JP4324364B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP4324364B2
JP4324364B2 JP2002317431A JP2002317431A JP4324364B2 JP 4324364 B2 JP4324364 B2 JP 4324364B2 JP 2002317431 A JP2002317431 A JP 2002317431A JP 2002317431 A JP2002317431 A JP 2002317431A JP 4324364 B2 JP4324364 B2 JP 4324364B2
Authority
JP
Japan
Prior art keywords
heat
plate
pore
pipes
dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317431A
Other languages
Japanese (ja)
Other versions
JP2004150719A (en
Inventor
達也 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2002317431A priority Critical patent/JP4324364B2/en
Publication of JP2004150719A publication Critical patent/JP2004150719A/en
Application granted granted Critical
Publication of JP4324364B2 publication Critical patent/JP4324364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子機器に使用されて発熱部の熱を集熱し、移送し、放熱手段で放熱することにより発熱部の冷却を行う熱移送型冷却装置、特に高発熱密度を有する熱源から効率よく熱を奪い発熱部に移送するための冷却装置に関する。
【0002】
【従来の技術】
電子機器内部に半導体デバイスや発光素子等の局部的に発熱をする構成部材を持つ各種電子機器では、発熱体の過熱による障害(例えば当該発熱体や周辺に配置される装置部材動作不良や損傷など)を防止するため、これ等発熱体の発生する熱を放熱する放熱手段を有し発熱体を冷却して作動させる。
例えば、コンピュータにはCPU(MPU)をはじめメモリやハードディスクドライブ等の発熱体があり、ブラウン管やプロジェクターは光源等の発熱体が数多く搭載されており、これらを安定動作させるために発熱体から筐体や筐体外に伝導伝熱させ外部に放熱させる自然空冷や、小型ファンによる強制空冷等が行われてきた。
【0003】
また、近年ではマイクロプロセッサの高性能化やモジュール化、半導体素子の高密度化、小型で高輝度の発光体等を得るための発熱密度の増加が著しくなっている。さらに、例えばノートブック型パーソナルコンピュータの薄型小型化するために狭い空間内に発熱体を高密度に配置しているために直接対流冷却(強制空冷)のための流路確保が困難化になるという問題が生じている。
【0004】
上記の様な課題に対して、図7に示すように、集熱手段としての一枚の金属板10、該金属板10に接合した熱移送手段としての従来の偏平ヒートパイプ20及び該偏平ヒートパイプ20の他端部に固定配設した放熱手段としての放熱フィン30からなる熱移送型冷却装置が実用化されている。従来の偏平ヒートパイプは、蒸気流が移送され液流が還流するヒートパイプであって、水平状態での使用時及びトップヒート状態での使用時には殆ど熱輸送が発生しない。従って、従来の偏平ヒートパイプは、図8に見られるように金属板10に接合した側を低くしたボトムヒート状態で使用されている。
この熱移送型冷却装置は、筐体50内に収納した金属板10を筐体50内の発熱体40に密着し、集められた発熱体40の熱を筐体50の外部まで偏平ヒートパイプ20で熱移送し、移送された熱を放熱フィン30により発熱体の放熱冷却を行うものである。
【0005】
一つのプレート式細孔ヒートパイプ自体は、従来から存在しているものであり、通常蛇行細孔が比較的薄い平板の中に作り込まれており、以下の特性を備えたヒートパイプのことである(例えば、特開平4−190090号、特許第2714883号、特公平2−35239号参照)。
(1) 作動液が所定量封入された複数の細孔トンネルを有し、該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送する。
(2) 細孔トンネル内には作動液として2相凝縮性流体が封入されている。
(3) 受熱部における作動液の核沸騰による圧力波により、蒸気泡と液泡の軸方向振動を発生し、その振動により熱を高温部から低温部へ輸送する。
【0006】
【特許文献1】
特開平4−190090号公報
【特許文献2】
特許第2714883号公報
【特許文献3】
特公平2−35239号公報
【0007】
【発明が解決しようとする課題】
しかし、たとえ前記熱移送型冷却装置を用いた場合においても、近年の小型機器の狭い空間内に収納された小型で発熱量の多い発熱体に対して、集熱を多くしようとして大きなプレートで構成した一枚の金属板を発熱体へ密着させても、密着面積自体は小さいので大量の受熱・熱移送は達成されず、例えば半導体デバイスや高輝度の小電球を熱により破壊してしまうという大きな問題があった。小量の受熱・熱移送に対して少しでも放熱効果を向上しようとすると大型の放熱フィンを具備せざるを得ないのであるが、近年の小型で発熱量の多い発熱体を収納した小型機器には大型の放熱フィンは搭載できないという問題がある。
例えば、近年大型化、高輝度化が著しいプロジェクターにおいては更に小型化が進んでいるため発光電球部に十分な冷却スペースを取ることができずに、発光電球自信の発熱により電球が短期間に破壊してしまうという大きな問題があった。
【0008】
本発明は、かかる課題に鑑みて成されたものであり、発熱体側が小空間であっても受熱部で大容量の熱を吸収できる構造とし、放熱部で放熱量の多い構造とすることにより、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置できる高放熱の放熱装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明の放熱装置は、発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部及び放熱部が複数のプレート式細孔ヒートパイプに具備され、該複数のプレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該複数のプレート式細孔ヒートパイプの前記受熱部の平坦面が重ね合わされて密着固定され、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設され、該並列配設された放熱部の平面に放熱手段を密着固定したことを特徴としている。従って、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置でき、受熱部で大容量の熱を吸収し、放熱部の放熱面積が大きくて大容量の熱を放熱できる放熱装置を提供できる。
【0010】
また、 前記複数のプレート式細孔ヒートパイプの各一端側の平坦面を重ね合わせて密着固定し、さらに各他端側の平坦面も重ね合わせて密着固定することにより2箇所の受熱部とし、前記複数のプレート式細孔ヒートパイプの中間部を受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設させることにより放熱部を形成し、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が並列配設され、該並列配設された放熱部の平面に放熱手段を密着固定し、発熱体の形状に合せて発熱体と密着するように前記複数のプレート式細孔ヒートパイプを折り曲げ変形することを特徴としている。従って、受熱部で大容量の熱を吸収できる放熱装置を提供できる。
また、発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部及び放熱部が複数のプレート式細孔ヒートパイプに具備され、該複数のプレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該複数のプレート式細孔ヒートパイプの前記受熱部の平坦面が重ね合わされて密着固定され、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設された2つの放熱装置を、放熱部の各平坦面が平行になるように配置し、放熱部に共通の放熱手段を配置して各放熱部に密着固定し、発熱体の形状に合せて発熱体と密着するように前記複数のプレート式細孔ヒートパイプを折り曲げ変形することを特徴としている。従って、さらに大容量の熱を放熱できる放熱装置を提供できる。
【0011】
【発明の実施の形態】
以下本発明の実施の態様について図を用いて説明する。図1及び図2はパーソナルコンピュータ内のCPUの冷却に適用した第一の実施の態様を示す平面図及び側面図である。図1及び図2において101、102及び103は、受熱部、移送部及び放熱部を具備したプレート型細孔ヒートパイプである。該複数のプレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものである。
3枚のプレート型細孔ヒートパイプ101、102及び103の一端側は発熱体としての105に密着した各受熱部104となっている。各受熱部104の平坦面は重ね合わされて、発熱体105からの熱を吸収する。該発熱体105と受熱部104の間に電熱シートや銅板のような熱伝導率の高い素材110を挟むことにより、受熱部104への熱伝導性を向上させている。該受熱部104から吸収された熱は中央近傍の各移送部106から他端側にある各放熱部107へ伝達される。中央近傍は平面方向に捻られており、各放熱部107の平坦面は放熱面積を広くするために並列配設している。放熱部107上には放熱手段としてのフィン108が接合され、より放熱できるようにしている。
【0012】
このような構成にすることにより、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置でき、受熱部で大容量の熱を吸収でき、大容量の熱を放熱できる。また、放熱ファンや冷却器を直接装着できないような狭い空間や、より放熱するために放熱ファンや冷却器を装着するのに十分な空間がある部分まで熱を移送し、放熱部において比較的大きな放熱機器(フィンやファン等)を容易に取り付けることが可能となる。
本実施の態様では3枚のプレート型細孔ヒートパイプを用いた例を示したが、発熱量により二枚や4枚以上の複数枚に適宜決められる。
【0013】
次に、高輝度の小型ランプの冷却に適用した第二の実施の態様を平面図の図3及び側面図の図4を用いて説明する。図3及び図4において、201は発熱体としての高輝度のランプである。2枚のプレート型細管ヒートパイプ203及び204の一端側及び他端側はランプ201のケース側面に密着した各受熱部209、210となっている。各受熱部209、210の平坦面は重ね合わされて、ランプ201からの熱を吸収する。プレート型細管ヒートパイプ203及び204の二箇所は略90度に折り曲げられた折曲ヶ所205、206、207及び208となっている。
該折曲ヶ所の直前の受熱側は、各受熱部209、210から吸収された熱を他端側にある各放熱部211へ移送する移送部211となっている。移送された熱は中央部の放熱部212で放熱冷却される。
折曲ヶ所205、206、207及び208の直前の受熱側は平面方向に捻られており、折曲ヶ所、折曲ヶ所の直前の受熱側、並びに各放熱部212の平坦面は並列配設している。
各放熱部212の平坦面は並列配設しているので放熱面積が広くなっている。放熱部212上には放熱手段としてのフィン213が接合され、より放熱できるようにしている。
【0014】
このような構成にすることにより、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置でき、受熱部で大容量の熱を吸収でき、大容量の熱を放熱できる。本実施の態様では2枚のプレート型細孔ヒートパイプを用いた例を示したが、発熱量により3枚以上の複数枚に適宜決められる。
【0015】
次に、高輝度の小型ランプの冷却に適用した第三の実施の態様を平面図の図5及び側面図の図6を用いて説明する。図5及び図6において、301は発熱体としての高輝度のランプである。302、303、304及び305は各々プレート型細管ヒートパイプを示す。プレート型ヒートパイプ302及び303、並びに304及び305の一端部306,307は受熱部であって、ランプ301のケース側面に二つの端部同士が重ねられて密着しており、ランプ301からの熱を吸収する。
ランプ301から吸収された熱は中央近傍の各移送部308から他端側にある各放熱部309,310へ伝達される。中央近傍は平面方向に捻られており、各放熱部309,310の平坦面は放熱面積を広くするために並列配設している。放熱部309,310の間には放熱手段としてのフィン311が接合され、より放熱できるようにしている。
【0016】
このような構成にすることにより、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置でき、受熱部で大容量の熱を吸収でき、大容量の熱を放熱できる。また、放熱ファンや冷却器を直接装着できないような狭い空間や、より放熱するために放熱ファンや冷却器を装着するのに十分な空間がある部分まで熱を移送し、放熱部において比較的大きな放熱機器(フィンやファン等)を容易に取り付けることが可能となる。
本実施の態様では2枚のプレート型細孔ヒートパイプを用いた例を示したが、発熱量により3枚以上の複数枚に適宜決められる。
【0017】
【発明の効果】
本発明の請求項1によれば、小型で発熱量の多い発熱体に対応して又はその発熱体を収納した電子機器等の小型化に対応して設置でき、受熱部で大容量の熱を吸収でき、さらに、放熱部の放熱面積が大きくて大容量の熱を放熱できる放熱装置を提供できる。
本発明の請求項2によれば、受熱部で大容量の熱を吸収できる放熱装置を提供できる。
本発明の請求項3によれば、さらに大容量の熱を放熱できる放熱装置を提供できる。
【図面の簡単な説明】
【図1】第一の実施の態様を示す平面図である。
【図2】第一の実施の態様を示す側面図である。
【図3】第二の実施の態様を示す平面図である。
【図4】第二の実施の態様を示す側面図である。
【図5】第三の実施の態様を示す平面図である。
【図6】第三の実施の態様を示す側面図である。
【図7】従来の放熱装置を示すの図である
【符号の説明】
101、102、103・・・プレート型細孔ヒートパイプ
104・・・受熱部
105・・・CPU(発熱体)
106・・・移送部
107・・・放熱部
108・・・放熱手段
201・・・ランプ(発熱体)
203,204・・・プレート型細孔ヒートパイプ
209、210・・・受熱部
211・・・移送部
212・・・放熱部
213・・・放熱手段
301・・・ランプ(発熱体)
302、303、304,305・・・プレート型細孔ヒートパイプ
306,307・・・受熱部
308・・・移送部
309,310・・・放熱部
311・・・放熱手段
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is a heat transfer type cooling device that is used in electronic equipment to collect and transfer the heat of a heat generating part, transfer it, and dissipate heat by means of a heat radiating means. The present invention relates to a cooling device for stealing and transferring to a heat generating part.
[0002]
[Prior art]
In various electronic devices having components that generate heat locally such as semiconductor devices and light-emitting elements inside the electronic device, failure due to overheating of the heating element (for example, malfunction or damage to the heating element or device members disposed around it) In order to prevent this, the heat generating means has a heat dissipating means for dissipating the heat generated by the heat generating elements, and the heat generating elements are cooled to operate.
For example, a computer has a heating element such as a CPU (MPU), a memory and a hard disk drive, and a cathode ray tube and a projector are equipped with a large number of heating elements such as a light source. In addition, natural air cooling that conducts heat to the outside of the housing and dissipates the heat, forced air cooling using a small fan, and the like have been performed.
[0003]
Further, in recent years, the increase in heat generation density for obtaining high performance and modularization of a microprocessor, high density of semiconductor elements, and a small and high-luminance light emitting body has been remarkable. Furthermore, for example, since notebook computers are thinned and miniaturized, heating elements are arranged at high density in a narrow space, which makes it difficult to secure a flow path for direct convection cooling (forced air cooling). There is a problem.
[0004]
To solve the above problems, as shown in FIG. 7, a single metal plate 10 as a heat collecting means, a conventional flat heat pipe 20 as a heat transfer means joined to the metal plate 10, and the flat heat. A heat transfer type cooling device composed of heat radiation fins 30 as heat radiation means fixedly disposed at the other end of the pipe 20 has been put into practical use. A conventional flat heat pipe is a heat pipe in which a vapor flow is transferred and a liquid flow is circulated, and hardly generates heat when used in a horizontal state and in a top heat state. Therefore, the conventional flat heat pipe is used in a bottom heat state in which the side joined to the metal plate 10 is lowered as seen in FIG.
In this heat transfer type cooling device, the metal plate 10 accommodated in the casing 50 is brought into close contact with the heating element 40 in the casing 50, and the heat of the collected heating elements 40 is flattened to the outside of the casing 50. The heat is transferred by the heat sink, and the heat transferred from the transferred heat is radiated and cooled by the radiating fins 30.
[0005]
One plate-type pore heat pipe itself has existed in the past, and the meandering pore is usually built in a relatively thin flat plate, and it is a heat pipe with the following characteristics: (For example, refer to Japanese Patent Laid-Open No. Hei 4-190090, Japanese Patent No. 2,714,883, and Japanese Patent Publication No. 2-35239).
(1) It has a plurality of pore tunnels in which a predetermined amount of hydraulic fluid is sealed, and the hydraulic fluid closes the pore tunnel by its surface tension and transports heat.
(2) A two-phase condensable fluid is sealed as a working fluid in the pore tunnel.
(3) The pressure waves generated by the nucleate boiling of the hydraulic fluid in the heat receiving part generate axial vibrations of the vapor bubbles and the liquid bubbles, and the vibrations transport heat from the high temperature part to the low temperature part.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-190090 [Patent Document 2]
Japanese Patent No. 2714883 [Patent Document 3]
Japanese Examined Patent Publication No. 2-35239 [0007]
[Problems to be solved by the invention]
However, even when the heat transfer type cooling device is used, it is composed of a large plate to increase heat collection with respect to a small heating element that generates a large amount of heat stored in a narrow space of a recent small device. Even if a single metal plate is brought into close contact with the heating element, the contact area itself is small, so a large amount of heat reception and heat transfer is not achieved. For example, a semiconductor device or a high-intensity small light bulb is destroyed by heat. There was a problem. In order to improve the heat dissipation effect even for a small amount of heat receiving and heat transfer, it is necessary to provide a large radiating fin, but in recent years it has become a small device containing a heating element that generates a large amount of heat. Has a problem that a large radiating fin cannot be mounted.
For example, in recent years, projectors that have become increasingly large and highly bright have become more compact, so it is not possible to take sufficient cooling space in the light-emitting bulb, and the light bulb breaks down in a short time due to the heat generated by the light-emitting bulb. There was a big problem.
[0008]
The present invention has been made in view of such problems, and has a structure in which a large amount of heat can be absorbed by the heat receiving portion even when the heating element side is a small space, and a structure in which the heat radiating portion has a large amount of heat radiation. An object of the present invention is to provide a high heat dissipation heat dissipating device that can be installed in correspondence with downsizing of an electronic device or the like that accommodates a heat generating element that is small and generates a large amount of heat.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a heat dissipation device of the present invention includes a heat receiving portion that absorbs heat from a heating element, a transfer portion that transfers heat absorbed by the heat receiving portion, and a heat dissipation portion that releases heat. The heat receiving section, the transfer section, and the heat radiating section are provided in a plurality of plate-type pore heat pipes, and the plurality of plate-type pore heat pipes have a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid. be one in which the working fluid to transport heat to close the inside pores tunnel by its surface tension, are closely fixed is superimposed flat surface of the heat receiving portion of the plate pores heat pipe of the plurality of, The flat surfaces of the heat radiating portions of the plurality of plate-type fine pore heat pipes are arranged in parallel by twisting in a plane without being twisted with respect to the flat surfaces of the heat receiving portions, and the planes of the heat radiating portions arranged in parallel Closely fix the heat dissipation means It is characterized in that was. Therefore, it can be installed corresponding to a small heat generating element that generates a large amount of heat or an electronic device that accommodates the heat generating element, and the heat receiving part absorbs a large amount of heat and the heat radiating area of the heat radiating part. Therefore, it is possible to provide a heat dissipation device that can dissipate a large amount of heat.
[0010]
In addition, the flat surface of each one end side of the plurality of plate-type fine pore heat pipes are overlapped and fixed tightly, and further, the flat surface of each other end side is also overlapped and fixed closely to form two heat receiving portions, The plurality of plate-type pores are formed by arranging in parallel by twisting the intermediate portions of the plurality of plate-type fine pore heat pipes in a plane without being twisted with respect to the flat surface of the heat-receiving portion. The flat surfaces of the heat dissipating parts of the heat pipe are arranged in parallel, and the heat dissipating means is tightly fixed to the flat surface of the heat dissipating parts arranged in parallel, and the plurality of heat dissipating parts are in close contact with the heat generating elements according to the shape of the heat generating elements. It is characterized by bending and deforming a plate-type pore heat pipe. Therefore, it is possible to provide a heat dissipation device that can absorb a large amount of heat at the heat receiving portion.
Further, in a heat radiating device having a heat receiving part that absorbs heat from the heating element, a transfer part that transfers heat absorbed by the heat receiving part, and a heat radiating part that releases heat, the heat receiving part, the transfer part, and the heat radiating part include: A plurality of plate-type fine pore heat pipes, each of the plurality of plate-type fine pore heat pipes has a plurality of fine pore tunnels filled with a predetermined amount of hydraulic fluid, and the hydraulic fluid is subjected to the pore tension by the surface tension. The inside of the plurality of plate-type pore heat pipes is used to transport heat, and the flat surfaces of the heat receiving portions of the plurality of plate-type fine pore heat pipes are overlapped and closely fixed, and the heat dissipation of the plurality of plate-type fine pore heat pipes Two heat dissipating devices arranged in parallel by twisting the flat surface of the heat receiving portion flat without twisting with respect to the flat surface of the heat receiving portion are arranged so that the flat surfaces of the heat dissipating portion are parallel to each other. Common heat dissipation means It is characterized in that closely fixed to the heat radiation section, deforming folding the plurality of plate-type pores heat pipe so as to be in close contact with the heating element to the shape of the heating element. Therefore, it is possible to provide a heat dissipation device that can dissipate a larger amount of heat.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are a plan view and a side view showing a first embodiment applied to cooling a CPU in a personal computer. 1 and 2, reference numerals 101, 102, and 103 denote plate-type pore heat pipes each having a heat receiving portion, a transfer portion, and a heat radiating portion. The plurality of plate-type pore heat pipes have a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid, and the hydraulic fluid closes the pore tunnel by its surface tension and transports heat. .
One end of each of the three plate-type pore heat pipes 101, 102, and 103 is a heat receiving portion 104 that is in close contact with 105 as a heating element. The flat surfaces of the heat receiving portions 104 are overlapped to absorb heat from the heating element 105. By interposing a material 110 having a high thermal conductivity such as an electric heating sheet or a copper plate between the heating element 105 and the heat receiving portion 104, the thermal conductivity to the heat receiving portion 104 is improved. The heat absorbed from the heat receiving unit 104 is transmitted from each transfer unit 106 near the center to each heat radiating unit 107 on the other end side. The vicinity of the center is twisted in the plane direction, and the flat surfaces of the heat radiating portions 107 are arranged in parallel to increase the heat radiating area. Fins 108 as heat radiating means are joined on the heat radiating portion 107 so that heat can be radiated more.
[0012]
By adopting such a configuration, it can be installed corresponding to a small-sized heating element that generates a large amount of heat or an electronic device that accommodates the heating element, and absorbs a large amount of heat at the heat receiving part. It can dissipate a large amount of heat. In addition, heat is transferred to a narrow space where a heat-dissipating fan or cooler cannot be directly attached, or to a portion where there is sufficient space for installing a heat-dissipating fan or cooler to dissipate more heat. A heat dissipating device (such as a fin or a fan) can be easily attached.
In the present embodiment, an example using three plate-type fine hole heat pipes has been shown, but the number is appropriately determined as two or four or more depending on the amount of heat generated.
[0013]
Next, a second embodiment applied to cooling a high-intensity small lamp will be described with reference to FIG. 3 in a plan view and FIG. 4 in a side view. 3 and 4, reference numeral 201 denotes a high-intensity lamp as a heating element. One end side and the other end side of the two plate-type capillary tube heat pipes 203 and 204 are heat receiving portions 209 and 210 that are in close contact with the case side surface of the lamp 201. The flat surfaces of the heat receiving portions 209 and 210 are overlapped to absorb heat from the lamp 201. Two portions of the plate-type thin tube heat pipes 203 and 204 are bent portions 205, 206, 207, and 208 bent at about 90 degrees.
The heat receiving side immediately before the bent portion is a transfer unit 211 that transfers heat absorbed from the heat receiving units 209 and 210 to the heat radiating units 211 on the other end side. The transferred heat is radiated and cooled by the radiating section 212 at the center.
The heat receiving side immediately before the bent places 205, 206, 207 and 208 is twisted in the plane direction, and the bent places, the heat receiving side immediately before the bent places, and the flat surfaces of the heat radiation portions 212 are arranged in parallel. ing.
Since the flat surfaces of the heat radiation portions 212 are arranged in parallel, the heat radiation area is widened. Fins 213 as a heat radiating means are joined on the heat radiating portion 212 so that heat can be radiated more.
[0014]
By adopting such a configuration, it can be installed corresponding to a small-sized heating element that generates a large amount of heat or an electronic device that accommodates the heating element, and absorbs a large amount of heat at the heat receiving part. It can dissipate a large amount of heat. In the present embodiment, an example using two plate-type fine hole heat pipes has been described, but the number is appropriately determined as a plurality of three or more according to the amount of heat generated.
[0015]
Next, a third embodiment applied to cooling a small high-intensity lamp will be described with reference to FIG. 5 in a plan view and FIG. 6 in a side view. 5 and 6, reference numeral 301 denotes a high-intensity lamp as a heating element. Reference numerals 302, 303, 304, and 305 denote plate-type capillary heat pipes. One end portions 306 and 307 of the plate-type heat pipes 302 and 303 and 304 and 305 are heat receiving portions, and two end portions are overlapped and adhered to the side surface of the case of the lamp 301. To absorb.
The heat absorbed from the lamp 301 is transferred from the transfer units 308 near the center to the heat dissipating units 309 and 310 on the other end side. The vicinity of the center is twisted in the plane direction, and the flat surfaces of the heat radiating portions 309 and 310 are arranged in parallel to increase the heat radiating area. A fin 311 as a heat radiating means is joined between the heat radiating portions 309 and 310 so that heat can be radiated more.
[0016]
By adopting such a configuration, it can be installed corresponding to a small-sized heating element that generates a large amount of heat or an electronic device that accommodates the heating element, and absorbs a large amount of heat at the heat receiving part. It can dissipate a large amount of heat. In addition, heat is transferred to a narrow space where a heat-dissipating fan or cooler cannot be directly attached, or to a portion where there is sufficient space for installing a heat-dissipating fan or cooler to dissipate more heat. A heat dissipating device (such as a fin or a fan) can be easily attached.
In the present embodiment, an example using two plate-type fine hole heat pipes has been described, but the number is appropriately determined as a plurality of three or more according to the amount of heat generated.
[0017]
【The invention's effect】
According to the first aspect of the present invention, it can be installed in correspondence with a small-sized heating element that generates a large amount of heat or in response to downsizing of an electronic device or the like that houses the heating element. Further, it is possible to provide a heat dissipating device that can absorb heat and can dissipate a large amount of heat because the heat dissipating area of the heat dissipating part is large.
According to the second aspect of the present invention, it is possible to provide a heat dissipation device that can absorb a large amount of heat at the heat receiving portion.
According to claim 3 of the present invention, it is possible to provide a heat dissipation device that can dissipate a larger amount of heat.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment.
FIG. 2 is a side view showing the first embodiment.
FIG. 3 is a plan view showing a second embodiment.
FIG. 4 is a side view showing a second embodiment.
FIG. 5 is a plan view showing a third embodiment.
FIG. 6 is a side view showing a third embodiment.
FIG. 7 is a diagram showing a conventional heat dissipation device.
101, 102, 103... Plate-type pore heat pipe 104... Heat receiving part 105... CPU (heating element)
106 ... Transporting section 107 ... Heat dissipation section 108 ... Heat dissipation means 201 ... Lamp (heating element)
203, 204 ... Plate type fine pore heat pipes 209, 210 ... Heat receiving part 211 ... Transfer part 212 ... Heat radiation part 213 ... Heat radiation means 301 ... Lamp (heating element)
302, 303, 304, 305... Plate-type pore heat pipes 306, 307... Heat receiving part 308 .. transfer part 309, 310.

Claims (3)

発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部及び放熱部が複数のプレート式細孔ヒートパイプに具備され、該複数のプレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該複数のプレート式細孔ヒートパイプの前記受熱部の平坦面が重ね合わされて密着固定され、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設され、該並列配設された放熱部の平面に放熱手段を密着固定したことを特徴とする放熱装置。  In a heat radiating device having a heat receiving part that absorbs heat from a heating element, a transfer part that transfers heat absorbed by the heat receiving part, and a heat radiating part that releases heat, the heat receiving part, the transfer part, and the heat radiating part include a plurality of heat receiving parts. The plate-type pore heat pipe has a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid, and the hydraulic fluid passes through the pore tunnel by its surface tension. It is closed and transports the amount of heat, and the flat surfaces of the heat receiving portions of the plurality of plate-type fine pore heat pipes are overlapped and fixed tightly, and the heat dissipation portions of the plurality of plate-type fine pore heat pipes A heat dissipating device characterized in that the flat surfaces are arranged in parallel by twisting in a plane without being twisted with respect to the flat surface of the heat receiving portion, and the heat dissipating means is closely fixed to the flat surface of the heat dissipating portions arranged in parallel. . 前記複数のプレート式細孔ヒートパイプの各一端側の平坦面を重ね合わせて密着固定し、さらに各他端側の平坦面も重ね合わせて密着固定することにより2箇所の受熱部とし、前記複数のプレート式細孔ヒートパイプの中間部を受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設させることにより放熱部を形成し、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が並列配設され、該並列配設された放熱部の平面に放熱手段を密着固定し、発熱体の形状に合せて発熱体と密着するように前記複数のプレート式細孔ヒートパイプを折り曲げ変形することを特徴とする請求項1記載の放熱装置。  The flat surfaces on one end side of the plurality of plate type fine pore heat pipes are overlapped and fixed in close contact, and the flat surfaces on the other end side are overlapped and fixed in close contact to form two heat receiving portions. A plurality of plate type pore heat pipes are formed by arranging the intermediate portions of the plate type pore heat pipes in parallel by twisting them flatly without being twisted with respect to the flat surface of the heat receiving portion. The flat surfaces of the heat dissipating parts are arranged in parallel, and the heat dissipating means is closely fixed to the flat surface of the heat dissipating parts arranged in parallel, and the plurality of plate types are arranged so as to be in close contact with the heat generating elements according to the shape of the heat generating elements. The heat dissipation device according to claim 1, wherein the heat sink is bent and deformed. 発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部及び放熱部が複数のプレート式細孔ヒートパイプに具備され、該複数のプレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該複数のプレート式細孔ヒートパイプの前記受熱部の平坦面が重ね合わされて密着固定され、前記複数のプレート式細孔ヒートパイプの前記放熱部の平坦面が受熱部の平坦面に対して捩られることなく平面的に捻ることにより並列配設された2つの放熱装置を、放熱部の各平坦面が平行になるように配置し、放熱部に共通の放熱手段を配置して各放熱部に密着固定し、発熱体の形状に合せて発熱体と密着するように前記複数のプレート式細孔ヒートパイプを折り曲げ変形することを特徴とする放熱装置。  In a heat radiating device having a heat receiving part that absorbs heat from a heating element, a transfer part that transfers heat absorbed by the heat receiving part, and a heat radiating part that releases heat, the heat receiving part, the transfer part, and the heat radiating part include a plurality of heat receiving parts. The plate-type pore heat pipe has a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid, and the hydraulic fluid passes through the pore tunnel by its surface tension. It is closed and transports the amount of heat, and the flat surfaces of the heat receiving portions of the plurality of plate-type fine pore heat pipes are overlapped and fixed tightly, and the heat dissipation portions of the plurality of plate-type fine pore heat pipes Two heat dissipating devices arranged in parallel by twisting in a plane without twisting the flat surface with respect to the flat surface of the heat receiving part are arranged so that each flat surface of the heat dissipating part is parallel to the heat dissipating part. Arranging common heat dissipation means The heat radiating portion is tightly fixed, heat dissipation and wherein the deforming folding the plurality of plate-type pores heat pipe so as to be in close contact with the heating element to the shape of the heating element.
JP2002317431A 2002-10-31 2002-10-31 Heat dissipation device Expired - Fee Related JP4324364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317431A JP4324364B2 (en) 2002-10-31 2002-10-31 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317431A JP4324364B2 (en) 2002-10-31 2002-10-31 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2004150719A JP2004150719A (en) 2004-05-27
JP4324364B2 true JP4324364B2 (en) 2009-09-02

Family

ID=32460838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317431A Expired - Fee Related JP4324364B2 (en) 2002-10-31 2002-10-31 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP4324364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440906A (en) * 2016-09-14 2017-02-22 华南师范大学 Spiral type liquid cooling uniform temperature plate composite radiator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141082A (en) 2010-12-28 2012-07-26 Fujitsu Ltd Cooling device, and electronic apparatus
JP7161343B2 (en) * 2018-08-27 2022-10-26 新光電気工業株式会社 Cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440906A (en) * 2016-09-14 2017-02-22 华南师范大学 Spiral type liquid cooling uniform temperature plate composite radiator

Also Published As

Publication number Publication date
JP2004150719A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3280954B2 (en) Circuit module and electronic equipment mounted with circuit module
JP4764317B2 (en) Electronics
US7140422B2 (en) Heat sink with heat pipe in direct contact with component
US20070034355A1 (en) Heat-dissipation structure and method thereof
US20060185827A1 (en) Heat pipe cooling system and thermal connector thereof
JP2004111966A (en) Heat sink equipped with heat pipe and base fin
JPH08255858A (en) Cooling system of electronic package
JP2004111969A (en) Heat sink with angled heat pipe
KR101023823B1 (en) Heat pipe type dissipating device
JP2011091384A (en) Heat dissipation device with heat pipeheat pipe heat radiator
TWI258332B (en) A heat sink apparatus utilizing the heat sink shroud to dissipate heat
JP2005183676A (en) Electronic cooling unit
JP4324364B2 (en) Heat dissipation device
JPH04294570A (en) Heat sink
JPH10107192A (en) Heat sink
JP4272398B2 (en) Heat dissipation device
KR101180494B1 (en) Heat-dissipating device for graphic card
JPH05259326A (en) Cooling device
JP2003209385A (en) Personal computer cooling equipment
JP4006115B2 (en) Heat dissipation structure for electronic elements
JP2006013043A (en) Heat-piped heatsink
JP2000035291A (en) Cooling unit and cooling structure
US7353862B2 (en) Liquid cooling device
JP4315722B2 (en) Heat dissipation device
JP2005019760A (en) Cooler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees