer surface 11a of the semiconductor element 11, and may be formed integrally with the first heat transfer member 12 in advance. Therefore, most of the heat generated by the heat generation of the semiconductor element 11 is transferred to the upper surface (heat transfer surface) 11a of the semiconductor element 11 through the heat transfer member 12.
The heat is transmitted almost perpendicularly to the heat transfer member connecting surface 1.
It is transmitted to the second heat transfer members 13a, 13b through 2a, 12b. A plurality of pin-shaped fins 14 are connected between the second heat transfer members 13a and 13b.

【0029】第1の伝熱部材12が接続される半導体素
子11の上面(伝熱面)11aの中央部には半導体チッ
プ(不図示)が封入されている。また、半導体素子11
は、複数の配線ピン15を介して基板16に実装されて
いる。
A semiconductor chip (not shown) is enclosed in the center of the upper surface (heat transfer surface) 11a of the semiconductor element 11 to which the first heat transfer member 12 is connected. In addition, the semiconductor element 11
is mounted on the board 16 via a plurality of wiring pins 15.

【0030】本実施例に係るヒートシンク10は上記の
ように構成されており、半導体素子11で発熱が生じる
と、この熱は伝熱部材12から第2の伝熱部材13a,
13bを通して各フィン14に伝わり、フィン14の表
面から放熱される。
The heat sink 10 according to this embodiment is constructed as described above, and when heat is generated in the semiconductor element 11, this heat is transferred from the heat transfer member 12 to the second heat transfer member 13a,
The heat is transmitted to each fin 14 through 13b, and is radiated from the surface of the fin 14.

【0031】このように、半導体素子11で発生した熱
の大部分は、第1の伝熱部材12を通して半導体素子1
1の上面(伝熱面)11aに対してほぼ垂直方向に伝わ
り、更に、第1の伝熱部材12の伝熱部材接続面12a
,12bに接続され半導体素子11の上面(伝熱面)1
1aとほぼ平行に配置された第2の伝熱部材13a,1
3bを通して各フィン14の両端に伝わる(従来はフィ
ンの片端からしか伝わらない)ことによって効率よく放
熱されるので、高い放熱効果が得られる。
In this way, most of the heat generated in the semiconductor element 11 is transferred to the semiconductor element 1 through the first heat transfer member 12.
The heat is transmitted in a substantially perpendicular direction to the upper surface (heat transfer surface) 11a of the first heat transfer member 12, and the heat transfer member connecting surface 12a of the first heat transfer member 12
, 12b and the upper surface (heat transfer surface) 1 of the semiconductor element 11
A second heat transfer member 13a, 1 arranged substantially parallel to 1a.
3b to both ends of each fin 14 (conventionally, heat is transmitted only from one end of the fin), and the heat is efficiently dissipated, so a high heat dissipation effect can be obtained.

【0032】尚、図1,2,3に示した各実施例におい
て、伝熱部材3および第1の伝熱部材12は、半導体素
子2,11内に封入されている半導体チップ(不図示)
の位置に対応して、半導体素子2,11の上面2a,1
1aに接続される。
In each of the embodiments shown in FIGS. 1, 2, and 3, the heat transfer member 3 and the first heat transfer member 12 are semiconductor chips (not shown) enclosed within the semiconductor elements 2 and 11.
The upper surfaces 2a, 1 of the semiconductor elements 2, 11 correspond to the positions of
1a.

【0033】また、図1,2,3に示した各実施例にお
いて、伝熱部材3,12内に空間部を形成してこの中に
代替フロン等の冷媒を封入し一種のヒートパイプを形成
することによって、より効果的な冷却を行うことができ
る。
In each of the embodiments shown in FIGS. 1, 2, and 3, a space is formed in the heat transfer members 3 and 12, and a refrigerant such as a fluorocarbon substitute is sealed in the space to form a kind of heat pipe. By doing so, more effective cooling can be achieved.

【0034】図4は、本発明の第3の実施例に係わるヒ
ートシンクを示す断面図である。この図に示すように、
本実施例に係るヒートシンク20では、発熱体である半
導体素子21の上面(伝熱面)21a上に可撓性を有す
る複数のピン状のフィン22が熱的に接続されており、
各フィン22の先端部にはアルミニウムや銅等から成る
板状のベース23が接続されている。半導体素子21は
、表面がセラミック等で被覆されており、配線ピン24
を介して基板25上に実装されている。
FIG. 4 is a sectional view showing a heat sink according to a third embodiment of the present invention. As shown in this figure,
In the heat sink 20 according to this embodiment, a plurality of flexible pin-shaped fins 22 are thermally connected to the upper surface (heat transfer surface) 21a of the semiconductor element 21, which is a heat generating body.
A plate-shaped base 23 made of aluminum, copper, or the like is connected to the tip of each fin 22. The surface of the semiconductor element 21 is coated with ceramic or the like, and the wiring pin 24
It is mounted on the substrate 25 via.

【0035】半導体素子21とピン状のフィン22との
接続方法としては、例えば半導体素子21の上面(伝熱
面)21aに金属の薄膜をコーティングし、このコーテ
ィング面にベース23で一端側が固着されている各フィ
ン22のハンダメッキを付けた先端部を接触状態に保持
し、この状態で炉の中に入れて加熱することによって半
導体素子21の上面(伝熱面)21aにフィン22を簡
単に接続することができる。
As a method of connecting the semiconductor element 21 and the pin-shaped fins 22, for example, the upper surface (heat transfer surface) 21a of the semiconductor element 21 is coated with a thin metal film, and one end side is fixed to this coated surface with a base 23. The solder-plated tips of each fin 22 are held in contact with each other, and the fins 22 are easily attached to the upper surface (heat transfer surface) 21a of the semiconductor element 21 by placing them in a furnace and heating them. Can be connected.

【0036】本実施例に係るヒートシンク20は上記の
ように構成されており、半導体素子21で発熱が生じる
と、この熱はピン状のフィン22に伝わって放熱される
The heat sink 20 according to this embodiment is constructed as described above, and when heat is generated in the semiconductor element 21, this heat is transmitted to the pin-shaped fins 22 and radiated.

【0037】この時、半導体素子21に発熱による熱膨
張が生じても接続されている可撓性を有するピン状のフ
ィン22が撓むことにより、半導体素子21とフィン2
2の接続面に作用する熱応力を吸収して、半導体素子2
1とフィン22の接続面の剥がれ等を防止することがで
きる。
At this time, even if the semiconductor element 21 undergoes thermal expansion due to heat generation, the connected flexible pin-shaped fins 22 are bent, so that the semiconductor element 21 and the fins 2
The semiconductor element 2 absorbs the thermal stress acting on the connection surface of the semiconductor element 2.
Peeling of the connection surface between 1 and the fin 22 can be prevented.

【0038】また、各フィン22を固着しているベース
23によって、半導体素子21の上面(伝熱面)21a
との間に流路が形成される。よって、この流路内に空気
等の流体を流すことによってフィン22による放熱効果
が向上し、より効果的な冷却を行うことができる。
Furthermore, the base 23 to which each fin 22 is fixed allows the upper surface (heat transfer surface) 21a of the semiconductor element 21 to be
A flow path is formed between the two. Therefore, by flowing fluid such as air into this flow path, the heat dissipation effect by the fins 22 is improved, and more effective cooling can be performed.

【0039】また、前記した実施例では、可撓性を有す
る放熱部材としてピン状のフィン22を使用したが、こ
れに限定されることなく、例えば可撓性を有する板状の
放熱部材等でもよい。
Further, in the above-described embodiment, the pin-shaped fins 22 were used as the flexible heat dissipating member, but the present invention is not limited to this, and for example, a flexible plate-like heat dissipating member may also be used. good.

【0040】更に、ベース23によってフィン22が保
護されているので、外力によるフィン22の変形や破損
等を防止することができる。
Furthermore, since the fins 22 are protected by the base 23, it is possible to prevent the fins 22 from being deformed or damaged by external forces.

【0041】[0041]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように第1,第2の本発明によれば、フィン効率を高
めることができるので、放熱効果の高いヒートシンク提
供することができる。
[Effects of the Invention] As described above in detail based on the embodiments, according to the first and second aspects of the present invention, the fin efficiency can be increased, so a heat sink with high heat dissipation effect can be provided. .

【0042】また、第3の本発明によれば、発熱体の発
熱時に可撓性を有する放熱部材が撓むことによって、発
熱体と放熱部材の接続部に作用する熱応力を吸収するこ
とができるので、放熱部材の接続不良が防止されて信頼
性の高いヒートシンクを提供することができる。
Further, according to the third aspect of the present invention, the flexible heat radiating member bends when the heating element generates heat, thereby absorbing thermal stress acting on the connection portion between the heating element and the heat radiating member. Therefore, connection failures of the heat dissipating member can be prevented, and a highly reliable heat sink can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例に係わるヒートシンクを
示す斜視図である。
FIG. 1 is a perspective view showing a heat sink according to a first embodiment of the present invention.

【図2】第1の実施例の変形例に係わるヒートシンクを
示す断面図である。
FIG. 2 is a sectional view showing a heat sink according to a modification of the first embodiment.

【図3】第2の実施例に係わるヒートシンクを示す断面
図である。
FIG. 3 is a sectional view showing a heat sink according to a second embodiment.

【図4】第3の実施例に係わるヒートシンクを示す断面
図である。
FIG. 4 is a sectional view showing a heat sink according to a third embodiment.

【図5】従来のヒートシンクを示す断面図である。FIG. 5 is a sectional view showing a conventional heat sink.

【符号の説明】[Explanation of symbols]

1,10,20  ヒートシンク 2,11,21  半導体素子(発熱体)2a,11a
,21a  上面(伝熱面)3  伝熱部材 3a,3b  放熱部材接続面 4,14,22  フィン(放熱部材)12  第1の
伝熱部材 12a,12b  伝熱部材接続面 13a,13b  第2の伝熱部材 23  ベース
1, 10, 20 Heat sink 2, 11, 21 Semiconductor element (heating element) 2a, 11a
, 21a Upper surface (heat transfer surface) 3 Heat transfer member 3a, 3b Heat transfer member connection surface 4, 14, 22 Fin (heat transfer member) 12 First heat transfer member 12a, 12b Heat transfer member connection surface 13a, 13b Second Heat transfer member 23 base

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  発熱体の伝熱面に熱的に接続され前記
発熱体の伝熱面に対してほぼ垂直方向に形成された放熱
部材接続面を有する伝熱部材と、該伝熱部材の放熱部材
接続面に接続された複数の放熱部材とを具備したことを
特徴とするヒートシンク。
1. A heat transfer member having a heat dissipating member connecting surface that is thermally connected to a heat transfer surface of a heat generating element and formed in a direction substantially perpendicular to the heat transfer surface of the heat generating element; A heat sink comprising a plurality of heat radiating members connected to a heat radiating member connection surface.
【請求項2】  発熱体の伝熱面に熱的に接続され前記
発熱体の伝熱面に対してほぼ平行方向に形成された少な
くとも2つの放熱部材接続面を有する伝熱部材と、該伝
熱部材の前記少なくとも2つの放熱部材接続面に各々の
端部近傍が接続された複数の放熱部材とを具備したこと
を特徴とするヒートシンク。
2. A heat transfer member, the heat transfer member having at least two heat transfer member connecting surfaces that are thermally connected to a heat transfer surface of a heat generating element and formed in a direction substantially parallel to the heat transfer surface of the heat generating element; A heat sink comprising: a plurality of heat radiating members each having an end portion connected to the at least two heat radiating member connecting surfaces of the heat member.
【請求項3】  一端側が発熱体に熱的に接続された可
撓性を有する複数の放熱部材と、該放熱部材の他端側に
接続された保持部材とを具備したことを特徴とするヒー
トシンク。
3. A heat sink comprising: a plurality of flexible heat radiating members whose one end side is thermally connected to a heating element; and a holding member connected to the other end side of the heat radiating member. .
JP3060014A 1991-03-25 1991-03-25 Heat sink Pending JPH04294570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060014A JPH04294570A (en) 1991-03-25 1991-03-25 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060014A JPH04294570A (en) 1991-03-25 1991-03-25 Heat sink

Publications (1)

Publication Number Publication Date
JPH04294570A true JPH04294570A (en) 1992-10-19

Family

ID=13129792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060014A Pending JPH04294570A (en) 1991-03-25 1991-03-25 Heat sink

Country Status (1)

Country Link
JP (1) JPH04294570A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829514A (en) * 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
WO2002041396A2 (en) * 2000-11-20 2002-05-23 Intel Corporation High performance heat sink configurations for use in high density packaging applications
US6598666B2 (en) * 2001-06-18 2003-07-29 Global Win Technology Co., Ltd. CPU cooling arrangement
US6657862B2 (en) 2001-09-10 2003-12-02 Intel Corporation Radial folded fin heat sinks and methods of making and using same
US6671172B2 (en) 2001-09-10 2003-12-30 Intel Corporation Electronic assemblies with high capacity curved fin heat sinks
US6735864B2 (en) 2000-01-26 2004-05-18 Matsushita Electric Industrial Co., Ltd. Heatsink method of manufacturing the same and cooling apparatus using the same
US7040388B1 (en) * 2000-01-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Heat sink, method of manufacturing the same and cooling apparatus using the same
JP2013239675A (en) * 2012-05-17 2013-11-28 Toyota Industries Corp Cooler
CN105611806A (en) * 2016-01-26 2016-05-25 张波 Thermal dissipation system for electrical equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829514A (en) * 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
US7040388B1 (en) * 2000-01-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Heat sink, method of manufacturing the same and cooling apparatus using the same
US6735864B2 (en) 2000-01-26 2004-05-18 Matsushita Electric Industrial Co., Ltd. Heatsink method of manufacturing the same and cooling apparatus using the same
US6845010B2 (en) 2000-11-20 2005-01-18 Intel Corporation High performance heat sink configurations for use in high density packaging applications
WO2002041396A2 (en) * 2000-11-20 2002-05-23 Intel Corporation High performance heat sink configurations for use in high density packaging applications
WO2002041396A3 (en) * 2000-11-20 2002-08-29 Intel Corp High performance heat sink configurations for use in high density packaging applications
CN1305131C (en) * 2000-11-20 2007-03-14 英特尔公司 High performance heat sink configurations for use in high density packaging applications
US6598666B2 (en) * 2001-06-18 2003-07-29 Global Win Technology Co., Ltd. CPU cooling arrangement
US6671172B2 (en) 2001-09-10 2003-12-30 Intel Corporation Electronic assemblies with high capacity curved fin heat sinks
US7120020B2 (en) 2001-09-10 2006-10-10 Intel Corporation Electronic assemblies with high capacity bent fin heat sinks
US6657862B2 (en) 2001-09-10 2003-12-02 Intel Corporation Radial folded fin heat sinks and methods of making and using same
US7200934B2 (en) 2001-09-10 2007-04-10 Intel Corporation Electronic assemblies with high capacity heat sinks and methods of manufacture
US7911790B2 (en) 2001-09-10 2011-03-22 Intel Corporation Electronic assemblies with high capacity curved and bent fin heat sinks and associated methods
JP2013239675A (en) * 2012-05-17 2013-11-28 Toyota Industries Corp Cooler
CN105611806A (en) * 2016-01-26 2016-05-25 张波 Thermal dissipation system for electrical equipment

Similar Documents

Publication Publication Date Title
JP3255818B2 (en) Cooling device for electronic components
JP2894243B2 (en) Heat sink with excellent heat dissipation characteristics
JPH08255858A (en) Cooling system of electronic package
JPH0325022B2 (en)
JP2000124374A (en) Plate type heat pipe and cooling structure using the same
JPH098190A (en) Cooling device for electronic component
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
US7705449B2 (en) Cooling apparatus for memory module
JP2004111969A (en) Heat sink with angled heat pipe
JPH05335454A (en) Cooler for electronic apparatus
JPH04294570A (en) Heat sink
US20080142192A1 (en) Heat dissipation device with a heat pipe
JP3665508B2 (en) Heat sink with fins
JP4913285B2 (en) Heat dissipation fins and heat sinks
JP2735306B2 (en) Substrate cooling device
JPH1168360A (en) Cooling structure for semiconductor element
JPH1187586A (en) Cooling structure for multi-chip module
JP3193142B2 (en) Board
JP3334308B2 (en) Heat pipe and heat pipe radiator
JPH05259326A (en) Cooling device
JPS624349A (en) Method of cooling semiconductor component
JP4324364B2 (en) Heat dissipation device
JPS58218148A (en) Cooling device for electronic part
JPH11330747A (en) Cooling structure of electronic element
JPH04171995A (en) Air cooling structure of semiconductor device