JP3438944B2 - Heat pipe type heat radiating unit and manufacturing method thereof - Google Patents

Heat pipe type heat radiating unit and manufacturing method thereof

Info

Publication number
JP3438944B2
JP3438944B2 JP09989694A JP9989694A JP3438944B2 JP 3438944 B2 JP3438944 B2 JP 3438944B2 JP 09989694 A JP09989694 A JP 09989694A JP 9989694 A JP9989694 A JP 9989694A JP 3438944 B2 JP3438944 B2 JP 3438944B2
Authority
JP
Japan
Prior art keywords
heat
pipe
transfer plate
heat pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09989694A
Other languages
Japanese (ja)
Other versions
JPH07147358A (en
Inventor
順二 素谷
末美 田中
雅章 山本
健造 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP09989694A priority Critical patent/JP3438944B2/en
Publication of JPH07147358A publication Critical patent/JPH07147358A/en
Application granted granted Critical
Publication of JP3438944B2 publication Critical patent/JP3438944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To reduce the thickness of a heat transferring plate so as to reduce the weight and thickness of a heat pipe type heat radiating unit as a whole by press-fixing both surfaces along the longitudinal axes of some or all heat pipes inserted into pipe inserting holes of the heat transferring plate to internal surfaces of the holes along the longitudinal axes of the holes. CONSTITUTION:In a heat transferring plate 2, pipe inserting holes 20 having flat (or elliptic) cross sections are formed at nearly equal intervals. The evaporating sections 10 of heat pipes 1 inserted into and fixed to the holes 20 have flat (or elliptic) cross sections and their both surfaces along their longitudinal axes r1 are press-fixed to the upper and lower internal surfaces of the holes 20 along the longitudinal axes R1 of the holes 20. The condensing sections 11 of the pipes 1 are fitted with heat radiating plates 3. The heat generated by heat generating parts is transferred to the evaporating sections 10 of the pipes 1 through the plate 2, evaporates a working fluid in the sections 10, is carried to the low-temperature and low-pressure condensing sections 11 by the vapor of the working fluid, and is discharged to the outside air through heat radiating fins 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子機器内に実装さ
れたLSIなどの発熱部品を冷却するためのヒートパイ
プ式放熱ユニット、及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe type heat radiating unit for cooling a heat generating component such as an LSI mounted in an electronic device, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】電子機器内の過熱を防止する手段とし
て、従来は多くの場合空冷ファンによる強制空冷方式が
採用されていた。しかしながら、最近の電子機器では、
LSI(大規模集積回路)などの発熱部品が高密度に実
装されていて、機器内の発熱量が著しく増大する傾向に
あるため、空冷ファンによる方式では冷却能力に限界が
ある。しかも、電子機器の小型化に伴って装置内での放
熱ユニットの実装スペースはますます狭くなっているの
で、電子機器内での熱放散は極めて困難な状況になりつ
つある。
2. Description of the Related Art Conventionally, in many cases, a forced air cooling system using an air cooling fan has been adopted as a means for preventing overheating in electronic equipment. However, in recent electronic devices,
Since heat-generating components such as LSIs (Large Scale Integrated Circuits) are mounted at high density and the amount of heat generated in the device tends to increase significantly, the cooling capacity of the air-cooled fan method is limited. Moreover, since the mounting space of the heat dissipation unit in the device is becoming narrower with the downsizing of the electronic device, it is becoming extremely difficult to dissipate the heat in the electronic device.

【0003】発明者らは前述のような状況に鑑み、細径
のヒートパイプを利用した小型で冷却能力の高い放熱ユ
ニットを既に提案している(特願平4−105382
号)。図10および図11は、発明者らが提案したヒー
トパイプ式放熱ユニットの斜視図および側面図である。
In view of the above situation, the inventors have already proposed a small heat dissipation unit using a small-diameter heat pipe and having a high cooling capacity (Japanese Patent Application No. 4-105382).
issue). 10 and 11 are a perspective view and a side view of the heat pipe type heat dissipation unit proposed by the inventors.

【0004】この放熱ユニットは、短軸方向の外径が
1.5mm程度の2本の偏平な断面のヒートパイプ1と、
各ヒートパイプ1の蒸発部10と凝縮部11に取り付け
られた伝熱板8,9と、伝熱板9の両面に取り付けた放
熱フィン30とによって構成されている。蒸発部側の伝
熱板8は平板状の本体80及び蓋体81から構成され、
図12のように、本体80の表面に形成された溝82内
にヒートパイプ1の蒸発部10を挿入し、溝82内の内
壁とヒートパイプ1の蒸発部10との間隙内に半田83
を溶かし込み、その上に蓋体81を被せて半田83で固
定している。
This heat dissipating unit includes two heat pipes 1 each having a flat cross section with an outer diameter of about 1.5 mm in the minor axis direction.
The heat pipes 8 and 9 are attached to the evaporating portion 10 and the condensing portion 11 of each heat pipe 1, and the radiation fins 30 are attached to both surfaces of the heat transmitting plate 9. The heat transfer plate 8 on the evaporator side is composed of a flat plate-shaped main body 80 and a lid 81,
As shown in FIG. 12, the evaporation portion 10 of the heat pipe 1 is inserted into the groove 82 formed on the surface of the main body 80, and the solder 83 is inserted into the gap between the inner wall of the groove 82 and the evaporation portion 10 of the heat pipe 1.
Is melted, a lid 81 is covered on it, and it is fixed with solder 83.

【0005】凝縮部側の伝熱板9は、アルミニウム製の
2枚の板を半田により貼り合わせた厚さ3.5mm程度の
平板であり、その一方または双方の板に形成した溝部内
にヒートパイプ1の凝縮部11を挿入して半田により固
定している。伝熱板9の両面へ半田付けにより固着され
ている放熱フィン30,30は、平板状のフィン部材と
矩形波状にプレス加工した同一形状の二つのフィン部材
とを交互に積層し、ロウ付けなどで固着したものであ
る。
The heat transfer plate 9 on the side of the condenser is a flat plate having a thickness of about 3.5 mm obtained by bonding two aluminum plates together by soldering, and heat is placed in the groove formed in one or both of the plates. The condenser portion 11 of the pipe 1 is inserted and fixed by soldering. The radiating fins 30 and 30 fixed to both surfaces of the heat transfer plate 9 by soldering are formed by alternately laminating a plate-shaped fin member and two fin members of the same shape pressed into a rectangular wave shape and brazing. It is fixed in.

【0006】以上ように構成されたヒートパイプ式放熱
ユニットは、図11のように、本体80の裏面へ熱伝導
性のよい高熱伝導ゴム6を介してプリント基板7の上の
LSI等の発熱部品5へ接触させ、この状態で伝熱板8
をプリント基板7へ取り付けて使用される。図10及び
図11のような取り付け状態においては、伝熱板8の本
体80及び高熱伝導ゴム6により吸熱部が構成され、伝
熱板9と放熱フィン30により放熱部が構成される。
As shown in FIG. 11, the heat pipe type heat radiating unit configured as described above has a heat generating component such as an LSI on a printed circuit board 7 via a high heat conductive rubber 6 having good heat conductivity to the back surface of the main body 80. 5 and the heat transfer plate 8 in this state
Is attached to the printed circuit board 7 for use. In the mounted state as shown in FIGS. 10 and 11, the main body 80 of the heat transfer plate 8 and the high thermal conductive rubber 6 form a heat absorbing part, and the heat transfer plate 9 and the heat radiating fins 30 form a heat radiating part.

【0007】図10及び図11の取り付け状態におい
て、LSI等の発熱部品5で発生した熱は高熱伝導ゴム
6を経て伝熱板8に伝わり、ヒートパイプ1の蒸発部1
0を加熱して内部に封入されている作動液を蒸発させ
る。この作動液の蒸発により、ヒートパイプ1の蒸発部
10内の蒸気圧が高まり、圧力の低い凝縮部11へと蒸
気流が生じる。凝縮部11へ移動した蒸気の熱は、伝熱
板9を経て放熱フィン30に伝わり、空気と接触する放
熱フィン30の全表面から大気中に放散される。
In the mounted state of FIGS. 10 and 11, the heat generated in the heat-generating component 5 such as an LSI is transferred to the heat transfer plate 8 via the high heat conductive rubber 6, and the evaporation section 1 of the heat pipe 1 is transferred.
0 is heated to evaporate the working fluid sealed inside. Due to the evaporation of the working liquid, the vapor pressure in the vaporization section 10 of the heat pipe 1 increases, and a vapor flow is generated in the condensation section 11 having a low pressure. The heat of the vapor that has moved to the condensing unit 11 is transmitted to the radiating fins 30 via the heat transfer plate 9, and is dissipated into the atmosphere from the entire surface of the radiating fins 30 in contact with air.

【0008】伝熱板9は、ヒートパイプ1の凝縮部11
からの熱を拡散してヒートパイプ1から遠い部分にも伝
えることが出来るため、その全体がほとんど均一な温度
になる。伝熱板9に取り付けられている放熱フィン30
は、単位体積当たりの表面積が極めて大きく、しかも
熱板9の表面から、図11における上部の放熱フィン3
0の上面まで、及び下部の放熱フィン30の下面までの
それぞれの距離は小さい。したがって、放熱フィン30
の伝熱板9から最も遠い部分でも大きな温度降下は生じ
ず、放熱フィン30は全体がほとんど均一な温度になる
ため、その表面積が大きくなった分だけ放熱効果が向上
する。このような理由によって、発明者らが提案した図
10及び図11のヒートパイプ式放熱ユニットは、比較
的小型でも放熱性能を著しく向上させ得るという効果を
奏するものであった。
The heat transfer plate 9 is a condenser portion 11 of the heat pipe 1.
Since the heat from the heat pipe 1 can be diffused and transmitted to the part far from the heat pipe 1, the temperature of the whole becomes almost uniform. Radiating fins 30 attached to the heat transfer plate 9
, The surface area per unit volume is very large and Den
From the surface of the heat plate 9 to the upper radiation fin 3 in FIG.
The distances to the upper surface of 0 and the lower surface of the lower radiation fin 30 are small. Therefore, the radiation fin 30
A large temperature drop does not occur even in the part farthest from the heat transfer plate 9 and the entire heat dissipation fin 30 has a substantially uniform temperature, so that the heat dissipation effect is improved by the increase in the surface area. For these reasons, the heat pipe type heat radiating unit of FIGS. 10 and 11 proposed by the inventors has an effect that the heat radiating performance can be remarkably improved even if it is relatively small.

【0009】[0009]

【発明が解決しようとする課題】ところで、前述のヒー
トパイプ式放熱ユニットにおける伝熱板8の本体80と
蓋体81及びヒートパイプ1の蒸発部は、前述のように
半田83によって固定している。しかし、半田付けによ
るヒートパイプへの伝熱板の固定方法では、半田は重い
ので、半田層が厚い場合には放熱ユニットの重量が増大
するとか、あるいは、本体80と蓋体81の間からの半
田83のはみ出しにより外観を損なうという問題があ
る。他方、放熱ユニットの重量を軽くするために半田層
を薄くすると、放熱ユニットを製造する際に半田83の
層の各部にボイド84が発生し易い。これらのボイド8
4により、伝熱板とヒートパイプ1との接触部の熱抵抗
が大きくなるとともに、熱抵抗のバラツキが生じるので
放熱性能の低下を招く。
By the way, the main body 80 of the heat transfer plate 8, the lid 81 and the evaporation portion of the heat pipe 1 in the heat pipe type heat dissipation unit are fixed by the solder 83 as described above. . However, in the method of fixing the heat transfer plate to the heat pipe by soldering, since the solder is heavy, if the solder layer is thick, the weight of the heat dissipating unit may increase, or the space between the main body 80 and the lid 81 may be increased. There is a problem that the appearance of the solder 83 is impaired by the protrusion of the solder 83. On the other hand, if the solder layer is thinned in order to reduce the weight of the heat dissipation unit, voids 84 are likely to occur in each part of the layer of the solder 83 when manufacturing the heat dissipation unit. These void 8
4, the thermal resistance of the contact portion between the heat transfer plate and the heat pipe 1 is increased, and the thermal resistance varies, so that the heat radiation performance is deteriorated.

【0010】また、既に説明したように、電子機器の軽
量化,小型化に伴って、この種の放熱ユニットはより軽
量化,小型化することが要請されている。しかしなが
ら、放熱ユニットの軽量化及び小型化を図るために、図
12のように平板状の本体80と蓋体81とを例えばア
ルミニウム又はアルミニウム合金によって製造し、本体
80と蓋体81とでヒートパイプ1を挟んで固定する場
合、以下のような理由によって伝熱板8をある程度以下
に小型(薄型)化することができなかった。
Further, as described above, as the weight and size of electronic equipment have been reduced, it has been required to reduce the weight and size of this type of heat dissipation unit. However, in order to reduce the weight and size of the heat dissipation unit, as shown in FIG. 12, a flat plate-shaped main body 80 and a lid 81 are made of, for example, aluminum or an aluminum alloy, and the main body 80 and the lid 81 form a heat pipe. In the case of fixing with sandwiching 1, the heat transfer plate 8 could not be made smaller (thinner) to a certain extent or less for the following reason.

【0011】その理由の第1は、本体80と蓋体81を
あまり薄くすると、伝熱板8が経時的に変形したり、ヒ
ートパイプ1と伝熱板8との接合部が経時的に剥離し易
くなることである。その理由の第2は、伝熱板8と発熱
部品5との間の密着性を良くして両者間の熱伝達の低下
を防止するために、本体80,蓋体81及びヒートパイ
プ1とを半田付けした後、本体80の発熱部品8を接触
させる面を切削により平滑に加工する必要があるが、本
体80と蓋体81をあまり薄くすると、前述の切削加工
が不可能ないし困難になることである。すなわち、伝熱
板8を図示しないバイトで固定して前述のように切削加
工する際、蓋体81が変形したり、あるいは、本体80
と蓋体81とが剥離することがある。
The first reason is that if the main body 80 and the lid 81 are too thin, the heat transfer plate 8 is deformed with time, or the joint between the heat pipe 1 and the heat transfer plate 8 is separated with time. It is easy to do. The second reason is that the main body 80, the lid 81, and the heat pipe 1 are connected to each other in order to improve the adhesion between the heat transfer plate 8 and the heat-generating component 5 and prevent the heat transfer between them from decreasing. After soldering, it is necessary to machine the surface of the main body 80 in contact with the heat-generating component 8 by cutting, but if the main body 80 and the lid 81 are too thin, the above-mentioned cutting process becomes impossible or difficult. Is. That is, when the heat transfer plate 8 is fixed with a cutting tool (not shown) and is cut as described above, the lid 81 is deformed or the main body 80 is
The lid 81 may peel off.

【0012】他方、伝熱板を図10〜図12のような貼
り合わせ構造でなく、アルミニウム又はアルミニウム合
金によって一体成形したり、ヒートパイプ1に取り付け
る前に予め一体化しておけば、その伝熱板の強度は向上
するのでより薄型にすることができるが、この場合には
他の問題が生じる。すなわち、一体化された伝熱板にヒ
ートパイプを固定するには、従来の技術では、伝熱板の
厚み部分にパイプ挿入孔を形成し、このパイプ挿入孔に
ヒートパイプを挿入して、ヒートパイプ表面とパイプ挿
入孔の内壁との隙間に半田を流し込む方法によるが、例
えば材質をアルミニウムとする場合には、その表面に形
成されている酸化層が半田の付着を阻害するため、ヒー
トパイプ表面とパイプ挿入孔の内壁との間にボイドが多
く発生する。このボイドにより、前述のように熱抵抗が
大きくなり、ユニットの放熱性能を低下させる。また、
ボイドが発生しないようにヒートパイプをパイプ挿入孔
内に固定するためには、パイプ挿入孔を大きくして流し
込む半田の量をより多くしなければならないが、半田の
増量によって放熱ユニットの重量が増大し、しかも、パ
イプ挿入孔を大きくする必要によって伝熱板の厚みも大
きくしなければならないので、伝熱板の薄型化は図れな
くなる。
On the other hand, if the heat transfer plate is not formed by the laminated structure as shown in FIGS. 10 to 12 and is integrally formed of aluminum or aluminum alloy, or if it is integrated in advance before being attached to the heat pipe 1, the heat transfer is performed. Since the strength of the plate is improved, it can be made thinner, but in this case, another problem occurs. That is, in order to fix the heat pipe to the integrated heat transfer plate, in the conventional technique, a pipe insertion hole is formed in the thickness portion of the heat transfer plate, and the heat pipe is inserted into this pipe insertion hole to heat the heat transfer plate. Depending on the method of pouring the solder into the gap between the pipe surface and the inner wall of the pipe insertion hole, when the material is aluminum, for example, the oxide layer formed on the surface hinders the adhesion of the solder, so the heat pipe surface Many voids are generated between the inner wall of the pipe and the inner wall of the pipe insertion hole. The voids increase the thermal resistance as described above and reduce the heat dissipation performance of the unit. Also,
In order to fix the heat pipe in the pipe insertion hole so that voids do not occur, it is necessary to enlarge the pipe insertion hole to increase the amount of solder to be poured, but the increased amount of solder increases the weight of the heat dissipation unit. In addition, since it is necessary to increase the thickness of the heat transfer plate due to the necessity of enlarging the pipe insertion hole, it is impossible to reduce the thickness of the heat transfer plate.

【0013】例えば、ノート形パーソナルコンピュータ
内に実装されたLSI冷却用の放熱ユニットなどは、小
型化のために伝熱板を薄型(例えば3mm以下)にする必
要があるが、このように薄型の伝熱板の厚み部分に形成
されたパイプ挿入孔に細径のヒートパイプを挿入し、そ
のヒートパイプを半田付けによって、前述のようなボイ
ドが少なくて熱抵抗が高くならないように固定しようと
すれば、ヒートパイプをその短軸が一層小さくなるよう
に偏平に加工する必要がある。しかし、細径のヒートパ
イプをその短軸があまり小さくなるように偏平にする
と、その偏平部分における熱輸送量が著しく低下すると
いう問題が発生する。前述のような伝熱板8とヒートパ
イプ1との固定に関する種々の問題点は、他の伝熱板9
とヒートパイプ1との固定に関してもそのまま当てはま
る。
For example, in a heat dissipation unit for cooling an LSI mounted in a notebook personal computer, a heat transfer plate needs to be thin (for example, 3 mm or less) for downsizing. Insert a small-diameter heat pipe into the pipe insertion hole formed in the thickness part of the heat transfer plate, and solder the heat pipe to fix it so that the above-mentioned voids are few and the heat resistance does not become high. For example, it is necessary to process the heat pipe into a flat shape so that its short axis becomes smaller. However, if a small-diameter heat pipe is flattened so that its short axis becomes too small, there arises a problem that the heat transport amount in the flattened portion is significantly reduced. Various problems relating to the fixing of the heat transfer plate 8 and the heat pipe 1 as described above are caused by other heat transfer plates 9
The same applies to the fixing of the heat pipe 1 with the heat pipe 1.

【0014】この発明の目的は、伝熱板の厚さをより薄
くして全体の軽量化,薄型化を図ることができるヒート
パイプ式放熱ユニットを提供することにある。この発明
の他の目的は、厚さの薄い伝熱板とヒートパイプとの間
の熱抵抗がより小さいヒートパイプ式放熱ユニットを提
供することにある。この発明のさらに他の目的は、一体
成形され又は予め一体化されたより薄型の伝熱板を使用
した場合に、熱抵抗が大きくならないように伝熱板とヒ
ートパイプとを固定することができ、しかも大量生産に
適したヒートパイプ式放熱ユニットの製造方法を提供す
ることにある。
An object of the present invention is to provide a heat pipe type heat dissipation unit in which the thickness of the heat transfer plate can be made thinner to reduce the overall weight and thickness. Another object of the present invention is to provide a heat pipe type heat dissipation unit having a small thermal resistance between a heat transfer plate having a small thickness and a heat pipe. Still another object of the present invention is to fix a heat transfer plate and a heat pipe so that thermal resistance does not become large when using a thinner heat transfer plate that is integrally molded or previously integrated, Moreover, it is to provide a manufacturing method of a heat pipe type heat dissipation unit suitable for mass production.

【0015】[0015]

【課題を解決するための手段】この発明によるヒートパ
イプ式放熱ユニットは、前述の目的を達成するため、伝
熱板に一本又は数本のヒートパイプを取り付け、前記伝
熱板を介して電子機器の発熱部品と前記ヒートパイプと
で熱交換を行うヒートパイプ式放熱ユニットにおいて、
前記伝熱板の厚み部分には長軸が当該伝熱板の一面と沿
うようにほぼ偏平ないし長円形の断面のパイプ挿入孔が
形成され、前記パイプ挿入孔には前記ヒートパイプの少
なくとも一部が挿入され、前記パイプ挿入孔に挿入され
ている前記ヒートパイプの被挿入部は、その断面がほぼ
偏平ないし長円形に形成され、かつ、その長軸に沿う両
表面が前記パイプ挿入孔の長軸に沿う内壁面へほぼ均一
な密着状態に圧着されていることを特徴としている。
In order to achieve the above-mentioned object, a heat pipe type heat dissipation unit according to the present invention has one or several heat pipes attached to a heat transfer plate, and an electronic device via the heat transfer plate. In a heat pipe type heat dissipation unit for exchanging heat with heat generating parts of the equipment and the heat pipe,
A pipe insertion hole having a substantially flat or oval cross section is formed in a thickness portion of the heat transfer plate so that a long axis extends along one surface of the heat transfer plate, and at least a part of the heat pipe is formed in the pipe insertion hole. Is inserted, and the inserted portion of the heat pipe inserted into the pipe insertion hole is formed such that its cross section has a substantially flat or oval shape, and both surfaces along the long axis thereof have a long length of the pipe insertion hole. Almost uniform on the inner wall surface along the axis
It is characterized in that it is crimped in a close contact state .

【0016】前記パイプ挿入孔に挿入されているヒート
パイプの被挿入部は、短軸/長軸=0.6以下であり、
かつ短軸1.5mm以上であるのが望ましい。前記伝熱板
は、押出成形その他の塑性加工又は鋳造あるいは機械加
工などによって製造することができるが、押出形材で構
成されているのが好ましく、また、その厚さは2.5mm
以上であるのが望ましい。前記パイプ挿入孔に挿入され
ているヒートパイプの被挿入部は、その長軸に沿う片表
面又は両表面が薄い半田(例えばSn−Zn系)層を介して
前記パイプ挿入孔の前記内壁面へ密着されていても差し
支えない。前記放熱ユニットにおいて、ヒートパイプの
一部が前記伝熱板のパイプ挿入孔に挿入されている場合
には、そのヒートパイプの他の部分の全部又は一部に使
用状態において放熱フィンを取り付ける。前記放熱ユニ
ットにおいて、ヒートパイプの全部が前記伝熱板のパイ
プ挿入孔に挿入されている場合には、前記伝熱板の一部
に放熱フィンを取り付けるのが好ましい。
The inserted portion of the heat pipe inserted into the pipe insertion hole has a minor axis / long axis = 0.6 or less,
Moreover, it is desirable that the minor axis is 1.5 mm or more. The heat transfer plate can be manufactured by extrusion molding or other plastic working, casting, machining, or the like, but is preferably made of an extruded shape and has a thickness of 2.5 mm.
The above is desirable. The inserted portion of the heat pipe inserted into the pipe insertion hole has one surface or both surfaces along the long axis of the heat pipe to the inner wall surface of the pipe insertion hole via a thin solder (for example, Sn-Zn system) layer. It does not matter if they are closely attached. In the heat dissipation unit, when a part of the heat pipe is inserted into the pipe insertion hole of the heat transfer plate, the heat dissipation fin is attached to all or a part of the other part of the heat pipe in a used state. In the heat dissipation unit, when all of the heat pipes are inserted into the pipe insertion holes of the heat transfer plate, it is preferable to attach a heat dissipation fin to a part of the heat transfer plate.

【0017】この発明によるヒートパイプ式放熱ユニッ
トの製造方法は、前述の目的を達成するため、伝熱板に
一本又は複数本のヒートパイプを取り付け、前記伝熱板
を介して電子機器の発熱部品と前記ヒートパイプとで熱
交換を行うヒートパイプ式放熱ユニットの製造方法にお
いて、前記伝熱板の厚み部分に長軸がその伝熱板の一面
とほぼ平行する状態に形成された偏平ないし長円形の断
面のパイプ挿入孔に、前記ヒートパイプの一部又は全部
を含む偏平ないし長円形の断面の被挿入部を、当該被挿
入部の長軸が前記パイプ挿入孔の長軸とほぼ沿う状態に
挿入する工程と、前記ヒートパイプを加熱して前記被挿
入部を短軸方向へ拡管させることにより、当該被挿入部
の長軸に沿う両表面を前記パイプ挿入孔の長軸に沿う内
壁面へ圧着する工程とを含むことを特徴としている。
In order to achieve the above-mentioned object, the method of manufacturing a heat pipe type heat dissipation unit according to the present invention has one or a plurality of heat pipes attached to a heat transfer plate, and heat generated from an electronic device through the heat transfer plate. In a method of manufacturing a heat pipe type heat dissipation unit for exchanging heat between a component and the heat pipe, a flat or long member having a major axis formed in a thickness portion of the heat transfer plate substantially parallel to one surface of the heat transfer plate. In the pipe insertion hole having a circular cross section, the inserted portion having a flat or oval cross section including a part or all of the heat pipe, and the long axis of the insertion portion being substantially along the long axis of the pipe insertion hole. And a step of inserting the inserted portion into the short axis direction by heating the heat pipe, thereby forming both surfaces along the long axis of the inserted portion on the inner wall surface along the long axis of the pipe insertion hole. Work to crimp to It is characterized in that it comprises and.

【0018】前述の製造方法において、ヒートパイプの
一部又は全部が含まれる被挿入部は、内部に作動液を封
入した後又は作動液を封入する前に、その断面が伝熱板
のパイプ挿入孔よりもやや小さなサイズになる状態に予
め偏平ないし長円形になるように加工しておく。
In the above-mentioned manufacturing method, the inserted portion including a part or the whole of the heat pipe has a cross section of a pipe having a heat transfer plate after the working fluid is sealed therein or before the working fluid is sealed therein. The flattened or oval shape is processed in advance so that the size is slightly smaller than the hole.

【0019】伝熱板には、一体成形されあるいは予め一
体化加工されたものが使用される。この伝熱板には前記
パイプ挿入孔を機械的手段によって形成してもよいが、
長さ方向に前記パイプ挿入孔が形成される状態で長尺板
を押出成形し、この長尺板を適当な寸法に切断して伝熱
板として使用するのが好ましい。伝熱板及びヒートパイ
プのサイズが小さい場合には、ヒートパイプを加熱する
ときに、伝熱板のパイプ挿入孔にヒートパイプを挿入
し、この状態で前記伝熱板を適当な保持具で拘束した状
態で加熱するのが好ましい。ヒートパイプの加熱は、そ
のヒートパイプのみを加熱してもよく、あるいはそのヒ
ートパイプを前記伝熱板とともに加熱してもよい。
As the heat transfer plate, one integrally molded or previously integrally processed is used. Although the pipe insertion hole may be formed in this heat transfer plate by mechanical means,
It is preferable to extrude a long plate in a state where the pipe insertion hole is formed in the length direction and cut the long plate to an appropriate size to use as a heat transfer plate. When the heat transfer plate and heat pipe are small in size, insert the heat pipe into the pipe insertion hole of the heat transfer plate when heating the heat pipe, and restrain the heat transfer plate with an appropriate holder in this state. It is preferable to heat in this state. For heating the heat pipe, only the heat pipe may be heated, or the heat pipe may be heated together with the heat transfer plate.

【0020】ヒートパイプの凝縮部に放熱フィンを取り
付ける場合には、ヒートパイプへ直接放熱フィンを取り
付けてもよいし、ヒートパイプの凝縮部を予め偏平ない
し長円形の断面になるように加工し、この凝縮部へ前述
のこの発明の方法と同様な方法で伝熱板を固定し、この
伝熱板に放熱フィンを取り付けてもよい。
When the heat radiation fins are attached to the condensing portion of the heat pipe, the heat radiation fins may be directly attached to the heat pipe, or the condensing portion of the heat pipe is processed in advance so as to have a flat or oval cross section. A heat transfer plate may be fixed to the condensing portion by a method similar to the method of the present invention described above, and a radiation fin may be attached to the heat transfer plate.

【0021】[0021]

【作用】この発明によるヒートパイプ式放熱ユニットに
よれば、前述のように、伝熱板のパイプ挿入孔に挿入さ
れているヒートパイプの一部又は全部は、その長軸に沿
う両表面が、伝熱板のパイプ挿入孔の長軸に沿う内壁面
へ圧着されている。したがって、発熱部品から前記伝熱
板へ伝達された熱は、主として伝熱板のパイプ挿入孔の
長軸に沿う内壁面とヒートパイプとの密着状の接触面を
介してヒートパイプへ伝達される。
According to the heat pipe type heat dissipation unit of the present invention, as described above, a part or all of the heat pipe inserted into the pipe insertion hole of the heat transfer plate has both surfaces along the major axis thereof. It is crimped to the inner wall surface along the long axis of the pipe insertion hole of the heat transfer plate. Therefore, the heat transferred from the heat generating component to the heat transfer plate is transferred to the heat pipe mainly through the close contact surface between the inner wall surface of the heat transfer plate along the long axis of the pipe insertion hole and the heat pipe. .

【0022】ヒートパイプの一部又は全部は、その長軸
に沿う両面が、伝熱板のパイプ挿入孔の長軸に沿う内壁
面へほぼ密着状態に圧着されているので、熱抵抗が小さ
く良好に熱伝達が行われる。伝熱板は一体成形され、あ
るいは予め一体化加工されているので、より薄型化して
も十分な強度を維持できる。したがって、放熱ユニット
の全体を一層薄型でかつ軽量にすることができる。
Since a part or all of the heat pipe has its both surfaces along the major axis thereof crimped to the inner wall surface along the major axis of the pipe insertion hole of the heat transfer plate in a substantially intimate contact state, the thermal resistance is small and good. The heat transfer is done to. Since the heat transfer plate is integrally molded or integrally processed in advance, sufficient strength can be maintained even if it is made thinner. Therefore, the entire heat dissipation unit can be made thinner and lighter.

【0023】この発明によるヒートパイプ式放熱ユニッ
トの製造方法は、前述のような工程を含むので、ヒート
パイプの前記被挿入部の長軸に沿う両表面は、内側から
当該ヒートパイプの短軸方向に沿って作用する力によ
り、伝熱板に形成されているパイプ挿入孔の長軸に沿う
内壁面へほぼ均一な密着状態に圧着される。したがっ
て、ヒートパイプの前記被挿入部における長軸に沿う両
面と、伝熱板のパイプ挿入孔の長軸に沿う内壁面との圧
着部分の熱抵抗は、小さく、かつバラツキが無いように
ほぼ均一になり、その結果、ヒートパイプと伝熱板との
接触面積は小さくても熱伝達性能はより高くなる。した
がってまた、一体成形でより薄型の伝熱板を使用して、
熱伝達性能がより高い小型かつ軽量のヒートパイプ式放
熱ユニットを製造することができる。さらに、ヒートパ
イプの前記被挿入部は、膨張,拡管により断面積が拡大
するので、熱輸送量が拡管前に比べて増大する。
Since the method for manufacturing the heat pipe type heat dissipation unit according to the present invention includes the steps as described above, both surfaces of the heat pipe along the major axis of the inserted portion are arranged from the inside in the minor axis direction of the heat pipe. The force acting along the inner surface of the heat transfer plate is pressed against the inner wall surface of the pipe insertion hole along the long axis in a substantially uniform contact state. Therefore, the thermal resistance of the crimping portion between the both surfaces of the heat pipe along the major axis of the inserted portion and the inner wall surface of the heat transfer plate along the major axis of the pipe insertion hole is small and substantially uniform so that there is no variation. As a result, the heat transfer performance is improved even if the contact area between the heat pipe and the heat transfer plate is small. Therefore, again, by using a thinner heat transfer plate with integral molding,
It is possible to manufacture a small and lightweight heat pipe type heat dissipation unit having higher heat transfer performance. Furthermore, since the cross-sectional area of the inserted portion of the heat pipe expands due to expansion and tube expansion, the heat transport amount increases as compared with that before tube expansion.

【0024】前述のような伝熱板を予め大量に製造し、
各伝熱板のパイプ挿入孔にそれぞれヒートパイプの偏平
ないし長円形の断面の被挿入部を前述のように挿入し、
これらを、例えばヒートパイプ前記被挿入部が膨張する
のに充分な温度に制御される加熱炉内で所定時間保持す
ることにより、高性能でほぼ均一な放熱性能を有するヒ
ートパイプ式放熱ユニットを、より安価で大量に製造す
ることができる。
A large amount of the above-mentioned heat transfer plate is manufactured in advance,
Insert the flat or oval cross-section inserted part of the heat pipe into the pipe insertion hole of each heat transfer plate as described above,
By holding these for a predetermined time in a heating furnace that is controlled to a temperature sufficient for the heat pipe said inserted portion to expand, for example, a heat pipe type heat dissipation unit having high performance and substantially uniform heat dissipation performance is obtained. It is cheaper and can be manufactured in large quantities.

【0025】ヒートパイプの偏平部分ないし長円形部分
の両面を伝熱板のパイプ挿入孔の内壁へ密着させるに
は、ヒートパイプを伝熱板のパイプ挿入孔に挿入した
後、前記伝熱板を圧着方向にプレスする手段が考えられ
る。しかしながら、このような手段によると、ヒートパ
イプのパイプ挿入孔への挿入部分は、プレスによって塑
性変形し、かつ、この塑性変形に対する抗力でパイプ挿
入孔の内壁へ圧着されるので、ヒートパイプ表面とパイ
プ挿入孔の内壁との圧着部は、強度的に不十分になり易
く、かつ密着状態を各部で均一にするのは難しい。これ
に対し、この発明の方法によれば、ヒートパイプの偏平
部分ないし長円形部分の両面は、前述のようにヒートパ
イプの内部からの膨張力によって伝熱板のパイプ挿入孔
の内壁に圧接されるので、ヒートパイプが小径でかつ伝
熱板が薄型であっても、その圧着部は、より十分な強度
になるとともにほぼ均一な密着状態になる。したがっ
て、この発明による放熱ユニットを製造する場合には、
前述のようなプレスの手段によるよりも、この発明の方
法によって製造するのが好ましい。
In order to bring both the flat and oval portions of the heat pipe into close contact with the inner wall of the pipe insertion hole of the heat transfer plate, after inserting the heat pipe into the pipe insertion hole of the heat transfer plate, the heat transfer plate is attached. A means for pressing in the crimping direction can be considered. However, according to such a means, the insertion portion of the heat pipe into the pipe insertion hole is plastically deformed by pressing, and is pressed against the inner wall of the pipe insertion hole by the resistance against this plastic deformation, so that the heat pipe surface The pressure-bonded portion with the inner wall of the pipe insertion hole tends to be insufficient in strength, and it is difficult to make the contact state uniform in each portion. On the other hand, according to the method of the present invention, both sides of the flat portion or the oval portion of the heat pipe are pressed against the inner wall of the pipe insertion hole of the heat transfer plate by the expansion force from the inside of the heat pipe as described above. Therefore, even if the heat pipe has a small diameter and the heat transfer plate is thin, the pressure-bonding portion has a sufficient strength and a substantially uniform contact state. Therefore, when manufacturing the heat dissipation unit according to the present invention,
It is preferably produced by the method of the present invention rather than by means of pressing as described above.

【0026】なお、この発明のヒートパイプ式放熱器の
製造方法より、ヒートパイプを加熱してその長軸に沿う
両表面を伝熱板のパイプ挿入孔の長軸に沿う内壁面へ圧
着したただけでは、ヒートパイプの被挿入部の表面と前
記パイプ挿入孔の長軸方向の両端又は片端との間には隙
間が形成される。この隙間は、後の工程において溶融し
た半田を流し込んで埋めてもよいが、半田を埋めなくて
も放熱ユニットの放熱性能を低下させることなく実施す
ることができる。しかしながら、ヒートパイプが細径
(例えば、放熱ユニット製造後のヒートパイプ蒸発部の
短径が1.5mm〜3mm)であって、しかも前記の間隙を
半田で埋めない場合には、前記蒸発部の短径/長径の割
合が0.6以上になるように製造することが望ましい。
According to the heat pipe type radiator manufacturing method of the present invention, the heat pipe is heated and both surfaces along the major axis thereof are crimped to the inner wall surface along the major axis of the pipe insertion hole of the heat transfer plate. Only by itself, a gap is formed between the surface of the inserted portion of the heat pipe and both ends or one end of the pipe insertion hole in the long axis direction. The gap may be filled by pouring molten solder in a later step, but it can be implemented without degrading the heat radiation performance of the heat radiation unit without filling the solder. However, when the heat pipe has a small diameter (for example, the short diameter of the heat pipe evaporation portion after manufacturing the heat dissipation unit is 1.5 mm to 3 mm) and the gap is not filled with solder, the evaporation portion of the evaporation portion is not filled. It is desirable to manufacture such that the ratio of minor axis / major axis is 0.6 or more.

【0027】[0027]

【実施例】図1〜9を参照しながら、この発明によるヒ
ートパイプ式放熱ユニット及びその製造方法の好ましい
実施例を説明する。図1はこの発明の製造方法によって
製造されたヒートパイプ式放熱ユニットの一実施例を示
す一部省略平面図、図2は図1の矢印A−Aに沿う部分
拡大断面図、図3は図1の放熱ユニットにおいてヒート
パイプの蒸発部を加熱膨張させる前の状態を示す部分拡
大断面図、図4はこの発明によるヒートパイプ式放熱ユ
ニットの他の実施例を示す部分拡大断面図、図5は図1
の実施例のヒートパイプ式放熱ユニットを傾けた状態の
正面図、図6は図1の実施例の放熱ユニットにおけるヒ
ートパイプ傾斜角度と放熱ユニットの熱輸送量限界との
関係を示すグラフ、図7は図1の実施例の放熱ユニット
におけるヒートパイプ蒸発部の長軸に対する短軸の比と
放熱性能との関係を示すグラフ、図8はこの発明による
ヒートパイプ式放熱ユニットの他の実施例を示す正面
図、図9は図8の矢印B−Bに沿う拡大断面図、図10
は発明者らが既に提案している従来のヒートパイプ式放
熱ユニットの斜視図、図11は図10の放熱器の正面
図、図12は図10の放熱ユニットの部分拡大断面図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a heat pipe type heat dissipation unit and a manufacturing method thereof according to the present invention will be described with reference to FIGS. 1 is a partially omitted plan view showing an embodiment of a heat pipe type heat dissipation unit manufactured by the manufacturing method of the present invention, FIG. 2 is a partially enlarged sectional view taken along the arrow AA of FIG. 1, and FIG. 1 is a partially enlarged cross-sectional view showing a state before the evaporation portion of the heat pipe is heated and expanded in the heat radiation unit 1, FIG. 4 is a partially enlarged cross-sectional view showing another embodiment of the heat pipe type heat radiation unit according to the present invention, and FIG. Figure 1
7 is a front view of the heat pipe type heat radiating unit of the embodiment in a tilted state, FIG. 6 is a graph showing the relationship between the heat pipe tilt angle and the heat transfer amount limit of the heat radiating unit in the heat radiating unit of the embodiment of FIG. 8 is a graph showing the relationship between the ratio of the short axis to the long axis of the heat pipe evaporation section and the heat radiation performance in the heat radiation unit of the embodiment of FIG. 1, and FIG. 8 shows another embodiment of the heat pipe heat radiation unit according to the present invention. 10 is a front view, FIG. 9 is an enlarged sectional view taken along the arrow BB in FIG.
Is a perspective view of a conventional heat pipe type heat dissipation unit already proposed by the inventors, FIG. 11 is a front view of the radiator of FIG. 10, and FIG. 12 is a partially enlarged cross-sectional view of the heat dissipation unit of FIG.

【0028】図1の放熱ユニットは、ヒートパイプ1
と、このヒートパイプ1の一部である蒸発部10へ固定
されている伝熱板2と、前記ヒートパイプ1の他のであ
る凝縮部11に取り付けられた多数の放熱板3とによっ
て構成されている。
The heat radiating unit shown in FIG.
And a heat transfer plate 2 fixed to the evaporation part 10 which is a part of the heat pipe 1, and a large number of heat dissipation plates 3 attached to the condensation part 11 which is another part of the heat pipe 1. There is.

【0029】伝熱板2は、長さL2=38mm,幅W=3
7mm,厚みT=3.0mmのアルミニウム合金(A606
3)板であり、その長軸が一方の面に沿うように長さ方
向に沿って長軸R1=4.2mm,短軸R2=1.9mmで
ある偏平な(又は長円形の)断面のパイプ挿入孔20
が、ほぼ均一な間隔で6個形成されている。この伝熱板
2は、前述のような断面形状のパイプ挿入孔20を6個
有する長尺板を押出成形し、この長尺板を長さ=38mm
に切断したものである。
The heat transfer plate 2 has a length L2 = 38 mm and a width W = 3.
Aluminum alloy with 7 mm and thickness T = 3.0 mm (A606
3) a plate having a flat (or oval) cross section whose major axis R1 = 4.2 mm and minor axis R2 = 1.9 mm along the length direction such that the major axis is along one surface Pipe insertion hole 20
6 are formed at substantially uniform intervals. The heat transfer plate 2 is formed by extruding a long plate having six pipe insertion holes 20 having the above-described cross-sectional shape, and the long plate has a length of 38 mm.
It was cut into pieces.

【0030】蒸発部10が前記各パイプ挿入孔20へ挿
入固定されているヒートパイプ1は、外径=3mm,全長
L1=128mm,肉厚=0.3mm,作動液が水である銅
製のマイクロヒートパイプであり、内部には長さ方向に
沿って図示されていない微細な溝が形成されている。ヒ
ートパイプ1の蒸発部10は長軸r1=3.6mm,短軸
r2=1.9mmの偏平な(又は長円形の)断面であり、
その長軸r1に沿う両表面(図2の上下の面)は、前記
パイプ挿入孔20の長軸R1に沿う上下の内壁面へほぼ
密着するように圧着されている。ヒートパイプ1の他の
部分である円形断面の凝縮部11には、40mm×8mm,
肉厚0.2mmの放熱板3が2mmピッチで40枚取り付け
られている。
The heat pipe 1 in which the evaporation portion 10 is inserted and fixed in each of the pipe insertion holes 20 has an outer diameter = 3 mm, a total length L1 = 128 mm, a wall thickness = 0.3 mm, and a copper-made micro liquid whose working fluid is water. It is a heat pipe and has fine grooves (not shown) formed inside along the length direction. The evaporation section 10 of the heat pipe 1 has a flat (or oval) cross section with a major axis r1 = 3.6 mm and a minor axis r2 = 1.9 mm,
Both surfaces (upper and lower surfaces in FIG. 2) along the long axis r1 are crimped so as to be substantially in close contact with the upper and lower inner wall surfaces along the long axis R1 of the pipe insertion hole 20. The condensing part 11 having a circular cross section, which is the other part of the heat pipe 1, has a size of 40 mm × 8 mm,
Forty heat dissipation plates 3 having a thickness of 0.2 mm are attached at a pitch of 2 mm.

【0031】この放熱ユニットは、伝熱板2の下面にL
SIその他の図示しない発熱部品を接触させた状態で使
用される。その使用状態において、発熱部品の熱は、伝
熱板2を通じてヒートパイプ1の蒸発部10へ伝達さ
れ、蒸発部10内の作動液を蒸発させ、作動液の蒸気に
よって低温で内圧の小さい凝縮部11に運ばれ、放熱フ
ィン3を通じて空気中に放出される。
This heat dissipating unit is attached to the lower surface of the heat transfer plate 2 by L
It is used in a state where SI and other heat-generating components not shown are in contact with each other. In the state of use, the heat of the heat-generating component is transferred to the evaporation unit 10 of the heat pipe 1 through the heat transfer plate 2 to evaporate the working liquid in the evaporation unit 10, and the condensation unit having a low internal pressure due to the vapor of the working liquid. It is carried to 11 and discharged into the air through the radiation fins 3.

【0032】図1及び図2の実施例のヒートパイプ式放
熱ユニットは、以下説明する製造方法によって製造され
たものである。先ず、前述のような長尺板を押出成形す
るとともにこれを切断して伝熱板2を製造し、図3のよ
うに、断面が円形の各ヒートパイプ1の一部である蒸発
部10を、長軸r3=4mm,短軸r4=1.2mmになる
ように予めプレスによって偏平な(又は長円形の)断面
に成形しておく。次いで、伝熱板2の各パイプ挿入孔2
0へヒートパイプ1の蒸発部10を、その長軸が挿入孔
20の長軸とほぼ沿う状態に挿入した。そして、伝熱板
2を図示しない保持具に取り付けて拘束し、これらを2
80℃に保たれている図示しない加熱炉内に搬入してほ
ぼ30分保持した後、これらを加熱炉から搬出して室温
で冷却した。その後、前述のサイズの放熱フィン3をヒ
ートパイプ1の凝縮部11へ2mmピッチで40枚取り付
けて、放熱ユニットを製造した。
The heat pipe type heat radiating unit of the embodiment shown in FIGS. 1 and 2 is manufactured by the manufacturing method described below. First, a long plate as described above is extruded and cut to manufacture a heat transfer plate 2, and as shown in FIG. 3, an evaporation unit 10 which is a part of each heat pipe 1 having a circular cross section is formed. , The major axis r3 = 4 mm and the minor axis r4 = 1.2 mm are previously formed into a flat (or oval) cross section by pressing. Next, each pipe insertion hole 2 of the heat transfer plate 2
The evaporating portion 10 of the heat pipe 1 was inserted into the heat pipe 1 such that its major axis was substantially along the major axis of the insertion hole 20. Then, the heat transfer plate 2 is attached to and restrained by a holder (not shown).
After being carried into a heating furnace (not shown) kept at 80 ° C. and held for about 30 minutes, these were carried out from the heating furnace and cooled at room temperature. Then, 40 radiating fins 3 of the above-mentioned size were attached to the condensing part 11 of the heat pipe 1 at a pitch of 2 mm to manufacture a radiating unit.

【0033】加熱炉内でヒートパイプ1が加熱されるこ
とによって内圧が高くなり、偏平な断面の蒸発部10は
より円形に近づく方向へ、すなわち図2のように短軸方
向へ膨張拡管し、その上下の面がパイプ挿入孔20の上
下の面にほぼ密着状態で圧着された。ヒートパイプ1を
前述のように加熱したとき、当該ヒートパイプ1の他の
部分である断面が円形の凝縮部11は、偏平断面の蒸発
部10に比べて強度が大きいため破裂したり膨張したり
しない。
As the heat pipe 1 is heated in the heating furnace, the internal pressure increases, and the evaporating portion 10 having a flat cross section expands and expands in a direction closer to a circle, that is, in the minor axis direction as shown in FIG. The upper and lower surfaces were crimped to the upper and lower surfaces of the pipe insertion hole 20 in a substantially close contact state. When the heat pipe 1 is heated as described above, the condensing part 11 which is the other part of the heat pipe 1 and whose cross section is circular has a larger strength than the evaporating part 10 having the flat cross section, so that the condensing part 11 may rupture or expand. do not do.

【0034】ヒートパイプ1の蒸発部10の長軸に沿う
両表面は、前述のように、内側から当該ヒートパイプの
短軸方向に沿って作用する膨張力により、伝熱板2のパ
イプ挿入孔20の上下の内壁面へほぼ均一な密着状態に
圧着されるので、ヒートパイプ1の蒸発部10と伝熱板
2の挿入孔20の内壁面との圧着部分の熱抵抗は、小さ
く、かつバラツキが無いようにほぼ均一になり、その結
果、ヒートパイプ1と伝熱板2のパイプ挿入孔20との
接触面積は小さくても、熱伝達性能はより高くなる。ま
た、一体成形されたより薄型の伝熱板を使用して、熱伝
達性能がより高い小型かつ軽量のヒートパイプ式放熱ユ
ニットを製造することができる。さらに、前述のヒート
パイプ1の蒸発部とパイプ挿入孔20の内壁との圧着
は、ヒートパイプ1の加熱によって達成され、従来の製
造方法の半田付けの工程を省略することも可能なので、
ヒートパイプ式放熱ユニットはより安価にかつ大量に製
造される。
As described above, both surfaces of the heat pipe 1 along the long axis of the evaporating section 10 are pipe insertion holes of the heat transfer plate 2 due to the expansion force acting from the inside along the short axis direction of the heat pipe. Since the upper and lower inner wall surfaces of the heat pipe 20 are pressure-bonded to each other in a substantially uniform contact state, the heat resistance of the pressure-bonding portion between the evaporation portion 10 of the heat pipe 1 and the inner wall surface of the insertion hole 20 of the heat transfer plate 2 is small and varies. As a result, the heat transfer performance becomes higher even if the contact area between the heat pipe 1 and the pipe insertion hole 20 of the heat transfer plate 2 is small. Further, by using a thinner heat transfer plate integrally formed, it is possible to manufacture a small and lightweight heat pipe type heat dissipation unit having higher heat transfer performance. Further, the pressure bonding between the evaporating portion of the heat pipe 1 and the inner wall of the pipe insertion hole 20 is achieved by heating the heat pipe 1, and the soldering step of the conventional manufacturing method can be omitted.
The heat pipe type heat dissipation unit is manufactured at lower cost and in large quantities.

【0035】前述の製造方法によって製造されたヒート
パイプ式放熱ユニットでは、図2のように、伝熱板2の
パイプ挿入孔20の長軸方向の両端と、蒸発部10の長
軸方向の両端との間に間隙22が形成されるが、この間
隙22は、前記実施例の放熱ユニットにおいてはその放
熱性能を低下させない。しかしながら、前記の間隙22
は、例えば図4のように半田21を流し込んで埋めても
よい。図4の放熱ユニットの他の構成部分や各部のサイ
ズは、図1及び図2の放熱ユニットと同一である。
In the heat pipe type heat radiating unit manufactured by the above-described manufacturing method, as shown in FIG. 2, both longitudinal ends of the pipe insertion hole 20 of the heat transfer plate 2 and both longitudinal ends of the evaporating portion 10. A space 22 is formed between the heat dissipation unit and the heat dissipation unit, but the space 22 does not deteriorate the heat dissipation performance in the heat dissipation unit of the above-described embodiment. However, the gap 22
For example, the solder 21 may be poured and filled as shown in FIG. The other components and sizes of each part of the heat dissipation unit of FIG. 4 are the same as those of the heat dissipation unit of FIGS. 1 and 2.

【0036】図1及び図2で示した放熱ユニットのサン
プル1と、図4で示した放熱ユニットのサンプル2とを
製造するとともに、図2のヒートパイプ蒸発部10の長
軸r1に対する短軸r2の比がそれぞれ異なる4種の放
熱ユニットのサンプルを製造し、各放熱ユニットのサン
プルの放熱性能を測定した。この測定結果に基づいて、
サンプル2の放熱ユニットの放熱性能bに対するサンプ
ル1の放熱ユニットの放熱性能aとの比を縦軸方向に表
し、前記4種のサンプルの放熱ユニットのそれぞれの放
熱性能を横軸方向に表すと、図7のとおりであった。前
述の測定結果により、放熱ユニットにおけるヒートパイ
プ蒸発部10の長軸r1に対する短軸r2の比が0.6
以下であり、短軸r2が1.5mm以上である場合には、
蒸発部10の長軸両端と、伝熱板2のパイプ挿入孔20
の長軸両端との間に、図2に示す間隙22が残存してい
ても放熱性能は低下しないことが判明した。
The heat dissipation unit sample 1 shown in FIGS. 1 and 2 and the heat dissipation unit sample 2 shown in FIG. 4 are manufactured, and the heat pipe evaporation unit 10 shown in FIG. Samples of four types of heat dissipation units with different ratios were manufactured, and the heat dissipation performance of the samples of each heat dissipation unit was measured. Based on this measurement result,
The ratio of the heat dissipation performance a of the heat dissipation unit of Sample 1 to the heat dissipation performance b of the heat dissipation unit of Sample 2 is represented in the vertical axis direction, and the heat dissipation performance of each of the four types of sample heat dissipation units is represented in the horizontal axis direction, It was as shown in FIG. 7. From the above measurement results, the ratio of the short axis r2 to the long axis r1 of the heat pipe evaporation unit 10 in the heat dissipation unit is 0.6.
If the minor axis r2 is 1.5 mm or more,
Both ends of the long axis of the evaporator 10 and the pipe insertion holes 20 of the heat transfer plate 2
It was found that even if the gap 22 shown in FIG.

【0037】次に、図3の状態において、各ヒートパイ
プ1の蒸発部10と伝熱板2の各パイプ挿入孔20との
間隙23を溶融した図示しないSn−Zn系の半田で埋め、
ヒートパイプ1の凝縮部へ図1の放熱フィン3と同様な
放熱フィンを取り付けて、放熱ユニットのサンプル3を
製造した。そして、このサンプル3と前記各サンプル
1,2のそれぞれの放熱ユニットについて、図5のよう
に伝熱板2へ発熱体50を接触させ、ヒートパイプ1の
傾斜角度θを変化させ、放熱フィンの部分に送風しなが
ら、それぞれのサンプルの熱輸送量限界を測定したとこ
ろ図6のとおりであった。この測定結果によれば、この
発明の実施例であるサンプル1,2の放熱ユニット放熱
性能は、比較例であるサンプル3の放熱ユニットの放熱
性能に対し、ヒートパイプ1の傾斜角度θが0°のとき
に二倍強,傾斜角度θが90°のときにほぼ5倍であっ
た。
Next, in the state shown in FIG. 3, the gap 23 between the evaporation portion 10 of each heat pipe 1 and each pipe insertion hole 20 of the heat transfer plate 2 is filled with melted Sn--Zn system solder (not shown),
A heat radiating fin similar to the heat radiating fin 3 of FIG. 1 was attached to the condensing part of the heat pipe 1 to manufacture a heat radiating unit sample 3. Then, for each of the heat dissipation units of this sample 3 and each of the samples 1 and 2, the heating element 50 is brought into contact with the heat transfer plate 2 to change the inclination angle θ of the heat pipe 1 as shown in FIG. When the heat transfer amount limit of each sample was measured while blowing air to the part, it was as shown in FIG. According to this measurement result, the heat radiation performance of the heat radiating units of Samples 1 and 2 of the present invention is 0 ° with respect to the heat radiating performance of the heat radiating unit of Sample 3 of the comparative example. When the tilt angle θ was 90 °, it was almost 5 times.

【0038】また、前述の各サンプルの放熱ユニットに
ついて、全体の熱抵抗を測定したところ、この発明の実
施例であるサンプル1,2の放熱ユニットの熱抵抗は、
比較例であるサンプル3の放熱ユニットの熱抵抗に対し
て5%程度低い値を示した。これは、拡管したヒートパ
イプは拡管しないヒートパイプに比べて、特に凝縮熱伝
達率の値が50%以上高いためである。
Further, when the overall heat resistance of the heat dissipation unit of each sample described above was measured, the heat resistance of the heat dissipation units of Samples 1 and 2 according to the embodiment of the present invention was as follows.
The value was about 5% lower than the thermal resistance of the heat dissipation unit of Sample 3 which is a comparative example. This is because the expanded heat pipe has a higher condensation heat transfer coefficient of 50% or more than the unexpanded heat pipe.

【0039】図8及び図9にはこの発明による放熱ユニ
ットの他の実施例が示されている。この実施例の放熱ユ
ニットは、全体が偏平な断面のヒートパイプ1と、この
ヒートパイプ1の蒸発部10に固定されている伝熱板2
と、ヒートパイプ1の凝縮部11に固定されている伝熱
板4と、この伝熱板4に取り付けられている放熱フィン
30とで構成されている。放熱フィン30は、図11の
放熱ユニットにおける放熱フィン30とほぼ同様に構成
されている。
8 and 9 show another embodiment of the heat dissipation unit according to the present invention. The heat dissipation unit of this embodiment has a heat pipe 1 having a flat cross section as a whole, and a heat transfer plate 2 fixed to an evaporation portion 10 of the heat pipe 1.
And a heat transfer plate 4 fixed to the condensing part 11 of the heat pipe 1, and a radiation fin 30 attached to the heat transfer plate 4. The radiating fins 30 are configured almost the same as the radiating fins 30 in the radiating unit of FIG.

【0040】この放熱ユニットは、伝熱板2の下面に、
基板7の上に実装されている発熱部品5が高熱伝導ゴム
6を介して接触する状態で使用される。伝熱板2はアル
ミニウム合金により一体に押出成形されたもので、厚さ
=3mm、幅=100mm,長さ=180mmのサイズであ
り、その厚み部分の中心部には、長軸=6.0mm、短軸
=2.0mmのサイズの2つの偏平なパイプ挿入孔20が
形成されている。パイプ挿入孔20は、その長軸が伝熱
板2の一方の面と平行するように形成されている。な
お、図示されていないが、他方の伝熱板4にも同様なサ
イズのパイプ挿入孔が形成されている。
This heat dissipation unit is provided on the lower surface of the heat transfer plate 2,
The heat generating component 5 mounted on the substrate 7 is used in a state of being in contact with the high heat conductive rubber 6 therebetween. The heat transfer plate 2 is integrally extruded from an aluminum alloy and has a size of thickness = 3 mm, width = 100 mm, length = 180 mm, and a long axis = 6.0 mm at the center of the thickness part. , Two flat pipe insertion holes 20 having a size of minor axis = 2.0 mm are formed. The pipe insertion hole 20 is formed such that its long axis is parallel to one surface of the heat transfer plate 2. Although not shown, the other heat transfer plate 4 also has a pipe insertion hole of a similar size.

【0041】ヒートパイプ1は、断面が円形の銅パイプ
を偏平に加工したものであり、放熱ユニットを製造する
前のサイズは、短軸=1.8mm、長軸=幅5.8mm、長
さ=300mmである。前述の各伝熱板2,4の各パイプ
挿入孔20へ、長軸がパイプ挿入孔20の長軸に沿うよ
うにヒートパイプ1の各端部を挿入する。そして、この
伝熱板2を図示しない保持具に取り付けて拘束し、これ
らを180℃に保たれている図示しない加熱炉内に搬入
してほぼ30分保持した後、これらを加熱炉から搬出し
て室温で冷却した。
The heat pipe 1 is a flat copper pipe having a circular cross section, and the size before manufacturing the heat dissipation unit has a minor axis of 1.8 mm, a major axis of 5.8 mm and a length of 5.8 mm. = 300 mm. Each end of the heat pipe 1 is inserted into each pipe insertion hole 20 of each of the heat transfer plates 2 and 4 described above so that the long axis extends along the long axis of the pipe insertion hole 20. Then, the heat transfer plate 2 is attached to and restrained by a holder (not shown), carried into a heating furnace (not shown) kept at 180 ° C. and held for about 30 minutes, and then these are carried out from the heating furnace. And cooled at room temperature.

【0042】偏平な断面のヒートパイプ1は、加熱炉内
で加熱されることによって内圧が高くなり、丸くなろう
とする方向、すなわち、短軸方向へ膨張,拡管し、図9
のように、その長軸に沿う上下の面がパイプ挿入孔20
の長軸に沿う上下の内壁面へほぼ密着状態で圧着され
る。このようにして、ヒートパイプ1の蒸発部10には
伝熱板2が、その凝縮部11には伝熱板4がそれぞれ固
定される。この固定状態における蒸発部10及び凝縮部
11の断面におけるサイズは、それぞれ、短軸=2.0
mm,長軸=5.68mmである。前述のように、ヒートパ
イプ1の蒸発部10と凝縮部11へ伝熱板2,4を固定
した後、伝熱板4の両面に放熱フィン30を取り付けて
ヒートパイプ式放熱ユニットを製造した。図8及び図9
に示した実施例の放熱ユニットによれば、ヒートパイプ
1の凝縮部11に伝熱板4を固定し、この伝熱板4に表
面積がより大きい放熱フィン30を取り付けた点を除
き、他の部分の基本的な構成及び作用などは図1の実施
例の放熱ユニットとほぼ同様であるので、それらの説明
は省略する。
The heat pipe 1 having a flat cross section is heated in the heating furnace to increase the internal pressure and expands and expands in the direction in which it tends to become round, that is, in the minor axis direction.
, The upper and lower surfaces along the long axis of the pipe insertion hole 20
It is crimped to the upper and lower inner wall surfaces along the long axis of the above in a substantially close contact state. In this way, the heat transfer plate 2 is fixed to the evaporation part 10 of the heat pipe 1, and the heat transfer plate 4 is fixed to the condensation part 11 thereof. The sizes of the evaporating section 10 and the condensing section 11 in the cross section in this fixed state have a minor axis of 2.0.
mm, major axis = 5.68 mm. As described above, after fixing the heat transfer plates 2 and 4 to the evaporation part 10 and the condensation part 11 of the heat pipe 1, the heat dissipation fins 30 were attached to both surfaces of the heat transfer plate 4 to manufacture the heat pipe type heat dissipation unit. 8 and 9
According to the heat dissipation unit of the embodiment shown in FIG. 3, the heat transfer plate 4 is fixed to the condensing part 11 of the heat pipe 1, and the heat dissipation plate 30 is attached with the heat dissipation fins 30 having a larger surface area. Since the basic structure and operation of the parts are almost the same as those of the heat dissipation unit of the embodiment of FIG. 1, their description will be omitted.

【0043】前述の各実施例では、伝熱板2,4のパイ
プ挿入孔20の内壁面に半田メッキ等の表面処理を施し
た後、パイプ挿入孔20内にヒートパイプ1を一部を挿
入し、ヒートパイプ1を加熱拡管させて前記パイプ挿入
孔20へ圧着してもよい。また、ヒートパイプ1の全面
または一部に半田メッキ等の表面処理を施した後、パイ
プ挿入孔20にヒートパイプ1の一部を挿入し、ヒート
パイプ1を加熱,拡管させてパイプ挿入孔20へ圧着し
てもよい。これらの場合には、ヒートパイプ1とパイプ
挿入孔20の上下の内壁面との圧着面に、半田層が介在
した状態になる。前述の半田には、例えばSn−Zn系の半
田が使用される。
In each of the above-mentioned embodiments, after the inner wall surfaces of the pipe insertion holes 20 of the heat transfer plates 2 and 4 are subjected to surface treatment such as solder plating, the heat pipe 1 is partially inserted into the pipe insertion holes 20. Then, the heat pipe 1 may be expanded by heat and pressure-bonded to the pipe insertion hole 20. In addition, after performing a surface treatment such as solder plating on the entire surface or a part of the heat pipe 1, a part of the heat pipe 1 is inserted into the pipe insertion hole 20, and the heat pipe 1 is heated and expanded to expand the pipe insertion hole 20. You may crimp to. In these cases, the solder layer is interposed between the heat pipe 1 and the upper and lower inner wall surfaces of the pipe insertion hole 20. For the above-mentioned solder, for example, Sn-Zn based solder is used.

【0044】前記各実施例では、ヒートパイプ1の一部
である蒸発部10又は蒸発部10及び凝縮部11に伝熱
板2又は4と取り付けた例のみを説明したが、この発明
は、例えば図8における伝熱板2と他の伝熱板4とを一
体化して、ヒートパイプ1の全体が伝熱板2に埋め込ま
れる状態に当該ヒートパイプ1と伝熱板2と固定する場
合も含まれる。このような構造の放熱ユニットにおいて
は、伝熱板2の一部に適当な放熱フィン30を取り付け
るのが好ましい。
In each of the above-described embodiments, only the example in which the heat transfer plate 2 or 4 is attached to the evaporation part 10 or the evaporation part 10 and the condensation part 11 which are a part of the heat pipe 1 has been described. Including the case where the heat transfer plate 2 and the other heat transfer plate 4 in FIG. 8 are integrated and the heat pipe 1 and the heat transfer plate 2 are fixed in a state where the entire heat pipe 1 is embedded in the heat transfer plate 2. Be done. In the heat dissipation unit having such a structure, it is preferable to attach a suitable heat dissipation fin 30 to a part of the heat transfer plate 2.

【0045】[0045]

【発明の効果】この発明によるヒートパイプ式放熱ユニ
ットは、ヒートパイプの蒸発部の長軸に沿う両面は、伝
熱板のパイプ挿入孔の長軸に沿う内壁面へほぼ密着状態
に圧着されているので、熱抵抗が小さく良好に熱伝達が
行われる。また、この発明によるヒートパイプ式放熱ユ
ニットは、伝熱板をより軽量な材質によってより薄型化
しても十分な強度を維持できる。したがって、放熱ユニ
ットの全体を一層薄型でかつ軽量にすることができる。
In the heat pipe type heat radiating unit according to the present invention, both surfaces along the long axis of the evaporation portion of the heat pipe are crimped in close contact with the inner wall surface along the long axis of the pipe insertion hole of the heat transfer plate. Therefore, the heat resistance is small and the heat transfer is performed well. Further, in the heat pipe type heat dissipation unit according to the present invention, sufficient strength can be maintained even if the heat transfer plate is made thinner with a lighter material. Therefore, the entire heat dissipation unit can be made thinner and lighter.

【0046】この発明によるヒートパイプ式放熱ユニッ
トの製造方法によれば、ヒートパイプ蒸発部の長軸に沿
う両表面は、内側から当該ヒートパイプの短軸方向に沿
って作用する膨張力により、伝熱板に形成されているパ
イプ挿入孔の長軸に沿う内壁面へほぼ均一な密着状態に
圧着される。したがって、ヒートパイプの蒸発部におけ
る長軸に沿う両面と、伝熱板のパイプ挿入孔の長軸に沿
う内壁面との圧着部分の熱抵抗は、小さく、かつバラツ
キが無いようにほぼ均一になり、その結果、ヒートパイ
プと伝熱板との接触面積は小さくても熱伝達性能はより
高くなる。したがってまた、一体化されたより薄型の伝
熱板を使用して、放熱性能がより高い小型かつ軽量のヒ
ートパイプ式放熱ユニットを製造することができる。
According to the method of manufacturing the heat pipe type heat dissipation unit of the present invention, both surfaces of the heat pipe evaporation portion along the major axis are transferred from the inside by the expansion force acting along the minor axis direction of the heat pipe. It is crimped to the inner wall surface along the long axis of the pipe insertion hole formed in the hot plate in a substantially uniform close contact state. Therefore, the thermal resistance of the crimping portion between the both surfaces along the major axis of the heat pipe evaporating portion and the inner wall surface of the heat transfer plate along the major axis of the pipe insertion hole is small and almost uniform without variation. As a result, the heat transfer performance becomes higher even if the contact area between the heat pipe and the heat transfer plate is small. Therefore, it is also possible to manufacture a small and lightweight heat pipe type heat dissipation unit having higher heat dissipation performance by using an integrated thinner heat transfer plate.

【0047】この発明の製造方法によれば、ヒートパイ
プの凝縮部は膨張,拡管により断面積が拡大するので、
その熱輸送量は拡管前に比べて増大する。また、この発
明による製造方法は、伝熱板のパイプ挿入孔にヒートパ
イプの一部を挿入し、そのヒートパイプを加熱膨張させ
る簡単な工程によってヒートパイプと伝熱板とを固定で
きるので、放熱ユニットをより廉価で大量生産すること
ができる。
According to the manufacturing method of the present invention, since the condensing portion of the heat pipe expands and expands its cross-sectional area,
The amount of heat transport increases compared to before pipe expansion. Further, in the manufacturing method according to the present invention, the heat pipe and the heat transfer plate can be fixed by a simple process of inserting a part of the heat pipe into the pipe insertion hole of the heat transfer plate and heating and expanding the heat pipe. The unit can be mass-produced at a lower cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の製造方法によって製造されたヒート
パイプ式放熱ユニットの一実施例を示す一部省略平面図
である。
FIG. 1 is a partially omitted plan view showing an embodiment of a heat pipe type heat dissipation unit manufactured by a manufacturing method of the present invention.

【図2】図1の矢印A−Aに沿う部分拡大断面図であ
る。
FIG. 2 is a partially enlarged cross-sectional view taken along the arrow AA of FIG.

【図3】図1の放熱ユニットにおいてヒートパイプの蒸
発部を加熱膨張させる前の状態を示す部分拡大断面図で
ある。
FIG. 3 is a partial enlarged cross-sectional view showing a state before heat-expanding the evaporation part of the heat pipe in the heat dissipation unit of FIG.

【図4】この発明によるヒートパイプ式放熱ユニットの
他の実施例を示す部分拡大断面図である。
FIG. 4 is a partially enlarged sectional view showing another embodiment of the heat pipe type heat dissipation unit according to the present invention.

【図5】図1の実施例のヒートパイプ式放熱ユニットを
傾けた状態の正面図である。
5 is a front view of the heat pipe type heat dissipation unit of the embodiment of FIG. 1 in a tilted state. FIG.

【図6】図1の実施例の放熱ユニットにおけるヒートパ
イプ傾斜角度と放熱ユニットの熱輸送量限界との関係を
示すグラフである。
6 is a graph showing a relationship between a heat pipe inclination angle and a heat transfer amount limit of the heat dissipation unit in the heat dissipation unit of the embodiment of FIG.

【図7】図1の実施例の放熱ユニットにおけるヒートパ
イプ蒸発部の長軸に対する短軸の比と放熱性能との関係
を示すグラフである。
7 is a graph showing the relationship between the ratio of the minor axis to the major axis of the heat pipe evaporation section and the heat radiation performance in the heat radiation unit of the embodiment of FIG.

【図8】この発明によるヒートパイプ式放熱ユニットの
他の実施例を示す正面図である。
FIG. 8 is a front view showing another embodiment of the heat pipe type heat dissipation unit according to the present invention.

【図9】図8の矢印B−Bに沿う拡大断面図である。9 is an enlarged cross-sectional view taken along the arrow BB of FIG.

【図10】発明者らが既に提案している従来のヒートパ
イプ式放熱ユニットの斜視図である。
FIG. 10 is a perspective view of a conventional heat pipe type heat dissipation unit already proposed by the inventors.

【図11】図10の放熱ユニットの正面図である。11 is a front view of the heat dissipation unit of FIG.

【図12】図10の放熱ユニットの部分拡大断面図であ
る。
12 is a partially enlarged cross-sectional view of the heat dissipation unit of FIG.

【符号の説明】[Explanation of symbols]

1 ヒートパイプ 10 蒸発部 11 凝縮部 2,4 伝熱板 20 パイプ挿入孔 21 半田 22,23 間隙 3,30 放熱フィン 5 発熱部品 50 発熱体 6 高熱伝導ゴム 7 基板 8,9 伝熱板 80 本体 81 蓋体 82 溝 83 半田 84 ボイド L1 ヒートパイプの全長 L2 伝熱板2の長さ W 伝熱板2の幅 T 伝熱板2の肉厚 R1 パイプ挿入孔20の長軸 R2 パイプ挿入孔20の短軸 r1 ヒートパイプ蒸発部10の長軸 r2 ヒートパイプ蒸発部10の短軸 r3 ヒートパイプ蒸発部10の拡管前の長軸 r4 ヒートパイプ蒸発部10の拡管前の短軸 θ ヒートパイプの傾斜角度 1 heat pipe 10 Evaporator 11 Condensing part 2,4 heat transfer plate 20 Pipe insertion hole 21 Solder 22,23 gap 3,30 heat radiation fin 5 heat generating parts 50 heating element 6 High thermal conductivity rubber 7 substrate 8,9 Heat transfer plate 80 body 81 Lid 82 groove 83 Solder 84 void Total length of L1 heat pipe L2 Length of heat transfer plate 2 Width of W heat transfer plate 2 Thickness of heat transfer plate 2 Long axis of R1 pipe insertion hole 20 R2 pipe insertion hole 20 short axis r1 long axis of heat pipe evaporator 10 r2 Short axis of heat pipe evaporator 10 r3 long axis before expansion of heat pipe evaporation unit 10 r4 Heat pipe evaporation unit 10 short axis before expansion θ Heat pipe tilt angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 健造 東京都千代田区丸の内二丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 平4−282857(JP,A) 特開 平4−361561(JP,A) 特開 平5−106977(JP,A) 特開 平6−310888(JP,A) 特開 平7−198279(JP,A) 実開 平5−4495(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28D 15/02 H01L 23/427 H05K 7/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenzo Kobayashi 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (56) Reference JP-A-4-282857 (JP, A) JP-A 4-361561 (JP, A) JP-A-5-106977 (JP, A) JP-A-6-310888 (JP, A) JP-A-7-198279 (JP, A) Actual Kaihei 5-4495 (JP, A) U) (58) Fields investigated (Int.Cl. 7 , DB name) F28D 15/02 H01L 23/427 H05K 7/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝熱板へ一本又は複数本のヒートパイプ
を取り付け、前記伝熱板を介して電子機器の発熱部品と
前記ヒートパイプとで熱交換を行うヒートパイプ式放熱
ユニットにおいて、 前記伝熱板の厚み部分には長軸が当該伝熱板の一面と平
行する状態のほぼ偏平ないし長円形の断面のパイプ挿入
孔が形成され、 前記パイプ挿入孔には前記ヒートパイプの少なくとも一
部が挿入され、 前記パイプ挿入孔に挿入されている前記ヒートパイプの
被挿入部は、その断面がほぼ偏平ないし長円形に形成さ
れ、かつ、その長軸に沿う両表面が前記パイプ挿入孔の
長軸に沿う内壁面へほぼ均一な密着状態に圧着されてい
ことを特徴とする、 ヒートパイプ式放熱ユニット。
1. A heat pipe type heat radiating unit in which one or more heat pipes are attached to a heat transfer plate, and heat is exchanged between a heat generating component of an electronic device and the heat pipe through the heat transfer plate, In the thickness portion of the heat transfer plate, a pipe insertion hole having a substantially flat or oval cross section in which a long axis is parallel to one surface of the heat transfer plate is formed, and the pipe insertion hole has at least a part of the heat pipe. Is inserted, and the inserted portion of the heat pipe inserted into the pipe insertion hole is formed such that its cross section has a substantially flat or oval shape, and both surfaces along the long axis thereof have the length of the pipe insertion hole. It is crimped to the inner wall surface along the axis in a nearly uniform contact state.
Characterized in that that, a heat pipe type heat dissipation unit.
【請求項2】 前記ヒートパイプの被挿入部は、短軸/
長軸=0.6以下であり、かつ短軸が1.5mm以上であ
る、請求項1に記載のヒートパイプ式放熱ユニット。
2. The inserted portion of the heat pipe has a short axis /
The heat pipe type heat dissipation unit according to claim 1, wherein the major axis is 0.6 or less and the minor axis is 1.5 mm or more.
【請求項3】 前記伝熱板は、厚さ2.5mm以上の押出
型材で構成されている、請求項1又は2に記載のヒート
パイプ式放熱ユニット。
3. The heat pipe type heat dissipation unit according to claim 1, wherein the heat transfer plate is made of an extruded material having a thickness of 2.5 mm or more.
【請求項4】 前記ヒートパイプの被挿入部以外の部分
の少なくとも一部には、放熱フィンが設けられている、
請求項1〜3のいずれかに記載のヒートパイプ式放熱ユ
ニット。
4. A radiating fin is provided on at least a part of a portion other than the inserted portion of the heat pipe,
The heat pipe type heat dissipation unit according to claim 1.
【請求項5】 前記伝熱板の一部には放熱フィンが設け
られている、請求項1〜4のいずれかに記載のヒートパ
イプ式放熱ユニット。
5. The heat pipe type heat dissipation unit according to claim 1, wherein a part of the heat transfer plate is provided with a heat dissipation fin.
【請求項6】 伝熱板に一本又は複数本のヒートパイプ
を取り付け、前記伝熱板を介して電子機器の発熱部品と
前記ヒートパイプとで熱交換を行うヒートパイプ式放熱
ユニットの製造方法において、 前記伝熱板の厚み部分に長軸がその伝熱板の一面とほぼ
平行する状態に形成された偏平ないし長円形の断面のパ
イプ挿入孔に、前記ヒートパイプの一部又は全部を含む
偏平ないし長円形の断面の被挿入部を、当該被挿入部の
長軸が前記パイプ挿入孔の長軸とほぼ沿う状態に挿入す
る工程と、 前記ヒートパイプを加熱して前記被挿入部を短軸方向へ
拡管させることにより、当該被挿入部の長軸に沿う両表
面を前記パイプ挿入孔の長軸に沿う内壁面へ圧着する工
程とを含む、 ヒートパイプ式放熱ユニットの製造方法。
6. A method of manufacturing a heat pipe type heat dissipation unit, wherein one or more heat pipes are attached to a heat transfer plate, and heat is exchanged between a heat generating component of an electronic device and the heat pipe via the heat transfer plate. In the thickness of the heat transfer plate, the pipe insertion hole having a flat or elliptical cross section in which the long axis is formed in a state where the long axis is substantially parallel to one surface of the heat transfer plate includes part or all of the heat pipe. Inserting the inserted portion having a flat or oval cross section in a state where the major axis of the inserted portion is substantially along the major axis of the pipe insertion hole; and heating the heat pipe to shorten the inserted portion. A method for manufacturing a heat pipe type heat dissipation unit, comprising the step of crimping both surfaces along the major axis of the inserted portion to the inner wall surface along the major axis of the pipe insertion hole by expanding the pipe in the axial direction.
JP09989694A 1993-05-14 1994-05-13 Heat pipe type heat radiating unit and manufacturing method thereof Expired - Lifetime JP3438944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09989694A JP3438944B2 (en) 1993-05-14 1994-05-13 Heat pipe type heat radiating unit and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13689293 1993-05-14
JP5-136892 1993-05-14
JP09989694A JP3438944B2 (en) 1993-05-14 1994-05-13 Heat pipe type heat radiating unit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07147358A JPH07147358A (en) 1995-06-06
JP3438944B2 true JP3438944B2 (en) 2003-08-18

Family

ID=26440992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09989694A Expired - Lifetime JP3438944B2 (en) 1993-05-14 1994-05-13 Heat pipe type heat radiating unit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3438944B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777986B1 (en) * 1998-04-23 2000-07-28 Ferraz HEAT EXCHANGER, PARTICULARLY FOR COOLING AN ELECTRONIC POWER COMPONENT, AND MANUFACTURING METHOD THEREOF
JP4491209B2 (en) * 2003-08-29 2010-06-30 古河スカイ株式会社 Heat sink with heat pipe
JP4556759B2 (en) * 2005-04-28 2010-10-06 日立電線株式会社 Heat pipe heat exchanger and method for manufacturing the same
JP5094045B2 (en) * 2005-11-09 2012-12-12 大成プラス株式会社 Electronic circuit device having cooling function and manufacturing method thereof
KR100831604B1 (en) * 2007-01-31 2008-05-23 주식회사 에이팩 Manufacture method of radiator and its radiator
CN101510533B (en) * 2009-03-24 2011-06-15 赵耀华 Novel microelectronic device radiator
JP5726258B2 (en) * 2013-10-11 2015-05-27 株式会社フジクラ Spent nuclear fuel container
JP6943893B2 (en) * 2019-01-09 2021-10-06 古河電気工業株式会社 Heat pipe structure, heat sink, heat pipe structure manufacturing method and heat sink manufacturing method
CN115483172A (en) * 2022-09-15 2022-12-16 湖南大学 Device for high-power-density heat dissipation of wind power converter

Also Published As

Publication number Publication date
JPH07147358A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP3268734B2 (en) Method of manufacturing electronic device heat radiation unit using heat pipe
US6935409B1 (en) Cooling apparatus having low profile extrusion
JP3199384B2 (en) Liquid-cooled heat sink for cooling electronic components and method of forming the same
JP3158983B2 (en) Corrugated radiator fin for cooling LSI package
US6735864B2 (en) Heatsink method of manufacturing the same and cooling apparatus using the same
EP0435473B1 (en) Evaporator having etched fiber nucleation sites and method of fabricating same
JP3438944B2 (en) Heat pipe type heat radiating unit and manufacturing method thereof
WO2006014288A1 (en) Micro heat pipe with wedge capillaries
JP2002026201A (en) Radiator
WO1995017765A2 (en) Liquid cooled heat sink for cooling electronic components
GB2278676A (en) Cooling electronic apparatus
WO2002080270A1 (en) Cooling apparatus having low profile extrusion
JP2000332175A (en) Heat sink with fin
JP2001332666A (en) Cylindrical radiator and its forming method
JPH08278091A (en) Manufacture of heat pipe type cooling unit
JPH10270616A (en) Apparatus for radiating heat of electronic components
EP1863085A2 (en) Two-phase cooling system for cooling power electronic components
JP3334308B2 (en) Heat pipe and heat pipe radiator
JPH10116942A (en) Heat sink
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JPH10185466A (en) Heat pipe type heat sink
JP2001156229A (en) Heat sink and its manufacturing method
JP3326301B2 (en) Electronic equipment heat radiation unit using heat pipe and method of manufacturing the same
JP3177921B2 (en) Heat dissipation device for electronic components
WO2023276940A1 (en) Thermal device cooling heat sink

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term