JP3334308B2 - Heat pipe and heat pipe radiator - Google Patents

Heat pipe and heat pipe radiator

Info

Publication number
JP3334308B2
JP3334308B2 JP35272193A JP35272193A JP3334308B2 JP 3334308 B2 JP3334308 B2 JP 3334308B2 JP 35272193 A JP35272193 A JP 35272193A JP 35272193 A JP35272193 A JP 35272193A JP 3334308 B2 JP3334308 B2 JP 3334308B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
diffusion plate
heat receiving
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35272193A
Other languages
Japanese (ja)
Other versions
JPH07198279A (en
Inventor
正浩 小谷
順二 素谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP35272193A priority Critical patent/JP3334308B2/en
Publication of JPH07198279A publication Critical patent/JPH07198279A/en
Application granted granted Critical
Publication of JP3334308B2 publication Critical patent/JP3334308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電子機器内の発熱性
の部品を冷却するヒートパイプ式放熱器に使用するのに
適するヒートパイプ、及び電子機器用のヒートパイプ式
放熱器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe suitable for use in a heat pipe radiator for cooling heat-generating components in electronic equipment, and a heat pipe radiator for electronic equipment. .

【0002】[0002]

【従来の技術】電子機器内の発熱性の部品を冷却する従
来のヒートパイプ式放熱器について、最も好ましいとさ
れていたものを図7及び図8を参照しながら説明する。
図7はヒートパイプ式放熱器を電子機器内の基板へ取り
付けた状態の部分側面図、図8は図7のヒートパイプ式
放熱器の正面図である。
2. Description of the Related Art A conventional heat pipe type radiator that cools heat-generating components in an electronic device, which is considered to be the most preferable, will be described with reference to FIGS. 7 and 8. FIG.
FIG. 7 is a partial side view showing a state where the heat pipe radiator is attached to a substrate in an electronic device. FIG. 8 is a front view of the heat pipe radiator shown in FIG.

【0003】それぞれ全長にわたって偏平に加工された
4本のヒートパイプ1’は、その偏平面が上下に位置す
るように並べられ、それらの受熱部(蒸発部)10’に
は受熱板2’が、放熱部(凝縮部)11’には熱拡散板
3’がそれぞれ取り付けられている。ヒートパイプ1’
は、作動液を封入した後の円筒状のヒートパイプを加圧
することにより偏平に加工したものである。熱拡散板
3’には、それの幅方向に沿って放熱フィン4’がロウ
付けなどにより固着されている。この放熱フィン4’は
ハニカム構造であって、ハニカム状の孔40’は、熱拡
散板3’の幅方向に沿うように(すなわち、ヒートパイ
プの放熱部11’の幅方向に沿うように)なっており、
孔40’の数は熱拡散板3’の上下各48個、合計96
個である。
[0003] Four heat pipes 1 ', each of which is flattened over its entire length, are arranged so that their flat surfaces are located vertically, and a heat receiving plate 2' is provided on a heat receiving portion (evaporating portion) 10 '. A heat diffusion plate 3 'is attached to the heat radiating portion (condensing portion) 11'. Heat pipe 1 '
Is flattened by pressurizing a cylindrical heat pipe after enclosing the working fluid. The heat dissipating fins 4 'are fixed to the heat diffusion plate 3' along the width direction thereof by brazing or the like. The radiating fins 4 'have a honeycomb structure, and the honeycomb-shaped holes 40' extend along the width direction of the heat diffusion plate 3 '(that is, along the width direction of the heat radiating portion 11' of the heat pipe). Has become
The number of holes 40 ′ is 48 on each of the upper and lower sides of the heat diffusion plate 3 ′, for a total of 96 holes.
Individual.

【0004】ヒートパイプ1の受熱部10’は受熱板
2’へ、放熱部11’は熱拡散板3’へそれぞれ埋め込
まれた状態である。具体的には、受熱板2’及び熱拡散
板3’は、それぞれ上下の二つ割り型2a,2b及び3
a,3bによって構成され、割り型2a,2b及び3
a,3bの相対する凹面へ受熱部10’及び放熱部1
1’をそれぞれハンダ付けしている。21は、受熱板
2’の脚である。
The heat receiving portion 10 'of the heat pipe 1 is embedded in the heat receiving plate 2' and the heat radiating portion 11 'is embedded in the heat diffusing plate 3'. Specifically, the heat receiving plate 2 ′ and the heat diffusion plate 3 ′ are upper and lower split molds 2 a, 2 b and 3, respectively.
a, 3b and split molds 2a, 2b and 3
The heat receiving portion 10 ′ and the heat radiating portion 1
1 'is soldered respectively. 21 is a leg of the heat receiving plate 2 '.

【0005】このヒートパイプ式放熱器は、図7及び図
8のように、受熱板2’の下面へ、高熱伝導ゴム60を
介して基板5へ実装されている半導体素子などの発熱性
の電子部品6を接着(熱伝導性接着剤により接着)し、
放熱フィン4’に対しハニカム構造の孔40’に沿うよ
うに、すなわち図8の矢印aの方向(又はその逆方向)
から風を送りながら電子部品6を冷却するものである。
すなわち、電子部品6の熱は、受熱板2’を介して放熱
部10’へ伝わって内部の作動液を蒸発させ、蒸気とと
もに放熱部11’へ輸送され、熱拡散板3’を介して放
熱フィン4’により空気中に放出される。同時に、蒸気
は凝縮する。このような熱交換の絶え間ない繰り返しに
より、電子部品6からの熱を放熱する。
[0005] As shown in FIGS. 7 and 8, the heat pipe type radiator has a heat generating electronic device such as a semiconductor element mounted on the substrate 5 via the high heat conductive rubber 60 on the lower surface of the heat receiving plate 2 ′. The parts 6 are bonded (bonded with a heat conductive adhesive),
The heat radiation fins 4 'are arranged along the holes 40' of the honeycomb structure, that is, in the direction of the arrow a in FIG. 8 (or the reverse direction).
The electronic component 6 is cooled while sending air from the air.
That is, the heat of the electronic component 6 is transmitted to the heat radiating unit 10 ′ via the heat receiving plate 2 ′ to evaporate the internal working fluid, transported together with the steam to the heat radiating unit 11 ′, and radiated through the heat diffusion plate 3 ′. Released into the air by the fins 4 '. At the same time, the vapor condenses. The heat from the electronic component 6 is radiated by the continuous repetition of such heat exchange.

【0006】[0006]

【発明が解決しようとする課題】偏平なヒートパイプを
使用したこの種の放熱器は、より効果的に熱交換(放
熱)するために、放熱部11’の両方の偏平面に沿って
風を流す必要がある。つまり、放熱熱フィン4’は、放
熱部11’における熱拡散板3’の幅方向(放熱部1
1’の幅方向)に沿って取り付けなければならない。し
かしながら、従来のヒートパイプ式放熱器における偏平
なヒートパイプ1’は、受熱部10’の偏平面(幅面)
と放熱部11’の偏平面とが同じ向きに形成されてい
て、各ヒートパイプ1’の放熱部11’は偏平面をそれ
ぞれ上下に向けた状態で設置しなければならない。しが
たって、各ヒートパイプ1’の放熱部11’における熱
拡散板3’及び放熱フィン4’を共通にして全体を長く
しなければならないために、放熱フィン効率が悪く、熱
抵抗,通風抵抗が大きくなる。
A radiator of this type using a flat heat pipe radiates wind along both flat surfaces of the radiator 11 'in order to exchange heat more effectively. Need to shed. In other words, the heat radiating heat fins 4 ′ extend in the width direction of the heat diffusion plate 3 ′ in the heat radiating portion 11 ′ (the heat radiating portion 1 ′).
1 'width direction). However, the flat heat pipe 1 'in the conventional heat pipe radiator has a flat surface (width surface) of the heat receiving portion 10'.
And the eccentric plane of the heat radiating section 11 'are formed in the same direction, and the radiating section 11' of each heat pipe 1 'must be installed with the eccentric plane directed up and down. Therefore, since the heat diffusion plate 3 'and the radiating fin 4' in the heat radiating portion 11 'of each heat pipe 1' must be made common and the entire length thereof needs to be long, the radiating fin efficiency is poor, and the heat resistance and ventilation resistance are low. Becomes larger.

【0007】また、送風したときに同じ空気が各ヒート
パイプの放熱部10’の両側を次々に通過するため、空
気(風)が放熱フィン4’の間を通過する間に温度上昇
し、空気温度と放熱フィン4’の終端(図8の左端)に
近くなるのにしたがって放熱フィン4’の表面温度との
差がなくなり、放熱性能が低下する。同時に、空気の流
れの下流側に位置するヒートパイプの温度は、上流側に
位置するヒートパイプの温度よりも高くなり、各電子部
品6はその設置位置の違いにより温度にバラツキを生じ
る。さらに、送風ファンの取付けスペースによっては、
放熱フィン4’に対して図7の上下方向へ風を送るよう
に送風ファンを設置したい場合もあるが、従来のヒート
パイプ式放熱器ではそのようにファンを設置することが
できない。
When the air is blown, the same air successively passes on both sides of the heat radiating portion 10 'of each heat pipe. Therefore, the temperature of the air (wind) rises while passing between the heat radiating fins 4', and the air rises. As the temperature approaches the end of the radiating fin 4 '(left end in FIG. 8), the difference between the temperature and the surface temperature of the radiating fin 4' disappears, and the heat radiation performance decreases. At the same time, the temperature of the heat pipe located on the downstream side of the air flow becomes higher than the temperature of the heat pipe located on the upstream side, and the electronic components 6 vary in temperature due to differences in their installation positions. Furthermore, depending on the installation space of the blower fan,
In some cases, it is desired to install a blower fan so as to send air to the radiating fins 4 'in the vertical direction in FIG. 7, but such a fan cannot be provided with a conventional heat pipe radiator.

【0008】前述の従来のヒートパイプ式放熱器によれ
ば、受熱部10’及び放熱部11’が、受熱板2’及び
熱拡散板3’の割り型の凹面へそれぞれハンダ付けされ
ているので、熱伝達の大半が行われるところの、受熱部
10’の偏平面と受熱板2’との間、及び放熱部11’
の偏平面と熱拡散板3’との間に隙間(ボイド)が発生
して熱伝導性が低下する。また、ハンダは比重が大きく
全体の重量が大きくなる。
In the above-described conventional heat pipe radiator, the heat receiving portion 10 'and the heat radiating portion 11' are soldered to the split concave surfaces of the heat receiving plate 2 'and the heat diffusion plate 3', respectively. , Where most of the heat transfer is performed, between the uneven plane of the heat receiving portion 10 ′ and the heat receiving plate 2 ′, and the heat radiating portion 11 ′.
A gap (void) is generated between the eccentric plane and the heat diffusion plate 3 ′, and the thermal conductivity is reduced. Further, the specific gravity of the solder is large and the overall weight is large.

【0009】この発明の目的は、前述のような問題を改
善すること、すなわち放熱フィンの効率が高く、通風抵
抗がより低く、しかも放熱フィンに対して上下方向へ送
風することができる放熱器用のヒートパイプ及びヒート
パイプ式放熱器を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the above-mentioned problems, that is, a radiator for a radiator which has a high efficiency of a radiating fin, a low ventilation resistance, and can blow air vertically to the radiating fin. An object of the present invention is to provide a heat pipe and a heat pipe type radiator.

【0010】[0010]

【課題を解決するための手段】この発明によるヒートパ
イプは、前述の目的を達成するため、それぞれ偏平に加
工された所定長さの受熱部と放熱部とを有し、前記受熱
部の偏平面と放熱部の偏平面とは、それぞれの長さ方向
の端面視において、一方が全長にわたりほぼ水平である
とき他方が全長にわたりほぼ垂直である状態に形成した
ものである
In order to achieve the above-mentioned object, a heat pipe according to the present invention has a heat receiving portion and a heat radiating portion each having a flat length and a predetermined length. and the polarization plane of the radiating portion, each longitudinal
One is almost horizontal over its entire length in end view
When the other is formed to be almost vertical over the entire length
Things .

【0011】この発明によるヒートパイプ式放熱器は、
前述のように形成されたヒートパイプと、このヒートパ
イプの受熱部へ取り付けられた受熱板と、前記ヒートパ
イプの放熱部へ取り付けられた熱拡散板とを備え、前記
受熱部を当該受熱部の偏平面が前記受熱板の幅方向の両
面とほぼ平行する状態に当該受熱板へ埋め込むととも
に、前記放熱部を当該放熱部の偏平面が前記熱拡散板の
幅方向の両面とほぼ平行する状態に当該熱拡散板へ埋め
込み、前記熱拡散板には幅方向に沿って放熱フィンを固
定している。前記受熱部は前記受熱板に形成された挿入
孔へ、前記放熱部は前記熱拡散板に形成された挿入孔へ
それぞれ挿入され、前記受熱部の両偏平面及び前記放熱
部の両偏平面は前記それぞれの挿入孔の内壁へ密着され
ているのが好ましい。前記放熱フィンは、孔が前記熱拡
散板の幅方向に沿う状態のハニカム構造であるのが好ま
しい。
[0011] The heat pipe radiator according to the present invention comprises:
A heat pipe formed as described above, a heat receiving plate attached to a heat receiving portion of the heat pipe, and a heat diffusion plate attached to a heat radiating portion of the heat pipe, wherein the heat receiving portion of the heat receiving portion The eccentric plane is embedded in the heat receiving plate so as to be substantially parallel to both sides in the width direction of the heat receiving plate, and the heat radiating portion is in a state where the uneven plane of the heat radiating portion is substantially parallel to both surfaces in the width direction of the heat diffusing plate. The heat dissipating fin is fixed along the width direction of the heat diffusing plate. The heat receiving portion is inserted into an insertion hole formed in the heat receiving plate, and the heat radiating portion is inserted into an insertion hole formed in the heat diffusion plate, respectively. It is preferable that each of the insertion holes is in close contact with the inner wall. It is preferable that the radiation fin has a honeycomb structure in which holes extend along a width direction of the heat diffusion plate.

【0012】[0012]

【作用】この発明によるヒートパイプは、それぞれ偏平
に加工された所定長さの受熱部と放熱部とを有し、前記
受熱部の偏平面と放熱部の偏平面とは、それぞれの長さ
方向の端面視において、一方が全長にわたりほぼ水平で
あるとき他方が全長にわたりほぼ垂直である状態に形成
されているので、複数のヒートパイプをそれらの受熱部
の偏平面が上下に向くように並べ、各受熱部へ共通の受
熱板を取り付けた場合、各ヒートパイプの放熱部はそれ
らの偏平面が平行した状態に並び、各放熱部には各別の
熱拡散板が取り付けられる。
The heat pipe according to the present invention has a flat shape.
Having a heat receiving portion and a heat radiating portion of a predetermined length processed into
The plane of the heat receiving section and the plane of the heat radiating section are
One end is almost horizontal over the entire length
Sometimes the other is almost vertical over its entire length
When a plurality of heat pipes are arranged so that the uneven planes of their heat receiving sections face up and down, and a common heat receiving plate is attached to each heat receiving section, the heat radiating section of each heat pipe has Each heat dissipating portion is provided with a separate heat diffusion plate.

【0013】したがって、この発明によるヒートパイプ
を使用した放熱器は、各ヒートパイプの放熱部における
熱拡散板の幅方向に沿うように送風した場合、各熱拡散
板及びそれらの熱拡散板に固定されている放熱フィンに
は、それぞれ別の空気が接触する。そのため、フィン効
率は相対的に向上し、熱抵抗及び通風抵抗はより小さく
なり、放熱性能もさらに向上する。
Therefore, the radiator using the heat pipe according to the present invention is fixed to each heat diffusion plate and the heat diffusion plate when the air is blown along the width direction of the heat diffusion plate in the heat radiation portion of each heat pipe. Different air comes into contact with the radiation fins. Therefore, the fin efficiency is relatively improved, the heat resistance and the ventilation resistance are smaller, and the heat dissipation performance is further improved.

【0014】また、受熱板の受熱面に複数の電子部品が
取り付けられていても、それらの電子部品が取り付けら
れている受熱面と直交する状態に、すなわち、放熱器に
おける各ヒートパイプの受熱部に別々の空気が当たるよ
うに送風することができるので、その放熱器の各ヒート
パイプの温度はほぼ等しくなり、したがって、電子部品
相互の間において取付位置の違いによる温度のバラツキ
をなくすることができる。
Even if a plurality of electronic components are mounted on the heat receiving surface of the heat receiving plate, the heat receiving portion of each heat pipe in the radiator is orthogonal to the heat receiving surface on which the electronic components are mounted. Can be blown so that different air hits each other, so that the temperature of each heat pipe of the radiator becomes almost equal, and therefore, it is possible to eliminate the temperature variation due to the difference in the mounting position between the electronic components. it can.

【0015】[0015]

【実施例】以下図1〜図6を参照しながら、この発明に
よるヒートパイプ,ヒートパイプ式放熱器及びその製造
方法の好ましい実施例を説明する。図1はこの発明によ
るヒートパイプ式放熱器の一実施例を示す正面図、図2
は図1のヒートパイプ式放熱器の側面図、図3は図1の
放熱器に使用されているヒートパイプの一部省略斜視
図、図4は図3のヒートパイプの受熱部又は放熱部を受
熱板又は熱拡散板の挿入孔へ挿入した状態の部分端面
図、図5は図4の状態から受熱部又は放熱部を膨張させ
た状態の部分端面図、図6はこの発明によるヒートパイ
プの他の実施例を示す一部省略斜視図、図7は従来のヒ
ートパイプ式放熱器を電子機器内の基板へ取り付けた状
態の部分側面図、図8は図7のヒートパイプ式放熱器の
正面図,図9はこの発明の実施例のヒートパイプ式放熱
器と従来の放熱器との放熱性能を比較した線グラフであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a heat pipe, a heat pipe type radiator and a method of manufacturing the same according to the present invention will be described below with reference to FIGS. FIG. 1 is a front view showing one embodiment of a heat pipe type radiator according to the present invention.
3 is a side view of the heat pipe type radiator of FIG. 1, FIG. 3 is a partially omitted perspective view of a heat pipe used in the radiator of FIG. 1, and FIG. 4 shows a heat receiving portion or a heat radiating portion of the heat pipe of FIG. FIG. 5 is a partial end view showing a state where the heat receiving plate or the heat diffusion plate is inserted into the insertion hole, FIG. 5 is a partial end view showing a state where the heat receiving portion or the heat radiating portion is expanded from the state shown in FIG. 4, and FIG. 7 is a partially omitted perspective view showing another embodiment, FIG. 7 is a partial side view showing a state in which a conventional heat pipe radiator is attached to a substrate in an electronic device, and FIG. 8 is a front view of the heat pipe radiator in FIG. FIG. 9 and FIG. 9 are line graphs comparing the heat radiation performance of the heat pipe type radiator according to the embodiment of the present invention and the conventional radiator.

【0016】図1及び図2のヒートパイプ式放熱器は、
横方向に並べられた4本のヒートパイプ1と、各ヒート
パイプ1の受熱部10に取り付けられた共通の受熱板2
と、各ヒートパイプ1の放熱部11へ各別に取り付けら
れた熱拡散板3と、各熱拡散板3に取り付けられた放熱
フィン4とによって構成されている。
The heat pipe radiator shown in FIGS. 1 and 2
Four heat pipes 1 arranged in a horizontal direction, and a common heat receiving plate 2 attached to a heat receiving portion 10 of each heat pipe 1
And heat diffusion plates 3 separately attached to the heat radiating portions 11 of the heat pipes 1 and radiation fins 4 attached to each heat diffusion plate 3.

【0017】各ヒートパイプ1は、外径16mm,肉厚1
mm,内面グルーブ付の図示しない銅製円筒状のヒートパ
イプを加圧し、図1〜図3のように偏平に加工したもの
で、図3のように、中央のねじれ部12を介して、長外
径(幅)w1=23mm弱,短外径(高さ)h1=4mmの
受熱部10と放熱部11から構成されており、全長L1
=210mmである。ヒートパイプ1の作動液は純水であ
る。そして、受熱部10の偏平面と放熱部11の偏平面
とは、それぞれの長さ方向の端面視において、一方が全
長にわたりほぼ水平であるとき他方が全長にわたりほぼ
垂直である状態にほぼ90°向きを異にしている。
Each heat pipe 1 has an outer diameter of 16 mm and a thickness of 1
mm, a copper cylindrical heat pipe with an inner groove (not shown) is pressurized and flattened as shown in FIGS. 1 to 3. As shown in FIG. It is composed of a heat receiving portion 10 and a heat radiating portion 11 having a diameter (width) w1 = less than 23 mm and a short outer diameter (height) h1 = 4 mm.
= 210 mm. The working fluid of the heat pipe 1 is pure water. One of the uneven plane of the heat receiving section 10 and the uneven plane of the heat radiating section 11 are all in the end view in the longitudinal direction.
When the other is almost horizontal over the length, the other is almost
The direction is almost 90 degrees different from the vertical state .

【0018】各ヒートパイプ1の受熱部10は、幅w2
=100mm,長さL2=70mm,肉厚t2=6mmのアル
ミニウム合金製の受熱板2へ埋め込まれ、また、各放熱
部11は、幅w3=46mm,長さL3=60.5mm,肉
厚t3=6mmのアルミニウム合金製の熱拡散板3へ埋め
込まれている。したがって、受熱部10の偏平面と受熱
板2の幅面、及び放熱部11の偏平面と熱拡散板3の幅
面は、それぞれ平行している。
The heat receiving portion 10 of each heat pipe 1 has a width w2
= 100 mm, length L2 = 70 mm, thickness t2 = 6 mm embedded in a heat receiving plate 2 made of an aluminum alloy, and each radiator 11 has a width w3 = 46 mm, a length L3 = 60.5 mm, and a thickness t3. = 6 mm embedded in a heat diffusion plate 3 made of an aluminum alloy. Therefore, the uneven plane of the heat receiving unit 10 and the width surface of the heat receiving plate 2, and the uneven plane of the heat radiation unit 11 and the width surface of the heat diffusion plate 3 are parallel to each other.

【0019】この実施例では、受熱部10と受熱板2、
及び放熱部11と熱拡散板3とを以下のような方法で相
互に固定している。図示しない円筒状のヒートパイプを
偏平なヒートパイプ1に加工するとき、図4で示すよう
に、受熱部10及び放熱部11が長外径=23mm強,短
外径h1=約3.5mmになるように加工する。他方、受
熱板2及び熱拡散板3には、長さ方向に沿って、幅w2
0=24mm,高さh20=4mmの挿入孔20,30をそ
れぞれ形成しておく。そして、受熱板2の挿入孔20に
は受熱部10を、また熱拡散板3の挿入孔30には放熱
部11をそれぞれ挿入し、これらを水平に保った状態で
170℃〜200℃に保たれた図示しない恒温槽に入れ
て加熱する。前述の加熱により、ヒートパイプ1内の作
動液が蒸発して内圧が高くなるため、偏平な受熱部10
及び放熱部11は円形になる方向へ、すなわち短外径h
1を拡大する方向(図4の上下方向)へ膨張する。この
膨張により、図5で示すように、受熱部10及び放熱部
11の偏平面は挿入孔20,30の幅方向の内壁面へ隙
間なく密着して、膨張を停止する。受熱部10及び放熱
部11の偏平面が挿入孔20,30の幅方向の内壁面へ
密着した段階で、これらを恒温槽から取り出す。
In this embodiment, the heat receiving unit 10 and the heat receiving plate 2
The heat radiating portion 11 and the heat diffusion plate 3 are fixed to each other by the following method. When processing a cylindrical heat pipe (not shown) into a flat heat pipe 1, as shown in FIG. 4, the heat receiving portion 10 and the heat radiating portion 11 have a longer outer diameter of 23 mm and a shorter outer diameter h1 of about 3.5 mm. Process so that it becomes. On the other hand, the heat receiving plate 2 and the heat diffusion plate 3 have a width w2 along the length direction.
Insert holes 20 and 30 each having 0 = 24 mm and a height h20 = 4 mm are formed. Then, the heat receiving portion 10 is inserted into the insertion hole 20 of the heat receiving plate 2 and the heat radiating portion 11 is inserted into the insertion hole 30 of the heat diffusion plate 3, and these are kept at 170 ° C. to 200 ° C. while keeping them horizontal. It is placed in a thermostat (not shown) and heated. The above-mentioned heating causes the working fluid in the heat pipe 1 to evaporate and increase the internal pressure.
And the heat radiating portion 11 is directed in a circular direction, that is, a short outer diameter h.
1 expands in the direction of enlargement (vertical direction in FIG. 4). Due to this expansion, as shown in FIG. 5, the uneven planes of the heat receiving portion 10 and the heat radiating portion 11 come into close contact with the inner wall surfaces of the insertion holes 20 and 30 in the width direction, and stop the expansion. When the uneven planes of the heat receiving portion 10 and the heat radiating portion 11 are in close contact with the inner wall surfaces of the insertion holes 20 and 30 in the width direction, these are taken out of the thermostat.

【0020】この実施例の各放熱フィン4は、アルミニ
ウム合金製のハニカム構造であり、ハニカム状の孔40
が各熱拡散板3の幅方向に沿うように、それぞれの熱拡
散板3へ熱伝導性の接着剤によって固着されている。ハ
ニカム状の孔40のサイズは縦4×横4.5mm、孔40
相互間の隔壁の肉厚t4は0.5mmである。また、孔4
0の数は各熱拡散板3の片側毎に24個、総計196個
である。熱拡散板3及び放熱フィン4の全部を合わせた
サイズは、縦L4=60.4mm,横w4=104mm,高
さh4=46mmである。
Each of the radiation fins 4 of this embodiment has a honeycomb structure made of an aluminum alloy, and has a honeycomb-shaped hole 40.
Are fixed to each heat diffusion plate 3 by a heat conductive adhesive so as to extend along the width direction of each heat diffusion plate 3. The size of the honeycomb-shaped hole 40 is 4 mm long × 4.5 mm wide, and the hole 40
The thickness t4 of the partition wall between them is 0.5 mm. Hole 4
The number of zeros is 24 for each side of each heat diffusion plate 3, that is, 196 in total. The total size of the heat diffusion plate 3 and the radiation fins 4 is L4 = 60.4 mm, W4 = 104 mm, and H4 = 46 mm.

【0021】この実施例のヒートパイプ式放熱器は、図
2のように、受熱板2の裏面を高熱伝導ゴム60を介し
て基板5上の発熱性の電子部品6へ接着して使用する。
電子部品6の熱は、受熱板2を介してヒートパイプ1の
受熱部10へ伝達され、受熱部10内の作動液の蒸発に
より放熱部11へ運ばれ、熱拡散板3を介して放熱フィ
ン4により空気中へ放散される。蒸気は凝縮して受熱部
10に戻る。
As shown in FIG. 2, the heat pipe radiator of this embodiment is used by bonding the back surface of the heat receiving plate 2 to the heat-generating electronic component 6 on the substrate 5 via the high thermal conductive rubber 60.
The heat of the electronic component 6 is transmitted to the heat receiving portion 10 of the heat pipe 1 via the heat receiving plate 2, is conveyed to the heat radiating portion 11 by evaporation of the working fluid in the heat receiving portion 10, and is radiated through the heat diffusing plate 3. 4 to be released into the air. The vapor condenses and returns to the heat receiving unit 10.

【0022】以上の実施例のヒートパイプ式放熱器であ
るサンプルAと、各部のサイズ及び材質が前記サンプル
Aと同一(ただし、放熱フィンの孔40’の数は96
個)であって、図7及び図8の従来のヒートパイプ式放
熱器であるサンプルBとを製造し、以下の要領で両サン
プルA,Bの放熱性能試験を実施した。その結果は、図
9のとおりであった。 (1). 図2及び図7の電子部品6を図示しないヒータに
代えた。 (2). サンブルAの放熱フィン4に対しては図2の矢印
bの方向から、サンプルBの放熱フィン4’に対しては
図8の矢印aの方向からぞれぞれ同じ能力のファンで送
風した。 (3). ヒータの発熱量を変化させ、ヒータ近傍の温度上
昇を調べた。
The sample A which is the heat pipe radiator of the above embodiment is the same as the sample A in the size and material of each part (however, the number of holes 40 'of the heat radiation fin is 96).
And a sample B, which is a conventional heat pipe radiator shown in FIGS. 7 and 8, was manufactured, and a heat radiation performance test was performed on both samples A and B in the following manner. The result was as shown in FIG. (1). The electronic component 6 in FIGS. 2 and 7 was replaced with a heater (not shown). (2). Fans having the same capacity are respectively provided for the radiating fins 4 of the sample A from the direction of the arrow b in FIG. 2 and for the radiating fins 4 'of the sample B from the direction of the arrow a of FIG. Blasted. (3). The heating value of the heater was changed and the temperature rise near the heater was examined.

【0023】例えば、電子部品6が発熱量100Wの半
導体素子(IGBT)である場合、限界温度(半導体素
子のケース温度)は40℃である。これを図8の結果に
当てはめると、この発明の実施例による放熱器であるサ
ンプルAの最大可能超負荷は約105Wであるのに対
し、従来の放熱器であるサンプルBの放熱器の最大可能
超負荷は約60Wであるので、サンプルAはサンプルB
と比べて約75%放熱性能が向上したことになる。
For example, when the electronic component 6 is a semiconductor element (IGBT) having a heating value of 100 W, the limit temperature (case temperature of the semiconductor element) is 40 ° C. Applying this to the results of FIG. 8, the maximum possible super load of the radiator sample A according to the embodiment of the present invention is about 105 W, whereas the maximum radiator of the conventional radiator sample B is about 105 W. Since the super load is about 60W, sample A is sample B
This means that the heat radiation performance is improved by about 75%.

【0024】前述の実施例のヒートパイプ式放熱器は、
従来のヒートパイプ式放熱器と比べると、図9の結果が
示すように放熱性能をはるかに向上させることができ
る。これは、ヒートパイプ1の受熱部10の偏平面と放
熱部11の偏平面とが、それぞれの長さ方向の端面視に
おいて、一方が全長にわたりほぼ水平であるとき他方が
全長にわたりほぼ垂直である状態にほぼ90°向きを異
にしていて、放熱部11や熱拡散板3及び受熱板へ同じ
空気が次々に接触することなく、フィン効率の向上及び
通風抵抗の減少や、放熱部分を通過する空気の温度上昇
がより小さいことによるものである。また、前述の実施
例のヒートパイプ式放熱器は、図2の矢印bの方向、す
なわち同図の設置状態において上下方向へ送風したい場
合に有用である。さらに、ヒートパイプ式放熱器を製造
する際に、ヒートパイプ1の受熱部10と受熱板2、及
び放熱部11と熱拡散板3とを、前述のような方法で相
互に固定することにより、受熱部10の偏平面と受熱板
2、及び放熱部11の偏平面と熱拡散板3とが隙間なく
密着するので、放熱性能をより一層向上させることがで
きる。
The heat pipe radiator of the above-described embodiment is
As compared with the conventional heat pipe radiator, the heat radiation performance can be much improved as shown in the results of FIG. This is a polarization plane of the heat-receiving portion 10 of the heat pipe 1 and the polarization plane of the radiating portion 11, the end view of the respective longitudinal
When one is almost horizontal over the entire length, the other is
The direction is almost 90 ° different in a state of being substantially vertical over the entire length, so that the same air does not successively contact the heat radiating portion 11, the heat diffusion plate 3, and the heat receiving plate, thereby improving the fin efficiency and reducing the ventilation resistance. This is because the temperature rise of the air passing through the heat radiating portion is smaller. Further, the heat pipe radiator of the above-described embodiment is useful when it is desired to blow air in the direction of arrow b in FIG. 2, that is, in the up and down direction in the installation state of FIG. Further, when the heat pipe type radiator is manufactured, the heat receiving portion 10 and the heat receiving plate 2 of the heat pipe 1 and the heat radiating portion 11 and the heat diffusion plate 3 are fixed to each other by the above-described method. Since the uneven plane of the heat receiving unit 10 and the heat receiving plate 2 and the uneven plane of the heat radiating unit 11 and the heat diffusion plate 3 are in close contact with each other without any gap, the heat radiation performance can be further improved.

【0025】前述の実施例のヒートパイプ1は、図3の
ように、偏平面の向きを90°異にする受熱部10と放
熱部11とがねじれ部12を介して連続しているが、受
熱部10と放熱部11とは、例えば図6のように所定長
さの円筒部13を介して連続する構造であっても差し支
えない。図6のヒートパイプ1は、受熱部10と放熱部
11の中間が強度を必要とする場合に特に有用である。
In the heat pipe 1 of the above-described embodiment, as shown in FIG. 3, the heat receiving portion 10 and the heat radiating portion 11 whose eccentric planes are different from each other by 90 ° are continuous via the twisted portion 12. The heat receiving unit 10 and the heat radiating unit 11 may have a structure that is continuous via a cylindrical portion 13 having a predetermined length as shown in FIG. 6, for example. The heat pipe 1 of FIG. 6 is particularly useful when the strength between the heat receiving part 10 and the heat radiating part 11 requires strength.

【0026】前述の実施例のヒートパイプ式放熱器で
は、放熱フィン4がハニカム構造であるが、このような
ハニカム構造の放熱フィンに代えて、プレート状やその
他の形状のフィンを使用することができる。
In the heat pipe type radiator of the above-described embodiment, the radiating fins 4 have a honeycomb structure. Instead of such radiating fins having a honeycomb structure, plate-shaped or other fins may be used. it can.

【0027】[0027]

【発明の効果】この発明によるヒートパイプ及びヒート
パイプ式放熱器は、フィン効率の向上や通風抵抗の減少
を図ることができることと、放熱部分を通過する空気の
温度上昇を抑えることができることとによって、従来の
ものより放熱性能がはるかに向上する。また、ヒートパ
イプの受熱部の偏平面と放熱部の偏平面とは、それぞれ
の長さ方向の端面視において、一方が全長にわたりほぼ
水平であるとき他方が全長にわたりほぼ垂直である状態
ほぼ90°向きを異にしているので、組み立てられた
放熱器の放熱部分に対して、受熱板と直交する方向へ送
風したいときに有用である。
According to the heat pipe and the heat pipe type radiator of the present invention, the fin efficiency can be improved and the ventilation resistance can be reduced, and the temperature rise of the air passing through the heat radiating portion can be suppressed. The heat radiation performance is much better than the conventional one. The uneven plane of the heat receiving part and the uneven plane of the heat radiating part of the heat pipe are respectively
In the end view in the longitudinal direction, one is almost over the entire length.
When horizontal, the other is almost vertical over its entire length
Since the directions of the heat sinks are different from each other by approximately 90 °, it is useful when it is desired to blow air to the heat radiating portion of the assembled radiator in a direction orthogonal to the heat receiving plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明によるヒートパイプ式放熱器の一実施
例を示す正面図である。
FIG. 1 is a front view showing an embodiment of a heat pipe radiator according to the present invention.

【図2】図1のヒートパイプ式放熱器の側面図である。FIG. 2 is a side view of the heat pipe radiator of FIG.

【図3】図1の放熱器に使用されているヒートパイプの
一部省略斜視図である。
FIG. 3 is a partially omitted perspective view of a heat pipe used in the radiator of FIG. 1;

【図4】図3のヒートパイプの受熱部又は放熱部を受熱
板又は熱拡散板の挿入孔へ挿入した状態の部分拡大端面
図である。
4 is a partially enlarged end view of the heat pipe of FIG. 3 in which a heat receiving portion or a heat radiating portion is inserted into an insertion hole of a heat receiving plate or a heat diffusion plate.

【図5】図4の状態から受熱部又は放熱部を膨張させた
状態の部分拡大端面図である。
FIG. 5 is a partially enlarged end view of a state where a heat receiving unit or a heat radiating unit is expanded from the state of FIG. 4;

【図6】この発明によるヒートパイプの他の実施例を示
す一部省略斜視図である。
FIG. 6 is a partially omitted perspective view showing another embodiment of the heat pipe according to the present invention.

【図7】従来のヒートパイプ式放熱器を電子機器内の基
板へ取り付けた状態の部分側面図である。
FIG. 7 is a partial side view showing a state in which a conventional heat pipe radiator is attached to a substrate in an electronic device.

【図8】図7のヒートパイプ式放熱器の正面図である。FIG. 8 is a front view of the heat pipe radiator of FIG. 7;

【図9】この発明の実施例のヒートパイプ式放熱器と従
来の放熱器との放熱性能を比較した線グラフである。
FIG. 9 is a line graph comparing the heat radiation performance of the heat pipe radiator according to the embodiment of the present invention and the conventional radiator.

【符号の説明】[Explanation of symbols]

1,1’ ヒートパイプ 10,10’ 受熱部 11,11’ 放熱部 12 ねじれ部 13 円筒部 2,2’ 受熱板 21 受熱板の脚 3,3’ 熱拡散板 2a,2b,3a,3b 割り型 4,4’ 放熱フィン 40,40’ ハニカム状の孔 5 基板 6 発熱性の電子部品 60 高熱伝導ゴム a,b 送風方向 1, 1 'heat pipe 10, 10' heat receiving portion 11, 11 'heat radiating portion 12 twisted portion 13 cylindrical portion 2, 2' heat receiving plate 21 leg of heat receiving plate 3, 3 'heat diffusion plate 2a, 2b, 3a, 3b Molds 4, 4 'Radiation fins 40, 40' Honeycomb-shaped holes 5 Substrate 6 Heat-generating electronic components 60 High thermal conductive rubber a, b Blowing direction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−101980(JP,A) 特開 平6−209178(JP,A) 特開 昭57−107062(JP,A) 特開 平1−224124(JP,A) 特開 平5−106978(JP,A) 特開 平4−124591(JP,A) 特公 昭63−61780(JP,B1) 特公 昭52−33346(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F28D 15/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-101980 (JP, A) JP-A-6-209178 (JP, A) JP-A-57-107062 (JP, A) JP-A-1- 224124 (JP, A) JP-A-5-106978 (JP, A) JP-A-4-124591 (JP, A) JP-B-63-6780 (JP, B1) JP-B-52-33346 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) F28D 15/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 それぞれ偏平に加工された所定長さの受
熱部と放熱部を有し、前記受熱部の偏平面と放熱部の偏
平面とは、それぞれの長さ方向の端面視において、一方
が全長にわたりほぼ水平であるとき他方が全長にわたり
ほぼ垂直である状態に形成されていることを特徴とす
る、ヒートパイプ。
1. A heat receiving portion and a heat radiating portion each having a predetermined length, each of which is formed into a flat shape , wherein one of the flat surface of the heat receiving portion and the flat surface of the heat radiating portion is one when viewed from an end face in the longitudinal direction.
Is almost horizontal over the entire length
A heat pipe characterized by being formed substantially vertically .
【請求項2】 前記受熱部と放熱部との間に所定長さの
円筒部を有することを特徴とする、請求項1に記載の
ートパイプ。
2. The heat pipe according to claim 1 , further comprising a cylindrical portion having a predetermined length between the heat receiving portion and the heat radiating portion.
【請求項3】 請求項1又は2に記載のヒートパイプ
と、このヒートパイプの受熱部へ取り付けられた受熱板
と、前記ヒートパイプの放熱部へ取り付けられた熱拡散
板とを備え、前記受熱部は当該受熱部の偏平面が前記受
熱板の幅方向の両面とほぼ平行する状態に当該受熱板へ
埋め込まれ、前記放熱部は当該放熱部の偏平面が前記熱
拡散板の幅方向の両面とほぼ平行する状態に当該熱拡散
板へ埋め込まれ、前記熱拡散板には幅方向に沿って放熱
フィンが固定されていることを特徴とする、ヒートパイ
プ式放熱器。
3. A heat pipe comprising: the heat pipe according to claim 1; a heat receiving plate attached to a heat receiving portion of the heat pipe; and a heat diffusion plate attached to a heat radiating portion of the heat pipe. The portion is embedded in the heat receiving plate such that the uneven plane of the heat receiving portion is substantially parallel to both surfaces in the width direction of the heat receiving plate. A heat pipe type radiator, wherein the heat diffusion plate is embedded in the heat diffusion plate substantially in parallel with the heat diffusion plate, and radiating fins are fixed to the heat diffusion plate along the width direction.
【請求項4】 前記受熱部は前記受熱板に形成された挿
入孔へ、前記放熱部は前記熱拡散板に形成された挿入孔
へそれぞれ挿入され、前記受熱部の両偏平面及び前記放
熱部の両偏平面は前記それぞれの挿入孔の内壁へ密着さ
れていることを特徴とする、請求項3に記載のヒートパ
イプ式放熱器。
4. The heat receiving portion is inserted into an insertion hole formed in the heat receiving plate, and the heat radiating portion is inserted into an insertion hole formed in the heat diffusion plate, respectively. The heat pipe type radiator according to claim 3, wherein both the flat surfaces are closely attached to an inner wall of each of the insertion holes.
【請求項5】 前記放熱フィンは、孔が前記熱拡散板の
幅方向に沿う状態のハニカム構造である、請求項3又は
4に記載のヒートパイプ式放熱器。
5. The heat pipe radiator according to claim 3, wherein the heat radiation fin has a honeycomb structure in which holes extend along a width direction of the heat diffusion plate.
JP35272193A 1993-12-28 1993-12-28 Heat pipe and heat pipe radiator Expired - Lifetime JP3334308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35272193A JP3334308B2 (en) 1993-12-28 1993-12-28 Heat pipe and heat pipe radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35272193A JP3334308B2 (en) 1993-12-28 1993-12-28 Heat pipe and heat pipe radiator

Publications (2)

Publication Number Publication Date
JPH07198279A JPH07198279A (en) 1995-08-01
JP3334308B2 true JP3334308B2 (en) 2002-10-15

Family

ID=18425984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35272193A Expired - Lifetime JP3334308B2 (en) 1993-12-28 1993-12-28 Heat pipe and heat pipe radiator

Country Status (1)

Country Link
JP (1) JP3334308B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE554361T1 (en) * 2009-04-28 2012-05-15 Abb Research Ltd HEAT PIPE WITH TWISTED TUBE
EP2246654B1 (en) 2009-04-29 2013-12-11 ABB Research Ltd. Multi-row thermosyphon heat exchanger
KR101240101B1 (en) 2009-06-23 2013-03-06 미쓰비시덴키 가부시키가이샤 Transformer
JP5787645B2 (en) * 2011-07-05 2015-09-30 古河電気工業株式会社 Heat pipe having reinforcing structure and heat exchanger using the same

Also Published As

Publication number Publication date
JPH07198279A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP3268734B2 (en) Method of manufacturing electronic device heat radiation unit using heat pipe
JP4939214B2 (en) Heat spreader
US5409055A (en) Heat pipe type radiation for electronic apparatus
US7140422B2 (en) Heat sink with heat pipe in direct contact with component
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
US7331185B2 (en) Heat radiator having a thermo-electric cooler
US6862183B2 (en) Composite fins for heat sinks
CA2620479A1 (en) Heat exchanger for thermoelectric applications
JP2004063553A (en) Cooling system and electronics apparatus equipped therewith
JP3334308B2 (en) Heat pipe and heat pipe radiator
US20050133199A1 (en) Heat sink with heat pipes
JPH07243782A (en) Heat pipe type radiator
JP4707840B2 (en) Radiator and manufacturing method thereof
JP3438944B2 (en) Heat pipe type heat radiating unit and manufacturing method thereof
JPH10270616A (en) Apparatus for radiating heat of electronic components
US6636423B2 (en) Composite fins for heat sinks
JPH04294570A (en) Heat sink
CN114096134A (en) Radiator and electronic equipment
JP2004047789A (en) Heat sink
JP2558578B2 (en) Heat dissipation device for heating element
CN107534030B (en) Heat sink including heat pipe and related methods
JP2002076224A (en) Heat dissipating device
CN216752585U (en) Radiator and electronic equipment
JP3454761B2 (en) Cooling apparatus and cooling method for electronic equipment
JP3100713U (en) Heat dissipation fin module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

EXPY Cancellation because of completion of term