JPH01290253A - N-well complementary semiconductor device and manufacture thereof - Google Patents

N-well complementary semiconductor device and manufacture thereof

Info

Publication number
JPH01290253A
JPH01290253A JP63121057A JP12105788A JPH01290253A JP H01290253 A JPH01290253 A JP H01290253A JP 63121057 A JP63121057 A JP 63121057A JP 12105788 A JP12105788 A JP 12105788A JP H01290253 A JPH01290253 A JP H01290253A
Authority
JP
Japan
Prior art keywords
well region
well
region
impurity concentration
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121057A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sudo
克彦 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63121057A priority Critical patent/JPH01290253A/en
Publication of JPH01290253A publication Critical patent/JPH01290253A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease a P-N junction in a junction capacitance of a source/ drain region of a P channel type MOS transistor and concurrently improve the P-N junction in a junction breakdown strength by a method wherein an N well is composed of a first well region of high impurity concentration and a second well low in impurity concentration. CONSTITUTION:A second well region 3 is selectively formed on the surface of a P-type semiconductor substrate 1, and a first well region 2 whose impurity concentration is higher than that of the second well region 3 is formed on the surface of the second well region 3. That is, an N well region consists of a surface part formed of the first well region 2 high in impurity concentration and the rest or an inner part formed of the second well region of low impurity concentration. Therefore, a source and a drain region, 14 and 15, of a P channel type MOS transistor 12 formed in the 11 well region and the second well region 3 form a P-N junction together. By these processes, the P-N junction formed of the source and the drain region, 14 and 15, can be decreased in a junction capacitance and also remarkably improved in a breakdown strength.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、Nウェル相補型半導体装置およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an N-well complementary semiconductor device and a method for manufacturing the same.

(ロ)従来の技術 従来の相補型半導体装置では、Pウェルを用い、N型の
基板表面にPチャンネル型MOSトランジスタを形成し
、Pウェル表面にNチャンネル型MOSトランジスタを
形成するのが一般的であった。
(B) Conventional technology In conventional complementary semiconductor devices, it is common to use a P-well, form a P-channel MOS transistor on the surface of an N-type substrate, and form an N-channel MOS transistor on the surface of the P-well. Met.

しかしNチャンネル型MoSトランジスタを使用したE
FROM、RAM、COD等では、P型半導体基板上に
Nチャンネル型MOSトランジスタを形成し、Nウェル
領域にPfキャンネルMOSトランジスタを形成する方
が、高速化に有利であり、基板電流を分散させ易い利点
を有していた。従って斯るEFROM、RAM、COD
等ではNウェル相補型半導体装置を採用していた。
However, E
For FROM, RAM, COD, etc., forming an N-channel MOS transistor on a P-type semiconductor substrate and forming a Pf channel MOS transistor in the N-well region is advantageous for speeding up and makes it easier to disperse the substrate current. It had advantages. Therefore, such EFROM, RAM, COD
etc. adopted an N-well complementary semiconductor device.

Nウェル相補型半導体装置の構造の断面図を第3図を参
照して説明する。(21)はP型半導体基板、(22)
はNウェル領域、(23)はLOGO8酸化膜である。
A cross-sectional view of the structure of the N-well complementary semiconductor device will be described with reference to FIG. (21) is a P-type semiconductor substrate, (22)
is an N-well region, and (23) is a LOGO8 oxide film.

(24)はNウェル領域(22)表面に形成したPf−
ヤンネル型MO3)−ランジスタであり P +型のソ
ースドレイン領域(25)(26)とゲート酸化膜(2
7)とその上に設けたポリシリコンのゲート電極(28
)より形成きれている。(29)は基板(21)表面に
形成したNチャンネル型MOSトランジスタであり、N
4型のソースドレイン領域(30)(31)とゲート酸
化膜(32)とその上に設けたポリシリコンのゲート電
極(33)より形成されている。
(24) is the Pf− formed on the surface of the N-well region (22).
It is a Jannel type MO3)-transistor with P+ type source/drain regions (25) (26) and a gate oxide film (2).
7) and a polysilicon gate electrode (28) provided thereon.
) is more fully formed. (29) is an N-channel MOS transistor formed on the surface of the substrate (21);
It is formed of type 4 source/drain regions (30, 31), a gate oxide film (32), and a polysilicon gate electrode (33) provided thereon.

斯上したNウェル相補型半導体装置では、基板(21)
表面からリンイオン(11P+)をイオン注入し、ドラ
イブインして形成するので、第4図に示す不純物プロフ
ァイルとなる。即ち、Nウェル領域(22)は表面の不
純物濃度が最も高く、基板の深さ方向に従ってガウス分
布をしている。
In the above N-well complementary semiconductor device, the substrate (21)
Since phosphorus ions (11P+) are ion-implanted from the surface and formed by drive-in, the impurity profile shown in FIG. 4 is obtained. That is, the N-well region (22) has the highest impurity concentration at the surface, and has a Gaussian distribution along the depth direction of the substrate.

なお斯る先行技術としては特開昭60−35560号公
報(HOIL  27108)等がある。
Note that such prior art includes Japanese Patent Application Laid-Open No. 60-35560 (HOIL 27108).

くハ)発明が解決しようとする課題 斯上した従来のNウェル相補型半導体装置では、Nウェ
ル領域(22)を後からイオン注入で形成するので、N
ウェル領域(22)の表面不純物濃度は10 ”Cm−
’と高くなり、Nウェル領域(22)表面に形成するP
チャンネル型MOSトランジスタ(24)のソースドレ
イン領域(25)(26)と高不純物濃度のPN接合を
形成して接合容量が大きくなるので、PチャンネルMO
Sトランジスタ(24)のスイッチングスピードが遅れ
る問題点を有していた。
C) Problems to be Solved by the Invention In the conventional N-well complementary semiconductor device described above, since the N-well region (22) is formed later by ion implantation,
The surface impurity concentration of the well region (22) is 10"Cm-
', and P formed on the surface of the N well region (22)
A high impurity concentration PN junction is formed with the source/drain regions (25) and (26) of the channel type MOS transistor (24), increasing the junction capacitance.
There was a problem that the switching speed of the S transistor (24) was delayed.

また同様に高不純物濃度のPN接合のため接合耐圧も低
下し、高々25V程度が限界となり、Pチャンネル型M
OSトランジスタ(24)の高耐圧化が難しい問題点も
有していた。
Similarly, due to the high impurity concentration of the PN junction, the junction breakdown voltage also decreases, reaching a limit of about 25V, and the P-channel type M
Another problem was that it was difficult to increase the voltage resistance of the OS transistor (24).

(ニ)課題を解決するための手段 本発明は斯上した問題点に鑑みてなされ、Nウェル領域
を表面部分を不純物濃度の高い第1ウェル領域と残る深
い部分を不純物濃度の低い第2のウェル領域で形成する
ことにより、従来の問題点を解決したNウェル相補型半
導体装置およびその製造方法を実現するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned problems, and the N-well region is divided into a first well region with a high impurity concentration in the surface portion and a second well region with a low impurity concentration in the remaining deep portion. By forming the semiconductor device in a well region, an N-well complementary semiconductor device and a method for manufacturing the same are realized which solve the problems of the conventional method.

(*)作用 本発明に依れば、Nウェル領域を不純物濃度の高い第1
ウェル領域と不純物濃度の低い第2ウェル領域とで形成
しているので、Nウェル領域に形成されるPチャンネル
型MOSトランジスタのソースドレイン領域と低不純物
濃度の第2ウェル領域とでPN接合を形成する。この結
果Pチャンネル型MOSトランジスタのソースドレイン
領域を形成するPN接合は接合容量が低下し、耐圧も大
幅に向上できる。
(*) Effect According to the present invention, the N-well region is placed in the first region with high impurity concentration.
Since it is formed by a well region and a second well region with a low impurity concentration, a PN junction is formed between the source drain region of the P channel type MOS transistor formed in the N well region and the second well region with a low impurity concentration. do. As a result, the junction capacitance of the PN junction forming the source/drain region of the P-channel MOS transistor is reduced, and the withstand voltage can be significantly improved.

(へ)実施例 以下に第1図A乃至第1図Fを参照して本発明の一実施
例を詳述する。
(F) Embodiment An embodiment of the present invention will be described in detail below with reference to FIGS. 1A to 1F.

第1図Aに示す如く、P型の半導体基板(1)表面に選
択的に第2ウェル領域(3)を形成する。即ち、基板(
1)表面に薄いパッド酸化膜(図示せず)を形成した後
、予定のNウェル領域上を除いて基板(1)表面をレジ
スト層(4)で被覆する。その後、レジスト層(4)を
マスクとしてリンイオン(”P”)を160 Key、
  2 X 10 ”Cm−”(7)条件でイオン注入
シ、JJ1200℃テO* ’X 囲気テ3 時間、N
As shown in FIG. 1A, a second well region (3) is selectively formed on the surface of a P-type semiconductor substrate (1). That is, the substrate (
1) After forming a thin pad oxide film (not shown) on the surface, the surface of the substrate (1) is covered with a resist layer (4) except over the intended N-well region. After that, using the resist layer (4) as a mask, phosphorus ions ("P") were applied at 160 keys.
Ion implantation was performed under the conditions of 2 x 10 "Cm-" (7), JJ1200℃TeO*'X ambient temperature 3 hours, N
.

雰囲気で7時間のドライブインを行い、約6μmの深さ
の第2ウェル領域(3)を形成する。従って第2ウェル
領域り3)は1018cm−3程度以下の低不純物濃度
となる。
Drive-in is performed in an atmosphere for 7 hours to form a second well region (3) with a depth of about 6 μm. Therefore, the second well region 3) has a low impurity concentration of about 1018 cm-3 or less.

次に第1図Bに示す如く、第2ウェル領域り3)表面に
これより高不純物濃度の第1ウェル領域(2)を形成す
る。基板(1)表面には第2ウェル領域(3)表面を露
出する様にパッド酸化膜(図示せず)を介して再度レジ
スト層(5)を付着し、このレジストJ’!(5)をマ
スクとしてリンイオン(31p−)を160KeV、 
 3X 10’1cm−”の条件でイオン注入をする。
Next, as shown in FIG. 1B, a first well region (2) having a higher impurity concentration is formed on the surface of the second well region (3). A resist layer (5) is again deposited on the surface of the substrate (1) through a pad oxide film (not shown) so as to expose the surface of the second well region (3), and this resist J'! (5) as a mask, phosphorus ion (31p-) at 160KeV,
Ion implantation is performed under the conditions of 3×10'1 cm-''.

本工程では第1ウェル領域(2)は浅く形成するために
イオン注入のみで、ドライブインは行なわない。
In this step, in order to form the first well region (2) shallowly, only ion implantation is performed and no drive-in is performed.

次に第1図Cに示す如く、基板(1)および第1および
第2ウェル領域(2)(3)上のフィールド領域(6)
となる部分上にLOCO3法により厚いフィールド酸化
膜(7)を形成する。LOCO8法は周知であるので説
明を省略するが、MOSトランジスタを形成するアクテ
ィブ領域(8)を残してフィールド領域上に熱酸化によ
り基板(1)に埋め込まれた約8000人の厚みのフィ
ールド酸化膜(7)を形成する。なお本工程を利用して
先工程で形成した第1ウェル領域(2)をドライブイン
して、約0.5μmの深さの第1ウェル領域(2)を形
成している。この第1ウェル領域(2)の表面不純物濃
度は101′cm−1程度と第2ウェル領域(3)より
1桁程度高くなる。
Next, as shown in FIG.
A thick field oxide film (7) is formed by the LOCO3 method on the portion where . Since the LOCO8 method is well known, its explanation will be omitted, but a field oxide film with a thickness of approximately 8000 mm is embedded in the substrate (1) by thermal oxidation over the field region, leaving the active region (8) where the MOS transistor is formed. (7) is formed. Note that using this step, the first well region (2) formed in the previous step is driven in to form the first well region (2) with a depth of about 0.5 μm. The surface impurity concentration of the first well region (2) is about 101'cm-1, which is about an order of magnitude higher than that of the second well region (3).

次に第1図りに示す如く、基板(1)および第1ウェル
領域(2)上のアクティブ領域(8)上のゲート酸化膜
(9)上に相補型MOSトランジスタのゲート電極(1
0)(11)を形成する。本工程では、全面に減圧CV
D法によりポリシリコン層を付着し、高不純物濃度にリ
ンドープした後、所望の形状にエツチングしてゲート電
極(10)(11)を形成する。
Next, as shown in the first diagram, the gate electrode (1) of the complementary MOS transistor is placed on the gate oxide film (9) on the active region (8) on the substrate (1) and the first well region (2).
0) (11) is formed. In this process, reduced pressure CV is applied to the entire surface.
A polysilicon layer is deposited by method D, doped with phosphorus to a high impurity concentration, and then etched into a desired shape to form gate electrodes (10) and (11).

次に第1!ff1Eに示す如く、第1ウェル領域(2)
表面にPチャンネル型MOSトランジスタ(12)を形
成する。基板(1)のアクティブ領域(8)上を少くと
もレジスト層(13)で選択的に被覆し、LDD構造を
有するソースドレイン領域(14)(15)を離間して
形成する。具体的にはゲート電極(10)とその近傍を
レジスト層(図示せず)で被覆して、ボロンイオン(I
IB4″)を30 KeV、  2 X 10 ”cm
−”の条件でイオン注入してP“型のソースドレイン領
域(14)(15)を少くとも第1ウェル領域(2)よ
り深く形成する。続いてこのレジスト層を除去してゲー
ト電極(10)をマスクとしてセルファライン技術を用
いてポロンイオン(IIB4″)を45KeV、5X1
0’1cm−”の条件でイオン注入してP−型のソース
ドレイン領域(14)(15)をゲート電極(10)に
隣接して浅く形成する。
Next is the first one! As shown in ff1E, the first well region (2)
A P-channel type MOS transistor (12) is formed on the surface. The active region (8) of the substrate (1) is selectively covered with at least a resist layer (13), and source/drain regions (14) and (15) having an LDD structure are formed at a distance. Specifically, the gate electrode (10) and its vicinity are covered with a resist layer (not shown), and boron ions (I
IB4″) at 30 KeV, 2 X 10″cm
-" ion implantation to form P" type source/drain regions (14, 15) at least deeper than the first well region (2). Subsequently, this resist layer was removed, and using the gate electrode (10) as a mask, poron ions (IIB4'') were irradiated at 45KeV, 5X1 using self-line technology.
Ion implantation is performed under the condition of 0'1 cm-'' to shallowly form P- type source/drain regions (14, 15) adjacent to the gate electrode (10).

更に第1図Fに示す如く、基板(1)表面にNチャンネ
ル型MOSトランジスタ(16)を形成する。第1ウェ
ル領域(2)のアクティブ領域(8)上を少くともレジ
スト層(17)で選択的に被覆し、ゲート電極(11)
をマスクとしてセルファライン技術を用いてヒ素イオン
(”As”)を80KeV、5X10”cm−”の条件
でイオン注入してN1型のソースドレイン領域(18)
(19)を形成する。
Furthermore, as shown in FIG. 1F, an N-channel MOS transistor (16) is formed on the surface of the substrate (1). The active region (8) of the first well region (2) is selectively covered with at least a resist layer (17), and the gate electrode (11) is
Using Selfaline technology as a mask, arsenic ions ("As") were implanted under the conditions of 80 KeV and 5 x 10 "cm-" to form N1 type source/drain regions (18).
(19) is formed.

上述した第1図A乃至第1図Fの製造工程を経て形成さ
れたNウェル相補型半導体装置では、第1ウェル領域(
2)と第2ウェル領域(3)とでNウェルを形成してい
るので、第2図に示すような不純物プロファイルを有し
Nウェルに形成されるPチャンネル型MOSトランジス
タ(12)は以下の特徴を有する。第1にP9型のソー
スドレイン領域(14)(15)は低不純物濃度の第2
ウェル領域(3)とでPN接合の大部分を形成している
ので、ソースドレイン領域(14)(15)のPN接合
の接合容量は従来の構造に比べて約173に減少できる
。また低不純物濃度PN接合のため接合耐圧も大巾に向
上し、従来の約25Vから約45Vまで上昇できる。第
2に第1ウェル領域(2)のゲート電極(10)下にチ
ャンネル領域を形成するので、チャンネル領域のみを高
不純物濃度にでき短チャンネル効果を抑制できる。この
ためチャンネル領域でのバンチスルーを抑制できPチャ
ンネル型MOSトランジスタの短チャンネル化による微
細化を実現できる。
In the N-well complementary semiconductor device formed through the manufacturing steps shown in FIGS. 1A to 1F described above, the first well region (
2) and the second well region (3) form an N-well, so a P-channel MOS transistor (12) formed in the N-well with an impurity profile as shown in FIG. 2 is as follows. Has characteristics. First, the P9 type source/drain regions (14) and (15) are placed in the second region with a low impurity concentration.
Since most of the PN junction is formed with the well region (3), the junction capacitance of the PN junction of the source/drain regions (14, 15) can be reduced to about 173 compared to the conventional structure. Further, due to the low impurity concentration PN junction, the junction breakdown voltage is greatly improved, and can be increased from about 25V in the conventional case to about 45V. Second, since the channel region is formed under the gate electrode (10) of the first well region (2), only the channel region can be made to have a high impurity concentration, and the short channel effect can be suppressed. Therefore, bunch-through in the channel region can be suppressed, and miniaturization of the P-channel MOS transistor by shortening the channel can be realized.

(ト)発明の効果 以上に述べたように、本発明ではNウェルを高不純物濃
度の第1ウェル領域(2)と低不純物濃度の第2ウェル
領域(3)とで形成することにより、Pチャンネル型M
oSトランジスタ(12)のソースドレイン領域(14
)(15)のPN接合の接合容量を低減し且つ接合耐圧
を大幅に向上できる。この結果、PfJvンネル型MO
Sトランジスタ(12)のスイッチング速度を向上でき
、更に螢光表示管(FLI’)の高耐圧ドライバートラ
ンジスタを内蔵できる利点を有する。
(G) Effects of the Invention As described above, in the present invention, by forming the N well with the first well region (2) with a high impurity concentration and the second well region (3) with a low impurity concentration, Channel type M
Source drain region (14) of oS transistor (12)
) (15) The junction capacitance of the PN junction can be reduced and the junction breakdown voltage can be significantly improved. As a result, PfJv tunnel type MO
It has the advantage that the switching speed of the S transistor (12) can be improved and a high breakdown voltage driver transistor for a fluorescent display tube (FLI') can be incorporated.

また第1ウェル領域(2)でチャンネル領域を高不純物
濃度とできるので、短チャンネル効果を抑制でき、素子
の微細化を図れ、集積度の向上に寄与できる利点を有す
る。
Further, since the channel region can be made to have a high impurity concentration in the first well region (2), short channel effects can be suppressed, devices can be miniaturized, and there are advantages that can contribute to improving the degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至第1図Fは本発明に依るNウェル相補型半
導体装置の製造方法を説明する断面図、第2図は本発明
に依るNウェルの不純物濃度プロファイルを説明する曲
線図、第3図は従来のNウェル相補型半導体装置を説明
する断面図、第4図は従来のNウェルの不純物濃度プロ
ファイルを説明する曲線図である。 (1)はP型半導体基板、(2)は第1ウェル領域、(
3)は第2ウェル領域、(4)(5)はレジスト層、(
6)はフィールド領域、(7〉はフィールド酸化膜、(
8)はアクティブ領域、 (9)はゲート酸化膜、(1
0)(11)はゲート電極、 (12)はPチャンネル
型MoSトランジスタ、 (14)(15)はソースド
レイン領域、(16)はNチャンネル型MOSトランジ
スタ、  (18)(19)はN0型のソースドレイン
領域である。
1A to 1F are cross-sectional views illustrating a method for manufacturing an N-well complementary semiconductor device according to the present invention, FIG. 2 is a curve diagram illustrating an impurity concentration profile of an N-well according to the present invention, and FIG. FIG. 3 is a cross-sectional view illustrating a conventional N-well complementary semiconductor device, and FIG. 4 is a curve diagram illustrating the impurity concentration profile of a conventional N-well. (1) is a P-type semiconductor substrate, (2) is a first well region, (
3) is the second well region, (4) and (5) are the resist layers, (
6) is the field region, (7> is the field oxide film, (
8) is the active region, (9) is the gate oxide film, (1
0) (11) is the gate electrode, (12) is the P-channel type MoS transistor, (14) (15) is the source/drain region, (16) is the N-channel type MOS transistor, (18) and (19) is the N0 type This is the source/drain region.

Claims (2)

【特許請求の範囲】[Claims] (1)P型半導体基板と前記基板表面に設けたN型ウェ
ル領域と前記基板表面に設けたNチャンネル型MOSト
ランジスタと前記ウェル領域に設けたPチャンネル型M
OSトランジスタとを有するNウェル相補型半導体装置
において、前記N型ウェル領域を表面部分を不純物濃度
の高い第1ウェル領域と他の部分を不純物濃度の低い第
2ウェル領域で形成することを特徴とするNウェル相補
型半導体装置。
(1) A P-type semiconductor substrate, an N-type well region provided on the surface of the substrate, an N-channel MOS transistor provided on the surface of the substrate, and a P-channel MOS transistor provided in the well region
An N-well complementary semiconductor device having an OS transistor, characterized in that the N-type well region is formed by a first well region having a high impurity concentration in a surface portion and a second well region having a low impurity concentration in the other portion. N-well complementary semiconductor device.
(2)P型半導体基板の所望の領域にN型不純物をイオ
ン注入しドライブインして第2ウェル領域を形成する工
程と、前記第2ウェル領域表面にN型不純物をイオン注
入してより不純物濃度の高い第1ウェル領域を形成する
工程と、前記基板および第1ウェル領域上のフィールド
部分となる部分にフィールド酸化膜を形成する工程と、
前記第1ウェル領域にPチャンネルMOSトランジスタ
を形成し、前記基板にNチャンネルMOSトランジスタ
を形成する工程とを具備することを特徴とするNウェル
相補型半導体装置の製造方法。
(2) Forming a second well region by ion-implanting and driving in N-type impurities into a desired region of the P-type semiconductor substrate, and forming an impurity by ion-implanting N-type impurities into the surface of the second well region. a step of forming a first well region with a high concentration; a step of forming a field oxide film on a portion of the substrate and the first well region that will become a field portion;
A method for manufacturing an N-well complementary semiconductor device, comprising the steps of forming a P-channel MOS transistor in the first well region and forming an N-channel MOS transistor in the substrate.
JP63121057A 1988-05-18 1988-05-18 N-well complementary semiconductor device and manufacture thereof Pending JPH01290253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121057A JPH01290253A (en) 1988-05-18 1988-05-18 N-well complementary semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121057A JPH01290253A (en) 1988-05-18 1988-05-18 N-well complementary semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01290253A true JPH01290253A (en) 1989-11-22

Family

ID=14801772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121057A Pending JPH01290253A (en) 1988-05-18 1988-05-18 N-well complementary semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01290253A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057661A (en) * 1983-09-09 1985-04-03 Hitachi Ltd Semiconductor device
JPS61166155A (en) * 1985-01-18 1986-07-26 Sanyo Electric Co Ltd Cmos semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057661A (en) * 1983-09-09 1985-04-03 Hitachi Ltd Semiconductor device
JPS61166155A (en) * 1985-01-18 1986-07-26 Sanyo Electric Co Ltd Cmos semiconductor device

Similar Documents

Publication Publication Date Title
KR100234700B1 (en) Manufacturing method of semiconductor device
US5406110A (en) Resurf lateral double diffused insulated gate field effect transistor
US7544558B2 (en) Method for integrating DMOS into sub-micron CMOS process
JPH08107202A (en) Lateral type high withstand voltage field effect transistor and its manufacture
JPH0237777A (en) Vertical type field-effect transistor
JP3380117B2 (en) Semiconductor device and manufacturing method thereof
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JP3363811B2 (en) Semiconductor device and manufacturing method thereof
JPH10189951A (en) Manufacture of semiconductor device
EP3158580B1 (en) Processes used in fabricating a metal-insulator-semiconductor field effect transistor
JP3193984B2 (en) High voltage MOS transistor
JPH01290253A (en) N-well complementary semiconductor device and manufacture thereof
US5550064A (en) Method for fabricating high-voltage complementary metal-oxide-semiconductor transistors
EP0160183A2 (en) High voltage mos field effect transistor
CN111463132A (en) Preparation method of power semiconductor device capable of reducing on-resistance and increasing safe working area
JP2000068499A (en) Semiconductor device and manufacture of the same
JP3097608B2 (en) Depletion type semiconductor device and method of manufacturing the same
JPH06268162A (en) Semiconductor device and its manufacture
JP2000174218A (en) Semiconductor device and its manufacture
JP2848274B2 (en) Method for manufacturing semiconductor device
JPS61239669A (en) Semiconductor integrated circuit
JPH0964361A (en) Manufacture of semiconductor device
JP2000164860A (en) Semiconductor device and manufacture thereof
JPH11289086A (en) Semiconductor integrated circuit device
JPH05283424A (en) Manufacture of semiconductor device