JPH01282427A - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPH01282427A
JPH01282427A JP63112214A JP11221488A JPH01282427A JP H01282427 A JPH01282427 A JP H01282427A JP 63112214 A JP63112214 A JP 63112214A JP 11221488 A JP11221488 A JP 11221488A JP H01282427 A JPH01282427 A JP H01282427A
Authority
JP
Japan
Prior art keywords
flow rate
temperature
fluid
heat
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63112214A
Other languages
Japanese (ja)
Inventor
Takayuki Ogoshi
大越 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63112214A priority Critical patent/JPH01282427A/en
Publication of JPH01282427A publication Critical patent/JPH01282427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To enable normal control of a flow rate, by a method wherein a temperature of a fluid flowing through a pipe body is converted into a change in temperature of a heat resistor mounted on the pipe body and the heat resistor is heated to measure a gradient of temperature while a quantity of heat is measured as flowing to the fluid from a heat source. CONSTITUTION:A difference is temperature near a pipe body 1 of a heat resistor 3 and near a heater 2 is obtained between temperature sensors 9 and 10. Based on the resulting measurement data, a quantity of heat flowing to a fluid from the heater 2 is calculated and a flow rate of the fluid is computed to be shown on a flow rate display section 14 with due consideration given to correction by a specific heat of the fluid and a heat conductivity of the pipe body 1. To cause a fluidization of heat near the pipe body 1 from the heater 2 of the resistor 3, temperature in a contact surface between the resistor 3 and the pipe body 1 must be higher that the temperature of the fluid. Temperature information of the temperature sensor 8 is inputted into a heater control section 4 and a heating temperature of the heater 2 is kept higher than the temperature of the fluid. Then, a valve control section 11 compares a flow rate data from a flow rate computing section 7 with a set flow rate value predetermined at a flow rate setting section 13. This enables control 12 of a flow rate to attain a set flow rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管体内を輸送する流体の流量制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate control device for fluid transported within a tube.

〔従来の技術〕[Conventional technology]

従来より液体の流量制御装置には流量計による流量の測
定値に基づきニードルバルブの開度を調節して該流量の
制御を行う形式のものが知られている。この流量計とし
てはテーパ管フロート型、羽根車回転型など、いずれも
機械式のものが用いられる。また、ガスの流量制御装置
にはマスフローと称する装置がある。マスフローは第3
図(a)に示すようにメインライン31の一部に設けら
れたバイパスライン32にヒータ34及び測温センサ3
5.36を配置した形式のものと、第3図(b)に示す
ようにメインライン31内にヒータ34及び31’l温
センサ35゜36を配置した形式のものとがある。いず
れの形式のものもヒータ34の上流側及び下流側の31
’l Cセンサ35.36でそれぞれガスの温度をa+
q定し、その測定値からヒータ34の発熱量とガスの比
熱を基にガス流量を演算制御部38で演算し、バルブド
ライバ40を動作させて流量制御バルブ41の開度を制
御するものである。
BACKGROUND ART Conventionally, liquid flow rate control devices have been known that control the flow rate by adjusting the opening degree of a needle valve based on the flow rate measured by a flow meter. As this flowmeter, a mechanical type such as a tapered tube float type or a rotary impeller type is used. Further, there is a device called a mass flow device as a gas flow rate control device. Mass flow is the third
As shown in FIG.
There are two types: one in which a heater 34 and a temperature sensor 31'l temperature sensor 35 and 36 are arranged in the main line 31 as shown in FIG. 3(b). In either type, 31 on the upstream and downstream sides of the heater 34
'l C sensor 35 and 36 respectively measure the gas temperature a+
q is determined, and based on the measured value, the gas flow rate is calculated by the calculation control unit 38 based on the calorific value of the heater 34 and the specific heat of the gas, and the valve driver 40 is operated to control the opening degree of the flow rate control valve 41. be.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述した従来の液体流量制御装置によれば流
量計の測定値とバルブ操作問が閉ループになっていない
ため、測定精度が悪くまた経時変化が激しいという欠点
がある。また該流量計自体が流路の一部を形成し、しか
も′a、量表示部でもあるため、装置の前面に取付ける
必然性が有り、配管が複雑に長くなって配管上の不都合
がある。
By the way, the above-described conventional liquid flow rate control device has disadvantages in that measurement accuracy is poor and changes over time are severe because the measurement value of the flowmeter and the valve operation are not in a closed loop. Furthermore, since the flow meter itself forms a part of the flow path and is also a quantity display section, it is necessary to attach it to the front of the device, which makes the piping complicated and long, which causes problems in terms of piping.

一方、マスフローにおいては、バイパスラインを設けた
場合、該バイパスラインが小径であるため異物が詰まり
易く、また、バイパスラインを用いないもの1±、メイ
ンラインの配管内に挿し込まれたヒータ及びセンサがガ
スの流れを乱すため流量の測定精度が悪くなり、正常な
ガス流量の制御ができない。そのうえ、ヒータ及びセン
サの一部が接ガスしてしまうため、強反応性のガスに対
しては使用できないという欠点がある。
On the other hand, in mass flow, when a bypass line is provided, the bypass line has a small diameter and is easily clogged with foreign matter. Since this disturbs the gas flow, the measurement accuracy of the flow rate deteriorates, making it impossible to control the gas flow rate normally. Furthermore, since some of the heater and sensor come into contact with the gas, there is a drawback that it cannot be used with strongly reactive gases.

本発明の目的は上記課題を解消した流量制御装置を提供
することにある。
An object of the present invention is to provide a flow rate control device that solves the above problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の流量制御装置に対し、本発明は管体内を
流れる流体の温度を、該管体に取付けた熱抵抗体の温度
変化に変換し、該熱抵抗体を加熱してその温度勾配を?
1l11定し、熱源から該流体へ流れた熱量を4111
定するという相違点を有する。
In contrast to the conventional flow rate control device described above, the present invention converts the temperature of the fluid flowing inside a tube into a temperature change in a thermal resistor attached to the tube, and heats the thermal resistor to reduce the temperature gradient. ?
1l11, and the amount of heat flowing from the heat source to the fluid is 4111
The difference is that it is defined.

(課題f!−解決するための手段) 上記目的を達成するため、本発明は流体を輸送する管体
に備えた流量制御バルブと該管体一部に取付けられた熱
抵抗体と、該熱抵抗体を加熱するヒータと、前記管体近
傍及びヒータの近傍においてそれぞれ前記熱抵抗体に生
ずる温度勾配を測定する測温センサと、前記熱抵抗体の
取付位置より上・流側の管体温度を測定する測温センサ
と、各センサに得られた測温データ及び既知の流体の比
熱から管内を流れる流体の流量を演算する演算部と、演
算部に得られた演算データに基づいて前記バルブの開度
を制御するバルブ制御部とを有するものである。
(Problem f! - Means for Solving) In order to achieve the above object, the present invention provides a flow rate control valve provided in a pipe body for transporting fluid, a thermal resistor attached to a part of the pipe body, and a heat resistor attached to a part of the pipe body. A heater that heats the resistor, a temperature sensor that measures the temperature gradient that occurs in the thermal resistor near the tube body and near the heater, respectively, and a tube temperature on the upstream/stream side of the installation position of the thermal resistor. a temperature sensor that measures temperature, a calculation section that calculates the flow rate of the fluid flowing in the pipe from the temperature measurement data obtained by each sensor and the known specific heat of the fluid, and a calculation section that calculates the flow rate of the fluid flowing in the pipe based on the calculation data obtained by the calculation section. and a valve control section that controls the opening degree of the valve.

(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は本発明の流量制御装置dの第1の実施例を示す
構造図である。
(Embodiment 1) FIG. 1 is a structural diagram showing a first embodiment of the flow rate control device d of the present invention.

本発明の流量制御装置は、流体を輸送する管体1の配管
途中に設けられた流量制御バルブ12と、管体1の外面
の一部に接して取付けられた熱抵抗体3と、該熱抵抗体
3を加熱するヒータ2と、該ヒータ2の発熱量を制御す
るヒータ制御部4と。
The flow control device of the present invention includes a flow control valve 12 provided in the middle of a pipe 1 for transporting fluid, a thermal resistor 3 attached in contact with a part of the outer surface of the pipe 1, and a A heater 2 that heats the resistor 3 and a heater control section 4 that controls the amount of heat generated by the heater 2.

該熱抵抗体3の温度勾配を計測する測温部6と、温度勾
配の測定データに基づき、管体1内の流体の流量を演算
する流量演算部7と、流量制御バルブ12の開度を調節
するバルブ制御部11と、該管体1内を流れる流体の流
量を設定する流量設定部13とを有している。ヒータ2
及び熱抵抗体3は、外気との熱交換を防止するため、断
熱材5で覆われており、熱抵抗体3は管体1との接触面
を通してのみ該流体との熱交換が行われる。この熱流量
をii+11定するために本実施例では、熱抵抗体3の
取付は位置より上流部の管体外面に測温センサ8を取付
け、管体近傍の熱抵抗体3の一部に測温センサ9、ヒー
タ2の近傍の熱抵抗体3の一部に測温センサ10をそれ
ぞれ取付けている。
A temperature measurement unit 6 that measures the temperature gradient of the thermal resistor 3, a flow rate calculation unit 7 that calculates the flow rate of the fluid in the tube body 1 based on the measurement data of the temperature gradient, and a flow rate calculation unit 7 that calculates the opening degree of the flow rate control valve 12. It has a valve control section 11 for adjusting, and a flow rate setting section 13 for setting the flow rate of the fluid flowing inside the pipe body 1. Heater 2
The thermal resistor 3 is covered with a heat insulating material 5 to prevent heat exchange with the outside air, and the thermal resistor 3 exchanges heat with the fluid only through the contact surface with the tube body 1. In order to determine this heat flow rate ii+11, in this embodiment, the temperature sensor 8 is attached to the outer surface of the tube upstream from the position, and the temperature sensor 8 is attached to a part of the heat resistor 3 near the tube. A temperature sensor 10 is attached to a part of the thermal resistor 3 near the temperature sensor 9 and the heater 2, respectively.

熱抵抗体3の管体近傍とヒータ近傍間の温度差は測温セ
ンサ9と10間に得られる。この測定データに基づき、
ヒータ2から流体へ流れた熱量を算出し、該流体の比熱
及び管体1の熱伝導率による補正を考慮して流体の流量
を演算するものである。
The temperature difference between the vicinity of the tube of the thermal resistor 3 and the vicinity of the heater is obtained between the temperature sensors 9 and 10. Based on this measurement data,
The amount of heat flowing from the heater 2 to the fluid is calculated, and the flow rate of the fluid is calculated by taking into account correction based on the specific heat of the fluid and the thermal conductivity of the tube body 1.

算出された流量は流量表示部14に表示される。ここで
、熱抵抗体3のヒータ近傍から管体近傍に熱の流動を起
こさせるためには、該熱抵抗体3と管体1との接触面で
の温度が流体の温度よりも高温でなければならない。8
+11温センサ8はこの熱抵抗体3より上流側の流体の
温度を測定し、その温度情報をヒータ制御部4に入力し
、ヒータ2の発熱量を制御して常にヒータ2の発熱温度
を流体温度より高温1;保たせるものである。バルブ制
御部11は流量設定部13に予め定められた流量設定値
と流量演算部7からの流量データとを比較し、そのデー
タを基に設定流量になるように流量制御バルブ12の開
度を調節して流量を制御するものである。
The calculated flow rate is displayed on the flow rate display section 14. Here, in order to cause heat to flow from the vicinity of the heater of the thermal resistor 3 to the vicinity of the tube body, the temperature at the contact surface between the thermal resistor 3 and the tube body 1 must be higher than the temperature of the fluid. Must be. 8
The +11 temperature sensor 8 measures the temperature of the fluid upstream from the thermal resistor 3, inputs the temperature information to the heater control unit 4, controls the amount of heat generated by the heater 2, and constantly controls the temperature of the fluid generated by the heater 2. Temperature higher than temperature 1: It is maintained. The valve control unit 11 compares the flow rate set value predetermined in the flow rate setting unit 13 with the flow rate data from the flow rate calculation unit 7, and based on the data, adjusts the opening degree of the flow rate control valve 12 so that the set flow rate is achieved. The flow rate is controlled by adjusting the flow rate.

(実施例2) 第2図は本発明の第2の実施例を示す構造図である。装
置構成は実施例1と同様である。
(Embodiment 2) FIG. 2 is a structural diagram showing a second embodiment of the present invention. The device configuration is the same as in the first embodiment.

本実施例においては、管体1の配管途中に、内径が該管
体1の内径に等しい環状の熱抵抗体3を取付けたもので
ある。したがって熱抵抗体3の内周面は管体1の内面に
露出している。さらに、該熱抵抗体3は、ヒータ近傍部
と管体近傍部以外の部分を薄く形成して、熱抵抗を増大
させである。
In this embodiment, an annular heat resistor 3 having an inner diameter equal to the inner diameter of the tube 1 is attached in the middle of the tube 1. Therefore, the inner circumferential surface of the thermal resistor 3 is exposed to the inner surface of the tube body 1. Further, the thermal resistor 3 is formed thin in parts other than the heater vicinity and the tube body vicinity to increase thermal resistance.

このことは、熱抵抗体3の温度勾配を大きくし、流量制
御装置の感度を高めることになる。また。
This increases the temperature gradient of the thermal resistor 3 and increases the sensitivity of the flow control device. Also.

熱抵抗体3の一部を管体内に露出させたことにより流体
との熱の授受の効率が向上し、特に、熱抵抗体3が直接
流体に接するため、管体部に係る補正項を除去できる。
By exposing a part of the thermal resistor 3 inside the tube body, the efficiency of heat exchange with the fluid is improved, and in particular, since the thermal resistor 3 is in direct contact with the fluid, the correction term related to the tube body part is removed. can.

さらに断熱材5の厚みを大きくすることによって熱の散
乱に係る誤差を除くことができ、精度の高い流量制御装
置が実現できる。
Furthermore, by increasing the thickness of the heat insulating material 5, errors related to heat scattering can be eliminated, and a highly accurate flow rate control device can be realized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればヒータやセンサと
いった感受性の高い部品を直接流体に接触させることが
ないため強い反応性を有する物質の流量制御を可能にし
、経時変化が小さく、さらに接ガス及び接液部分が管体
内径のみであるため、異物が詰まらず、正常な流量制御
ができる効果がある。また、超高真空になる部分に使用
してもリークがないという利点もある。
As explained above, according to the present invention, since sensitive parts such as heaters and sensors are not brought into direct contact with the fluid, it is possible to control the flow rate of substances with strong reactivity, and the change over time is small. Also, since the only part that comes in contact with liquid is the inside diameter of the tube, there is no possibility of clogging with foreign matter and normal flow control can be achieved. Another advantage is that there is no leakage even when used in areas subject to ultra-high vacuum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す構造図、第2図は
本発明の第2の実施例を示す構造図、第3図(a)、 
(b)は従来例を示す構造図である。
Fig. 1 is a structural diagram showing a first embodiment of the present invention, Fig. 2 is a structural diagram showing a second embodiment of the invention, Fig. 3(a),
(b) is a structural diagram showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] (1)流体を輸送する管体に備えた流量制御バルブと該
管体一部に取付けられた熱抵抗体と、該熱抵抗体を加熱
するヒータと、前記管体近傍及びヒータの近傍において
それぞれ前記熱抵抗体に生ずる温度勾配を測定する測温
センサと、前記熱抵抗体の取付位置より上流側の管体温
度を測定する測温センサと、各センサに得られた測温デ
ータ及び既知の流体の比熱から管内を流れる流体の流量
を演算する演算部と、演算部に得られた演算データに基
づいて前記バルブの開度を制御するバルブ制御部とを有
することを特徴とする流量制御装置。
(1) A flow rate control valve provided on a pipe for transporting fluid, a thermal resistor attached to a part of the pipe, a heater for heating the heat resistor, and a flow rate control valve provided in the pipe body and near the heater, respectively. A temperature sensor that measures the temperature gradient that occurs in the thermal resistor, a temperature sensor that measures the temperature of the pipe body upstream from the mounting position of the thermal resistor, and temperature measurement data obtained from each sensor and known data. A flow rate control device comprising: a calculation unit that calculates the flow rate of fluid flowing in a pipe from the specific heat of the fluid; and a valve control unit that controls the opening degree of the valve based on calculation data obtained by the calculation unit. .
JP63112214A 1988-05-09 1988-05-09 Flow rate controller Pending JPH01282427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63112214A JPH01282427A (en) 1988-05-09 1988-05-09 Flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112214A JPH01282427A (en) 1988-05-09 1988-05-09 Flow rate controller

Publications (1)

Publication Number Publication Date
JPH01282427A true JPH01282427A (en) 1989-11-14

Family

ID=14581111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112214A Pending JPH01282427A (en) 1988-05-09 1988-05-09 Flow rate controller

Country Status (1)

Country Link
JP (1) JPH01282427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828005B1 (en) * 2007-09-17 2008-05-08 이승희 Device for detecting volume of flowing air
JP2015500490A (en) * 2011-12-12 2015-01-05 カールスルーアー・インスティトゥート・フュア・テヒノロギーKarlsruher Institut fuer Technologie Apparatus and method for measuring fluid mass flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491264A (en) * 1972-04-15 1974-01-08
JPS5022658A (en) * 1973-06-27 1975-03-11
JPS51126864A (en) * 1975-04-28 1976-11-05 Yokogawa Hokushin Electric Corp Mass flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491264A (en) * 1972-04-15 1974-01-08
JPS5022658A (en) * 1973-06-27 1975-03-11
JPS51126864A (en) * 1975-04-28 1976-11-05 Yokogawa Hokushin Electric Corp Mass flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828005B1 (en) * 2007-09-17 2008-05-08 이승희 Device for detecting volume of flowing air
JP2015500490A (en) * 2011-12-12 2015-01-05 カールスルーアー・インスティトゥート・フュア・テヒノロギーKarlsruher Institut fuer Technologie Apparatus and method for measuring fluid mass flow

Similar Documents

Publication Publication Date Title
US7644612B2 (en) Thermal mass flow meter and method for its operation
JPH07218308A (en) Flow-rate measuring device
US2799165A (en) Apparatus for measuring flow
JPH01282427A (en) Flow rate controller
JP2930742B2 (en) Thermal flow meter
JPH0934556A (en) Mass flow controller
JP2964186B2 (en) Thermal flow meter
JP2000250633A (en) Fluid mass flow rate controller
JP3998295B2 (en) Mass flow meter
JP4081639B2 (en) Thermal mass flow meter for liquids
JPH0334652Y2 (en)
JPS5973727A (en) Flow rate measuring device
JP7111539B2 (en) Flow control device and zero point adjustment method
JPH04113227A (en) Composite type flow meter
JPH0346341Y2 (en)
JPS5912571Y2 (en) Intake air amount measuring device
JPH0628653Y2 (en) Flow measurement device for liquefied gas
JPS6146450Y2 (en)
JPH0547380Y2 (en)
JPH1164060A (en) Mass flow rate controller
JP2827796B2 (en) Thermal flow sensor
JPH0138494Y2 (en)
JPH087195B2 (en) Gas chromatograph
JPH0477856B2 (en)
JPS6315120A (en) Flow rate measuring apparatus