JP4272398B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP4272398B2
JP4272398B2 JP2002269270A JP2002269270A JP4272398B2 JP 4272398 B2 JP4272398 B2 JP 4272398B2 JP 2002269270 A JP2002269270 A JP 2002269270A JP 2002269270 A JP2002269270 A JP 2002269270A JP 4272398 B2 JP4272398 B2 JP 4272398B2
Authority
JP
Japan
Prior art keywords
heat
plate
heat pipe
type fine
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269270A
Other languages
Japanese (ja)
Other versions
JP2004108621A (en
Inventor
達也 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2002269270A priority Critical patent/JP4272398B2/en
Publication of JP2004108621A publication Critical patent/JP2004108621A/en
Application granted granted Critical
Publication of JP4272398B2 publication Critical patent/JP4272398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子機器に使用されて発熱部の熱を吸熱、移送、放熱することにより発熱部の冷却を行う放熱装置において、構造が単純で製作が容易であって熱の移送量が多い放熱装置に関する。
【0002】
【従来の技術】
電子機器内部に半導体デバイスや発光素子等の局部的に発熱をする構成部材を持つ各種電子機器では、発熱体の過熱による障害(例えば発熱体やその周辺に配置される機器の動作不良や損傷など)を防止するため、これ等発熱体の発生する熱を放熱する放熱装置を有し発熱体を冷却して作動させている。
【0003】
例えば、コンピュータにはCPU(MPU)をはじめメモリやハードディスクドライブ等の発熱体があり、ブラウン管やプロジェクターは光源等の発熱体が数多く搭載されており、これらを安定動作させるために発熱体から筐体や筐体外に伝導伝熱させ外部に放熱させるために小型ファンによる強制空冷等が行われていた。高輝度のランプは発熱量が非常に大きく放熱器を取り付けなければ熱によりランプが切れてしまう。
【0004】
さらに、近年ではマイクロプロセッサ等の半導体デバイスの高性能化やモジュール化、半導体素子の小型化や高密度配置により発熱密度の増加が著しい。また、小型で高輝度の発光体を得るための発熱密度の増加も著しくなっている。例えばデスクトップコンピュータを小型化するために狭い空間内にCPU等の半導体デバイスやハードディスク等の発熱体を高密度に配置しているために直接対流冷却(強制空冷)のための流路確保が困難になるという問題が生じている。また電気製品も小型化の要望から例えばランプからの吸熱部を十分に広く取ることができず、ランプの寿命を短くする要因ともなっていた。
【0005】
このような問題に対して、例えば吸熱受熱手段としての金属板を発熱体に密着配設し、吸熱受熱手段により集められた発熱体の熱を偏平のヒートパイプ等の熱移送手段を用い筐体の外部まで移送し、移送された熱を筐体の外周部に配設した放熱フィンやファンからなる放熱手段により強制空冷して発熱体の冷却を行う熱移送型放熱装置が実用化されている。
【0006】
プレート型細孔ヒートパイプ400自体は図7に示すように従来から存在しており、複数の細孔401が比較的薄い平板402の中に作られている。プレート型細孔ヒートパイプ400とは、以下の特性を有するヒートパイプのことである(例えば、特許文献1、特許文献2、特許文献3参照)。
(1) 細孔内には作動液として所定量の2相凝縮性流体が封入され、該作動液がその表面張力により常に管内を充填閉塞し、蒸気泡と液泡が交互に管内全体に分散配置されている。
(2) 受熱部における作動液の核沸騰による圧力波により、蒸気泡と液泡の軸方向振動を発生し、その振動により熱を高温部から低温部へ輸送する。
【0007】
【特許文献1】
特開平4−190090号公報
【特許文献2】
特許第2714883号公報
【特許文献3】
特公平2−35239号公報
【0008】
【発明が解決しようとする課題】
また、近年の発熱密度の増加に対して狭い空間に発熱体が配置されて大容量の熱を移送するような場合、作動液がその表面張力により常に管内を充填閉塞していない従来のヒートパイプ方式による冷却方法では十分な性能が出ないので、大きなプレートや放熱機器で構成することが必要となり、結局狭い空間ではそのような大きな放熱装置は採用されず、狭い空間での使用においては大熱量を移送することができなくて発熱体、例えば半導体デバイスや電球を熱により破壊してしまうという大きな問題があった。さらに、デスクトップパソコンのようにユーザーにより水平に配置したり縦に配置したりと様々な向きに配置される場合、作動液がその表面張力により常に管内を充填閉塞していない従来のヒートパイプ方式の冷却方法では十分な性能が出ないという問題があった(特にトップヒートモードでの使用において十分な性能が出ない)。
また、前述のような熱移送型冷却装置は、金属板、扁平ヒートパイプ及び放熱機器を別の部品で構成し、それらを接触接続して用いるため、製作に手間がかかる問題があった。
【0009】
本発明は、かかる課題に鑑みて成されたものであり、発熱体側でも放熱部側でも簡単な構造を持ち小空間で大容量の熱を吸熱、移送、放熱できる構造とし、小空間に配設可能で、組立容易な放熱装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明の放熱装置は、発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部、放熱部が一枚のプレート式細孔ヒートパイプで構成され、該プレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該プレート式細孔ヒートパイプの両端部を前記発熱体から吸熱するように配置して前記受熱部とし、中央部付近をコルゲート状に折り曲げて前記放熱部とし、前記受熱部と前記放熱部の間を前記移送部とし、前記プレート式細孔ヒートパイプと同じ構造の一枚の熱伝播補助用プレート式細孔ヒートパイプを、前記プレート式細孔ヒートパイプの受熱部及び前記放熱部に接触するように配設したことを特徴とす。従って、発熱体側でも放熱部側でも簡単な構造を持ち小空間で大容量の熱を吸熱、移送、放熱できる構造とし、小空間に配設可能で、組立容易な放熱装置を提供できる。また、熱伝播補助用プレート式細孔ヒートパイプにより放熱部への熱の移送量を増加できると共に、放熱部を構成するプレート式細孔ヒートパイプ部の熱移送を活発にでき、放熱効率も上げることができる。
【0011】
前記プレート式細孔ヒートパイプの前記両端部のうち一端部が発熱体に直接接触し、他端部は前記一方の端部を介して発熱体に間接的に接触しており、さらに前記熱伝播補助用プレート式細孔ヒートパイプの一端部が前記プレート式細孔ヒートパイプの一端部及び他端部を介して発熱体に間接的に接触しており、前記熱伝播補助用プレート式細孔ヒートパイプの他端部は前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部と密接されていることを特徴とする。
前記熱伝播補助用プレート式細孔ヒートパイプは、長尺方向でコの字状に折り曲げられ、両端部が各々前記発熱体の異なる部分に直接接触され、前記プレート式細孔ヒートパイプの両端の受熱部が各々前記熱伝播補助用プレート式細孔ヒートパイプの各両端部を介して前記発熱体に間接的に接続され、前記熱伝播補助用プレート式細孔ヒートパイプの中央の平坦部と前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部とを密接させたことを特徴とする。従って、発熱体側でも放熱部側でも簡単な構造を持ち小空間で大容量の熱を吸熱、移送、放熱できる構造とし、小空間に配設可能で、組立容易な放熱装置を提供できる。また、熱伝播補助用プレート式細孔ヒートパイプにより放熱部への熱の移送量を増加できると共に、放熱部を構成するプレート式細孔ヒートパイプ部の熱移送を活発にでき、放熱効率も上げることができる。
前記プレート式細孔ヒートパイプの両端部を前記発熱体に直接接触させ、折り曲げ部分の無い平坦な前記熱伝播補助用プレート式細孔ヒートパイプの一端部を前記プレート式細孔ヒートパイプの一端部を介して前記発熱体に接触させ、前記熱伝播補助用プレート式細孔ヒートパイプの他端部を前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部とを密接させたことを特徴とする。
【0012】
従って、発熱体側でも放熱部側でも簡単な構造を持ち小空間で大容量の熱を吸熱、移送、放熱できる構造とし、小空間に配設可能で、組立容易な放熱装置を提供できる。また、熱伝播補助用プレート式細孔ヒートパイプにより放熱部への熱の移送量を増加できると共に、放熱部を構成するプレート式細孔ヒートパイプ部の熱移送を活発にでき、放熱効率も上げることができる。
【0013】
【発明の実施の形態】
以下本発明の実施の態様について図を用いて説明する。図1及び図2はパソコンのCPUの放熱に適用した第一の実施の形態の側面図及び平面図である。図1及び図2において101はプレート型細孔ヒートパイプである。102は熱伝播補助用のプレート式細孔ヒートパイプである。
プレート型細孔ヒートパイプ101は両端部の受熱部103が発熱体としてのマイコンのCPU104に電熱シートや銅のような熱伝導率の高い素材110を介して重なって接触しており、発熱体104からの熱を吸収する。該発熱体104と受熱部103の間に挟まれている素材は電熱シートや銅のようなプレート型細孔ヒートパイプの熱伝導率より熱伝導率の高い素材であり、プレート式細孔ヒートパイプの両端部の受熱部103に発熱体104からの熱が伝わり易くなって放熱効率を上げることができる。該受熱部103で吸収された熱は移送部111を通って放熱部105へ伝達される。放熱部105はプレート型細孔ヒートパイプ101のほぼ中間の部分でコルゲート形状に折り曲げられて構成している。
熱伝播補助用プレート式細孔ヒートパイプ102は、プレート式細孔ヒートパイプ101の放熱部105に接触する部分が、放熱部105としてのコルゲート状折り曲がり部106に該折り曲がり部106を覆うように接触している。
これにより折り曲がり部106部へも熱が伝えられることにより、放熱部105からの放熱が活発なり放熱効率を上げることができる。
このような構成にすることにより、放熱器や冷却器を直接装着できないような狭い空間にも適用できる放熱装置となる。
【0014】
次に、本発明の第二の実施の形態を説明する。図4及び図5は高輝度のランプの放熱に適用した第二の実施の形態の側面図及び平面図である。201は高輝度のランプである。プレート型細管ヒートパイプ203の両端部は受熱部210、211であり、ランプ201の放熱囲い部分202に熱伝播補助用プレート型細管ヒートパイプ204を介して接触している。プレート型細管ヒートパイプ203のほぼ中間部分はコルゲート形状に折れ曲がり放熱部212を形成している。コの字状に曲げられた熱伝播補助用プレート型細管ヒートパイプ204の両端部はランプ201のケーズ202に接触し、中央部はコルゲート形状の折り曲げられている部分のライトに近い放熱部分213に接触している。即ち、熱伝播補助用プレート式細孔ヒートパイプ204は、プレート式細孔ヒートパイプ203の受熱部及び放熱部に接触するように配設されている。また、熱伝播補助用プレート式細孔ヒートパイプ204のプレート式細孔ヒートパイプ203の放熱部212に接触する部分が、コルゲート状折り曲がり部に接触している。これにより放熱部分213へも熱が伝えられることにより放熱部212を活発に動作させることができるようになり、放熱効率を上げることができる。205は受熱部で吸収した熱を移送する移送部である。
本第二の実施形態では、コの字状に曲げられた熱伝播補助用プレート型細管ヒートパイプ204がプレート式細孔ヒートパイプ203の内側にあるが、その外側に配置しても良い。即ち、プレート型細管ヒートパイプ203の両端部がランプ201のケース202に直接接触し、熱伝播補助用プレート型細管ヒートパイプ204の両端部がプレート型細管ヒートパイプ203の両端部に接触し、熱伝播補助用プレート型細管ヒートパイプ204の中間部がコルゲート形状の放熱部212の折り曲げられている部分のランプ201に遠い部分214で接触するように配置しても良い。
【0015】
次に、本発明の第三の実施の形態を示す。図5及び図6は高輝度のランプの放熱に適用した第三の実施の形態の側面図及び平面図である。301は高輝度のランプである。プレート型細管ヒートパイプ303の両端部は受熱部305、306であり、ランプ301のケース302に接触している。プレート型細管ヒートパイプ303のほぼ中間部分はコルゲート形状に折れ曲がり放熱部312を形成している。熱伝播補助用プレート型細管ヒートパイプ304の一端部はランプ301のケーズ302に303の外側で接触し、他端部はコルゲート形状の折り曲げられている部分に接触している。即ち、熱伝播補助用プレート式細孔ヒートパイプ304は、プレート式細孔ヒートパイプ303の受熱部及び放熱部に接触するように配設されている。また、熱伝播補助用プレート式細孔ヒートパイプ304のプレート式細孔ヒートパイプ303の放熱部312に接触する部分が、コルゲート状折り曲がり部に接触している。これにより放熱部分307部へも熱が伝えられることにより放熱部312を活発に動作させることができるようになり、放熱効率を上げることができる。310は受熱部で吸収した熱を移送する移送部である。
【0016】
【発明の効果】
本願発明の放熱装置は、受熱部、移送部、放熱部が一枚のプレート式細孔ヒートパイプで構成され、該プレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該プレート式細孔ヒートパイプの両端部を前記発熱体に接触させる前記受熱部とし、中央部付近をコルゲート状に折り曲げて前記放熱部とし、前記受熱部と前記放熱部の間を前記移送部としたことを特徴としている。従って、小空間で大容量の熱を吸熱、移送、放熱でき、小空間に配設可能で、組立容易な放熱装置を提供できる。
また、熱伝播補助用プレート式細孔ヒートパイプをプレート式細孔ヒートパイプの受熱部及び放熱部に接触するように配設したことを特徴としている。従って、放熱部への熱の移送量を増加できると共に、放熱部を構成するプレート式細孔ヒートパイプ部の熱移送をさらに活発にでき、放熱効率も上げることができる。
さらに、補助用熱伝播プレート式細孔ヒートパイプの前記プレート式細孔ヒートパイプの放熱部に接触する部分が、コルゲート状折り曲がり部に接触していることを特徴としている。従って、放熱部への熱の移送量を増加できると共に、放熱部を構成するプレート式細孔ヒートパイプ部の熱移送をさらに活発にでき、放熱効率も上げることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態の平面図。
【図2】本発明の第一の実施形態の側面図。
【図3】本発明の第二の実施形態の平面図。
【図4】本発明の第二の実施形態の側面図。
【図5】本発明の第三実施例の平面図。
【図6】本発明の第三の実施形態の側面図。
【図7】熱移送手段に用いられる従来のプレート式細管ヒートパイプ。
【符号の説明】
101、203、303・・・・プレート型細孔ヒートパイプ
102、204、304・・・・熱伝播補助用のプレート式細孔ヒートパイプ
103、210、211、305、306・・・・受熱部
104、201、301・・・・発熱体
111、205、310・・・・移送部
105、212、312・・・・放熱部
[0001]
BACKGROUND OF THE INVENTION
[Technical Field] The present invention is a heat dissipation device that is used in an electronic device and cools the heat generating portion by absorbing, transferring, and radiating the heat of the heat generating portion, and has a simple structure, easy manufacture, and a large amount of heat transfer About.
[0002]
[Prior art]
In various electronic devices having components that generate heat locally such as semiconductor devices and light emitting elements inside the electronic device, failure due to overheating of the heating element (for example, malfunction or damage of the heating element and the devices arranged around it) In order to prevent this, a heat dissipating device that dissipates heat generated by these heat generating elements is provided and the heat generating elements are cooled and operated.
[0003]
For example, a computer has a heating element such as a CPU (MPU), a memory and a hard disk drive, and a cathode ray tube and a projector are equipped with a large number of heating elements such as a light source. In addition, for example, forced air cooling by a small fan has been performed in order to conduct heat transfer outside the case and to dissipate heat to the outside. A high-intensity lamp generates a large amount of heat, and if the radiator is not installed, the lamp will burn out due to heat.
[0004]
Furthermore, in recent years, the heat generation density has increased remarkably due to high performance and modularization of semiconductor devices such as microprocessors, miniaturization and high density arrangement of semiconductor elements. In addition, the increase in heat generation density for obtaining a compact and high-luminance luminescent material has also become remarkable. For example, in order to reduce the size of a desktop computer, it is difficult to secure a flow path for direct convection cooling (forced air cooling) because semiconductor devices such as CPUs and heating elements such as hard disks are densely arranged in a narrow space. The problem of becoming. In addition, due to the demand for miniaturization of electric products, for example, the heat absorption part from the lamp cannot be made sufficiently wide, which has been a factor in shortening the lamp life.
[0005]
For such problems, for example, a metal plate as an endothermic heat receiving means is disposed in close contact with the heating element, and the heat of the heating element collected by the endothermic heat receiving means is used by a heat transfer means such as a flat heat pipe. A heat transfer type heat radiating device that cools the heating element by forcibly air-cooling by means of heat radiating means consisting of radiating fins and fans arranged on the outer periphery of the housing is put into practical use. .
[0006]
As shown in FIG. 7, the plate-type pore heat pipe 400 itself has conventionally existed, and a plurality of pores 401 are formed in a relatively thin flat plate 402. The plate-type pore heat pipe 400 is a heat pipe having the following characteristics (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
(1) A predetermined amount of two-phase condensable fluid is sealed in the pores as the working fluid, and the working fluid always fills and closes the inside of the tube due to its surface tension, and vapor bubbles and liquid bubbles are alternately distributed throughout the tube. Has been.
(2) A pressure wave generated by nucleate boiling of the hydraulic fluid in the heat receiving part generates axial vibrations of the vapor bubbles and the liquid bubbles, and the vibrations transport heat from the high temperature part to the low temperature part.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-190090 [Patent Document 2]
Japanese Patent No. 2714883 [Patent Document 3]
Japanese Examined Patent Publication No. 2-335239 [0008]
[Problems to be solved by the invention]
In addition, when a heating element is placed in a narrow space to transfer a large amount of heat in response to an increase in heat generation density in recent years, a conventional heat pipe in which the working fluid is not always filled and blocked by the surface tension. Since the cooling method by the method does not provide sufficient performance, it is necessary to configure it with a large plate or heat dissipation device, eventually such a large heat dissipation device is not adopted in a narrow space, and a large amount of heat is used in use in a narrow space There is a big problem that the heat generating element such as a semiconductor device or a light bulb is destroyed by heat. Furthermore, when placed in various orientations, such as a desktop PC, horizontally or vertically by the user, the conventional heat pipe system in which hydraulic fluid does not always fill and close the inside of the pipe due to its surface tension. There was a problem that sufficient performance was not obtained with the cooling method (particularly, sufficient performance was not obtained when used in the top heat mode).
In addition, the heat transfer type cooling device as described above has a problem in that it takes time to manufacture because the metal plate, the flat heat pipe, and the heat radiating device are configured as separate components and used in contact with each other.
[0009]
The present invention has been made in view of such a problem, and has a simple structure on both the heating element side and the heat radiating part side, and has a structure capable of absorbing, transferring, and radiating a large amount of heat in a small space, and is disposed in a small space. An object of the present invention is to provide a heat dissipating device that can be easily assembled.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, a heat dissipation device of the present invention includes a heat receiving portion that absorbs heat from a heating element, a transfer portion that transfers heat absorbed by the heat receiving portion, and a heat dissipation portion that releases heat. The heat receiving portion, the transfer portion, and the heat radiating portion are configured by a single plate-type pore heat pipe, and the plate-type pore heat pipe has a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid. The hydraulic fluid closes the inside of the pore tunnel by its surface tension and transports heat, and is arranged so that both ends of the plate type pore heat pipe absorb heat from the heating element, and the heat receiving portion And a heat propagation assisting plate having the same structure as the plate-type fine pore heat pipe, with the vicinity of the central portion bent into a corrugated shape to form the heat radiating portion, and between the heat receiving portion and the heat radiating portion as the transfer portion. Pore heat pipe , To characterized in that it is arranged to be in contact with the heat receiving portion and the heat radiating portion of the plate type pores heat pipes. Accordingly, it is possible to provide a heat dissipating device that has a simple structure on both the heating element side and the heat dissipating portion side and can absorb, transfer, and dissipate a large amount of heat in a small space and can be disposed in the small space and can be easily assembled. In addition, the heat transfer assisting plate type pore heat pipe can increase the amount of heat transferred to the heat radiating part, and the plate type fine hole heat pipe part constituting the heat radiating part can be actively transferred to increase the heat radiation efficiency. be able to.
[0011]
One end of the both ends of the plate-type pore heat pipe is in direct contact with the heating element, the other end is in indirect contact with the heating element through the one end, and the heat propagation One end of the auxiliary plate-type fine pore heat pipe is in indirect contact with the heating element via one end and the other end of the plate-type fine pore heat pipe, and the auxiliary plate-type fine pore heat for heat propagation The other end of the pipe is in close contact with a bent portion in the vicinity of the central portion of the plate-type fine hole heat pipe that is bent in a corrugated shape .
The plate-type fine heat pipe for assisting heat propagation is bent in a U-shape in the longitudinal direction, and both end portions are in direct contact with different portions of the heating element, respectively. A heat receiving part is indirectly connected to the heating element via each end of each of the plate propagation heat pipes for heat propagation assistance, and a flat portion at the center of the plate conduction pore heat pipes for heat propagation assistance The plate-type pore heat pipe is characterized in that the bent portion near the center portion bent in a corrugated shape is brought into close contact . Accordingly, it is possible to provide a heat dissipating device that has a simple structure on both the heating element side and the heat dissipating portion side and can absorb, transfer, and dissipate a large amount of heat in a small space and can be disposed in the small space and can be easily assembled. In addition, the heat transfer assisting plate type pore heat pipe can increase the amount of heat transferred to the heat radiating part, and the plate type fine hole heat pipe part constituting the heat radiating part can be actively transferred to increase the heat radiation efficiency. be able to.
One end of the plate-type fine pore heat pipe is connected to the both ends of the plate-type fine pore heat pipe directly to the heating element, and one end of the flat plate-type fine pore heat pipe for supporting heat propagation without a bent portion is one end of the plate-type fine pore heat pipe The other end portion of the plate-type fine heat pipe for heat propagation assisting with the bent portion in the vicinity of the center portion of the plate-type fine pore heat pipe that is bent into a corrugated shape. characterized in that was.
[0012]
Accordingly, it is possible to provide a heat dissipating device that has a simple structure on both the heating element side and the heat dissipating portion side and can absorb, transfer, and dissipate a large amount of heat in a small space and can be disposed in the small space and can be easily assembled. In addition, the heat transfer assisting plate type pore heat pipe can increase the amount of heat transferred to the heat radiating part, and the plate type fine hole heat pipe part constituting the heat radiating part can be actively transferred to increase the heat radiation efficiency. be able to.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are a side view and a plan view of a first embodiment applied to heat dissipation of a CPU of a personal computer. 1 and 2, reference numeral 101 denotes a plate-type fine hole heat pipe. Reference numeral 102 denotes a plate type pore heat pipe for assisting heat propagation.
In the plate-type pore heat pipe 101, the heat receiving portions 103 at both ends are in contact with the CPU 104 of the microcomputer as a heating element in an overlapping manner through a material 110 having a high thermal conductivity such as an electric heating sheet or copper. Absorbs heat from. The material sandwiched between the heating element 104 and the heat receiving portion 103 is a material having a higher thermal conductivity than that of a plate-type pore heat pipe such as an electric heating sheet or copper. Thus, heat from the heating element 104 can be easily transmitted to the heat receiving portions 103 at both ends of the heat radiation portion 103, and the heat radiation efficiency can be increased. The heat absorbed by the heat receiving unit 103 is transmitted to the heat radiating unit 105 through the transfer unit 111. The heat dissipating part 105 is configured to be bent into a corrugated shape at a substantially middle part of the plate-type fine hole heat pipe 101.
In the plate-type fine heat pipe 102 for assisting heat propagation, a portion of the plate-type fine heat pipe 101 that contacts the heat radiating portion 105 covers the bent portion 106 with a corrugated bent portion 106 as the heat radiating portion 105. Touching.
As a result, heat is transmitted also to the bent portion 106, so that heat is radiated from the heat radiating portion 105 and the heat radiation efficiency can be increased.
By adopting such a configuration, the heat dissipation device can be applied to a narrow space where a heatsink or a cooler cannot be directly mounted.
[0014]
Next, a second embodiment of the present invention will be described. 4 and 5 are a side view and a plan view of a second embodiment applied to heat dissipation of a high-intensity lamp. Reference numeral 201 denotes a high-intensity lamp. Both ends of the plate-type narrow tube heat pipe 203 are heat receiving portions 210 and 211, and are in contact with the heat radiation surrounding portion 202 of the lamp 201 via the plate-type thin tube heat pipe 204 for assisting heat propagation. A substantially intermediate portion of the plate-type thin tube heat pipe 203 is bent in a corrugated shape to form a heat radiation portion 212. Both ends of the heat propagation assisting plate-type capillary tube heat pipe 204 bent in a U-shape are in contact with the case 202 of the lamp 201, and the central portion is a heat dissipation portion 213 near the light of the corrugated bent portion. In contact. That is, the plate propagation fine heat pipe 204 for heat propagation assisting is disposed so as to contact the heat receiving portion and the heat radiating portion of the plate fine pore heat pipe 203. In addition, the portion of the plate-type fine heat pipe 203 of the heat propagation auxiliary plate-type fine heat pipe 204 that is in contact with the heat radiating portion 212 is in contact with the corrugated bent portion. As a result, heat is transmitted to the heat radiating portion 213 so that the heat radiating portion 212 can be actively operated, and the heat radiating efficiency can be increased. Reference numeral 205 denotes a transfer unit that transfers heat absorbed by the heat receiving unit.
In the second embodiment, the heat propagation assisting plate-type capillary tube heat pipe 204 bent in a U-shape is inside the plate-type fine hole heat pipe 203, but it may be arranged outside the plate-type pore heat pipe 203. That is, both ends of the plate-type thin tube heat pipe 203 are in direct contact with the case 202 of the lamp 201, and both ends of the plate-type thin tube heat pipe 204 for assisting heat propagation are in contact with both ends of the plate-type thin tube heat pipe 203. You may arrange | position so that the intermediate part of the plate type | mold thin tube heat pipe 204 for propagation assistance may contact the lamp | ramp 201 of the bent part of the corrugated heat radiation part 212 in the part 214 far.
[0015]
Next, a third embodiment of the present invention will be shown. 5 and 6 are a side view and a plan view of a third embodiment applied to heat dissipation of a high-intensity lamp. Reference numeral 301 denotes a high-intensity lamp. Both ends of the plate-type thin tube heat pipe 303 are heat receiving portions 305 and 306 and are in contact with the case 302 of the lamp 301. A substantially intermediate portion of the plate-type thin tube heat pipe 303 is bent in a corrugated shape to form a heat radiating portion 312. One end of the heat propagation auxiliary plate-type capillary tube heat pipe 304 is in contact with the case 302 of the lamp 301 outside 303, and the other end is in contact with the corrugated bent portion. That is, the plate propagation heat pipe 304 for heat propagation assisting is disposed so as to be in contact with the heat receiving portion and the heat radiating portion of the plate pore heat pipe 303. Further, the portion of the plate-type fine heat pipe 304 of the heat propagation auxiliary plate-type fine heat pipe 304 that contacts the heat radiating portion 312 is in contact with the corrugated bent portion. As a result, heat is transmitted also to the heat radiating portion 307 so that the heat radiating portion 312 can be actively operated, and the heat radiating efficiency can be increased. Reference numeral 310 denotes a transfer unit that transfers heat absorbed by the heat receiving unit.
[0016]
【The invention's effect】
In the heat dissipation device of the present invention, the heat receiving portion, the transfer portion, and the heat radiating portion are composed of a single plate-type fine pore heat pipe, and the plate-type fine pore heat pipe has a plurality of fine pore tunnels filled with a predetermined amount of hydraulic fluid. The hydraulic fluid closes the inside of the pore tunnel by its surface tension and transports heat, and the heat receiving portion that makes both ends of the plate type pore heat pipe contact the heating element. In addition, the vicinity of the central portion is bent into a corrugated shape to form the heat radiating portion, and the space between the heat receiving portion and the heat radiating portion is the transfer portion. Accordingly, it is possible to provide a heat dissipating device that can absorb, transfer, and dissipate a large amount of heat in a small space and can be disposed in the small space and can be easily assembled.
Further, the plate type fine heat pipe for assisting heat propagation is arranged so as to be in contact with the heat receiving part and the heat radiating part of the plate type fine heat pipe. Accordingly, the amount of heat transferred to the heat radiating portion can be increased, the heat transfer of the plate-type pore heat pipe constituting the heat radiating portion can be further activated, and the heat radiating efficiency can be increased.
Furthermore, the part which contacts the heat radiating part of the said plate type fine pore heat pipe of the auxiliary | assistant heat propagation plate type fine pore heat pipe is contacting the corrugated bent part. Accordingly, the amount of heat transferred to the heat radiating portion can be increased, the heat transfer of the plate-type pore heat pipe constituting the heat radiating portion can be further activated, and the heat radiating efficiency can be increased.
[Brief description of the drawings]
FIG. 1 is a plan view of a first embodiment of the present invention.
FIG. 2 is a side view of the first embodiment of the present invention.
FIG. 3 is a plan view of a second embodiment of the present invention.
FIG. 4 is a side view of a second embodiment of the present invention.
FIG. 5 is a plan view of a third embodiment of the present invention.
FIG. 6 is a side view of a third embodiment of the present invention.
FIG. 7 is a conventional plate-type capillary heat pipe used for heat transfer means.
[Explanation of symbols]
101, 203, 303... Plate-type pore heat pipes 102, 204, 304... Plate-type pore heat pipes 103, 210, 211, 305, 306. 104, 201, 301 ... Heating elements 111, 205, 310 ... Transfer parts 105, 212, 312 ... Heat dissipation parts

Claims (4)

発熱体から熱を吸収する受熱部と、該受熱部で吸収した熱を移送する移送部と、熱を放出する放熱部とを有する放熱装置において、前記受熱部、移送部、放熱部が一枚のプレート式細孔ヒートパイプで構成され、該プレート式細孔ヒートパイプは作動液が所定量封入された複数の細孔トンネルを有し該作動液がその表面張力により該細孔トンネル内を閉塞して熱量を輸送するものであって、該プレート式細孔ヒートパイプの両端部を前記発熱体から受熱するように配置して前記受熱部とし、中央部付近をコルゲート状に折り曲げて前記放熱部とし、前記受熱部と前記放熱部の間を前記移送部とし、前記プレート式細孔ヒートパイプと同じ構造の一枚の熱伝播補助用プレート式細孔ヒートパイプを、前記プレート式細孔ヒートパイプの受熱部及び前記放熱部に接触するように配設したことを特徴とする放熱装置。In a heat dissipation device having a heat receiving portion that absorbs heat from a heating element, a transfer portion that transfers heat absorbed by the heat receiving portion, and a heat dissipation portion that releases heat, the heat receiving portion, the transfer portion, and the heat dissipation portion are one piece. The plate type pore heat pipe has a plurality of pore tunnels filled with a predetermined amount of hydraulic fluid, and the hydraulic fluid closes the pore tunnel by its surface tension. The heat dissipation part is configured to receive both ends of the plate-type pore heat pipe so as to receive heat from the heating element, and to be the heat receiving part, and bend the vicinity of the center part in a corrugated shape. The plate-type fine pore heat pipe is a plate-type fine pore heat pipe having the same structure as that of the plate-type fine pore heat pipe. Heat receiving part Radiating device being characterized in that disposed to contact the heat radiating portion. 前記プレート式細孔ヒートパイプの前記両端部のうち一端部が発熱体に直接接触し、他端部は前記一方の端部を介して発熱体に間接的に接触しており、さらに前記熱伝播補助用プレート式細孔ヒートパイプの一端部が前記プレート式細孔ヒートパイプの一端部及び他端部を介して発熱体に間接的に接触しており、前記熱伝播補助用プレート式細孔ヒートパイプの他端部は前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部と密接されていることを特徴とする請求項1記載の放熱装置。 One end of the both ends of the plate-type pore heat pipe is in direct contact with the heating element, the other end is in indirect contact with the heating element through the one end, and the heat propagation One end of the auxiliary plate-type fine pore heat pipe is in indirect contact with the heating element via one end and the other end of the plate-type fine pore heat pipe, and the auxiliary plate-type fine pore heat for heat propagation 2. The heat radiating device according to claim 1, wherein the other end of the pipe is in close contact with a bent portion in the vicinity of the center portion of the plate-type fine hole heat pipe that is bent in a corrugated shape . 前記熱伝播補助用プレート式細孔ヒートパイプは、長尺方向でコの字状に折り曲げられ、両端部が各々前記発熱体の異なる部分に直接接触され、前記プレート式細孔ヒートパイプの両端の受熱部が各々前記熱伝播補助用プレート式細孔ヒートパイプの各両端部を介して前記発熱体に間接的に接続され、前記熱伝播補助用プレート式細孔ヒートパイプの中央の平坦部と前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部とを密接させたことを特徴とする請求項1記載の放熱装置。 The plate-type fine heat pipe for assisting heat propagation is bent in a U-shape in the longitudinal direction, and both end portions are in direct contact with different portions of the heating element, respectively. A heat receiving part is indirectly connected to the heating element via each end of each of the plate propagation heat pipes for heat propagation assistance, and a flat portion at the center of the plate conduction pore heat pipes for heat propagation assistance The heat radiating device according to claim 1, wherein a bent portion near a central portion of the plate-type fine-hole heat pipe that is bent in a corrugated shape is brought into intimate contact . 前記プレート式細孔ヒートパイプの両端部を前記発熱体に直接接触させ、折り曲げ部分の無い平坦な前記熱伝播補助用プレート式細孔ヒートパイプの一端部を前記プレート式細孔ヒートパイプの一端部を介して前記発熱体に接触させ、前記熱伝播補助用プレート式細孔ヒートパイプの他端部を前記プレート式細孔ヒートパイプのコルゲート状に折り曲げられた中央部付近の折り曲げ部とを密接させたことを特徴とする請求項1記載の放熱装置。 One end of the plate-type fine pore heat pipe is connected to the both ends of the plate-type fine pore heat pipe directly to the heating element, and one end of the flat plate-type fine pore heat pipe for supporting heat propagation without a bent portion is one end of the plate-type fine pore heat pipe The other end portion of the plate-type fine heat pipe for heat propagation assisting with the bent portion in the vicinity of the center portion of the plate-type fine pore heat pipe that is bent into a corrugated shape. The heat dissipating device according to claim 1 .
JP2002269270A 2002-09-13 2002-09-13 Heat dissipation device Expired - Fee Related JP4272398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269270A JP4272398B2 (en) 2002-09-13 2002-09-13 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269270A JP4272398B2 (en) 2002-09-13 2002-09-13 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2004108621A JP2004108621A (en) 2004-04-08
JP4272398B2 true JP4272398B2 (en) 2009-06-03

Family

ID=32267240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269270A Expired - Fee Related JP4272398B2 (en) 2002-09-13 2002-09-13 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP4272398B2 (en)

Also Published As

Publication number Publication date
JP2004108621A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2010251756A (en) Heat dissipation device and method of manufacturing the same
JP2005229047A (en) Cooling system for electronic equipment, and the electronic equipment using same
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
JP2006287017A (en) Cooling jacket
JP2004295718A (en) Liquid cooling system for information processor
JP2004111969A (en) Heat sink with angled heat pipe
JP2011091384A (en) Heat dissipation device with heat pipeheat pipe heat radiator
JP2006245356A (en) Cooling apparatus of electronic device
JP2005183676A (en) Electronic cooling unit
KR20100056715A (en) Heat pipe type dissipating device
US7401642B2 (en) Heat sink with heat pipes
TWI328736B (en) Radiation structure for processors
JP3665508B2 (en) Heat sink with fins
TWI761541B (en) Cooling system of mainboard for electronic equipment
WO1999053256A1 (en) Plate type heat pipe and its installation structure
JP4272398B2 (en) Heat dissipation device
JP4324364B2 (en) Heat dissipation device
JPH1195871A (en) Heat radiation structure of electronic equipment
JPH11243289A (en) Electronic equipment
CN214335673U (en) Heat pipe heat dissipation device for notebook computer
JPH04294570A (en) Heat sink
JP3153018U (en) Heat dissipation device for communication device housing
JP4813829B2 (en) Heat dissipation device and heat dissipation method
JP4315722B2 (en) Heat dissipation device
JP2004037001A (en) Flat-plate-type heat pipe and cooling device of electronic element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees