JPH0477856B2 - - Google Patents

Info

Publication number
JPH0477856B2
JPH0477856B2 JP59156353A JP15635384A JPH0477856B2 JP H0477856 B2 JPH0477856 B2 JP H0477856B2 JP 59156353 A JP59156353 A JP 59156353A JP 15635384 A JP15635384 A JP 15635384A JP H0477856 B2 JPH0477856 B2 JP H0477856B2
Authority
JP
Japan
Prior art keywords
resistor
air
passage
heating resistor
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59156353A
Other languages
Japanese (ja)
Other versions
JPS6134422A (en
Inventor
Mitsukuni Tsutsui
Minoru Takahashi
Tadao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15635384A priority Critical patent/JPS6134422A/en
Publication of JPS6134422A publication Critical patent/JPS6134422A/en
Publication of JPH0477856B2 publication Critical patent/JPH0477856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発熱抵抗式空気流量計に係り、特に内
燃機関の吸入空気流量を測定する発熱抵抗式空気
流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat generating resistance type air flow meter, and more particularly to a heat generating resistance type air flow meter for measuring the intake air flow rate of an internal combustion engine.

〔発明の背景〕[Background of the invention]

メイン通路に並行して設けられたバイパス通路
内に発熱抵抗体と空気温度測定抵抗体とを設置し
て、バイパス通路内を流れる空気流量を測定する
発熱抵抗式空気流量計が提案されている(例え
ば、特開昭58−135916号公報)。
A heating resistor type air flow meter has been proposed that measures the air flow rate flowing through the bypass passage by installing a heating resistor and an air temperature measuring resistor in a bypass passage provided in parallel with the main passage ( For example, Japanese Patent Application Laid-open No. 135916/1983).

この種の発熱抵抗式空気流量計では、流量を測
定する発熱抵抗体が取付けられ、吸入空気通路の
一部を構成しているボデイの温度が吸入空気温度
と異なる場合、吸入空気量の検出測定誤差を生ず
ることが経験上知られている。この測定誤差を低
減する方法として、特開昭56−108908号公報、特
開昭56−18721号公報に示されるように、発熱抵
抗体と空気温度測定抵抗体を同一形状、同一長さ
の支持ピンで支持し、空気流に対して同一直角面
上に、対称な位置に配置するものが知られてい
る。
This type of heating resistance type air flow meter is equipped with a heating resistor that measures the flow rate, and if the temperature of the body that forms part of the intake air passage is different from the intake air temperature, the intake air amount can be detected and measured. It is known from experience that errors occur. As a method to reduce this measurement error, as shown in Japanese Patent Application Laid-open No. 56-108908 and Japanese Patent Application Laid-open No. 56-18721, the heating resistor and the air temperature measuring resistor are supported in the same shape and length. It is known to be supported by pins and placed at symmetrical positions on the same plane perpendicular to the air flow.

しかし、発熱抵抗体と空気温度測定抵抗体を近
接して配置すると、発熱抵抗体の輻射熱によつて
空気温度測定抵抗体が加熱され測定誤差を生じた
り、逆に空気温度測定抵抗体によつて乱された空
気流が発熱抵抗体に当り、安定した出力を示さず
脈流を起す。いわゆる信号出力のノイズが増加す
るという不具合を発生する。
However, if the heating resistor and the air temperature measuring resistor are placed close to each other, the air temperature measuring resistor may be heated by the radiant heat of the heating resistor, causing measurement errors, or conversely, the air temperature measuring resistor may cause measurement errors. The disturbed airflow hits the heating resistor, causing a pulsating flow without a stable output. This causes a problem that so-called signal output noise increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸入空気通路を構成している
ボデイの温度と、吸入空気温度とが異なる場合に
も、精度良く質量空気流量を測定することのでき
る発熱抵抗式空気流量計を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heating resistance type air flow meter that can accurately measure mass air flow rate even when the temperature of a body constituting an intake air passage and the intake air temperature are different. It is in.

本発明の要旨は次の如くである。 The gist of the present invention is as follows.

すなわち、本発明は、メイン通路より小さな通
路断面積を有し、該メイン通路へ流れる空気の一
部が流れ込む副通路内に、空気流量を測定する発
熱抵抗体と空気温度測定抵抗体とを設けるととも
に、前記空気温度測定抵抗体を前記発熱抵抗体に
対して前記副通路の半径方向外側にずらせて配置
した発熱抵抗式空気流量計において、前記副通路
のうち、前記空気温度測定抵抗体が装着された部
分の径を、前記発熱抵抗体が装着された部分の径
よりも大きくし、ボデイと空気温度測定抵抗体お
よび発熱抵抗体との間の熱伝導率を制御すること
により、吸入空気温度と吸入空気通路を構成して
いるボデイの温度が異なる場合にも、精度良く質
量空気流量を測定しようというものである。
That is, the present invention provides a heat generating resistor for measuring air flow rate and an air temperature measuring resistor in a sub passage which has a passage cross-sectional area smaller than that of the main passage and into which a portion of the air flowing into the main passage flows. In addition, in the heating resistance type air flowmeter, the air temperature measuring resistor is arranged to be shifted to the outside in the radial direction of the sub passage with respect to the heating resistor, in which the air temperature measuring resistor is mounted in the sub passage. By making the diameter of the portion where the heating resistor is attached larger than the diameter of the portion where the heating resistor is attached, and controlling the thermal conductivity between the body, the air temperature measuring resistor, and the heating resistor, the intake air temperature can be adjusted. The aim is to accurately measure the mass air flow rate even when the temperatures of the air intake air passage and the body that make up the intake air passage differ.

このように本発明に係る発熱抵抗式空気流量計
は、発熱抵抗体と空気の温度差を一定に保ち、そ
の放熱量から質量空気流量を測定するもので、ボ
デイの温度の影響を受けずに正しく質量空気流量
を測定するためには上記した放熱量がボデイの温
度の影響を受けないようにする必要がある。そこ
で、上記のように構成することによつて、ボデイ
と空気温度測定抵抗体及び発熱抵抗体との間の熱
伝導率を制御し、吸入空気温度とボデイの温度が
異なる場合のボデイ温度の影響を発熱抵抗体と空
気温度測定抵抗体に同等に与え、発熱抵抗体から
の放熱量がボデイ温度の影響を受けないようにし
て、精度良く質量空気流量を測定できる。
As described above, the heating resistor type air flow meter according to the present invention maintains a constant temperature difference between the heating resistor and the air, and measures the mass air flow rate from the amount of heat released, without being affected by the temperature of the body. In order to accurately measure the mass air flow rate, it is necessary to ensure that the amount of heat radiation described above is not affected by the temperature of the body. Therefore, by configuring as described above, the thermal conductivity between the body and the air temperature measuring resistor and the heating resistor can be controlled, and the influence of the body temperature when the intake air temperature and the body temperature are different. is given equally to the heating resistor and the air temperature measuring resistor, so that the amount of heat released from the heating resistor is not affected by the body temperature, and the mass air flow rate can be measured with high accuracy.

また、副通路は空気温度測定抵抗体が装着され
た部分の径が大きく形成されているので、副通路
内の流体抵抗が小さくなり、多量の空気を副通路
内に流し込むことができる。そして、副通路内に
流れ込んだ空気は発熱抵抗体が装着された径の小
さい部分を流れる際に、流速が増して流速分布が
安定する。このように流速が安定した多量の空気
に対して、発熱抵抗体で流量測定を行うと、空気
流量をより一層精度良く測定することが可能とな
る。
Further, since the sub-passage is formed to have a large diameter at the portion where the air temperature measuring resistor is attached, fluid resistance within the sub-passage is reduced, and a large amount of air can be flowed into the sub-passage. Then, when the air flowing into the sub-passage flows through the small-diameter portion where the heating resistor is attached, the flow velocity increases and the flow velocity distribution becomes stable. If the flow rate is measured using a heating resistor for a large amount of air whose flow velocity is stabilized in this way, it becomes possible to measure the air flow rate with even higher accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には、本発明の一実施例が示されており
第2図は第1図の平面図である。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1.

図において、ボデイ50には、メイン通路51
と、バイパス通路52とが設けられている。この
バイパス通路52は、直管部53と、テーパ58
と、直管部53より径の大きい直管部54と、バ
イパス通路52を通つてきた空気をメイン通路5
1に戻すための曲り部55と、リング部56と出
口部57とによつて構成されている。この直管部
53内に発熱抵抗体1が支持ピン5によつて支持
されており、直管部54内に空気温度測定抵抗体
2が支持ピン6によつて支持されている。この空
気流量を測定する発熱抵抗体1及び空気温度測定
抵抗体2は同一素子を使用しており、第3図に示
すように直径0.5mm、長さ2mmのアルミナのボビ
ン101に白金線102を巻線し、その両端をリ
ード線103に溶接した後、表面に薄くガラスコ
ーテイング104を行つたもので、これらは吸入
空気の大部分が通るメイン通路51、吸入空気の
一部が分流するバイパス通路52を有してなるボ
デイ50のバイパス通路52中に設置される。
In the figure, the body 50 includes a main passage 51
and a bypass passage 52 are provided. This bypass passage 52 includes a straight pipe portion 53 and a tapered portion 58.
The air that has passed through the straight pipe section 54 having a larger diameter than the straight pipe section 53 and the bypass passage 52 is transferred to the main passage 5.
It is comprised of a bending part 55 for returning to 1, a ring part 56, and an outlet part 57. The heating resistor 1 is supported within the straight tube section 53 by support pins 5, and the air temperature measuring resistor 2 is supported within the straight tube section 54 by support pins 6. The heating resistor 1 that measures the air flow rate and the air temperature measuring resistor 2 use the same element, and as shown in Figure 3, a platinum wire 102 is attached to an alumina bobbin 101 with a diameter of 0.5 mm and a length of 2 mm. After winding the wire and welding both ends to the lead wire 103, a thin glass coating 104 is applied to the surface.These are a main passage 51 through which most of the intake air passes, and a bypass passage through which a part of the intake air is diverted. The bypass passage 52 of the body 50 has a bypass passage 52 .

ここで発熱抵抗体1の温度は第4図に示す駆動
回路3により空気温度測定抵抗体2の温度より一
定値だけ高く保たれる。
Here, the temperature of the heating resistor 1 is maintained by a constant value higher than the temperature of the air temperature measuring resistor 2 by a drive circuit 3 shown in FIG.

また、発熱抵抗体1及び空気温度測定抵抗体2
は第1図に示す如くそれぞれ合成樹脂により成形
された駆動回路3のケース4に一体にインサート
成形されている支持ピン5,6の先端部にリード
103を溶接し、バイパス通路52中に設置され
ている。このようにして、支持ピン5,6によつ
て発熱抵抗体1、空気温度測定抵抗体2は駆動回
路3に電気的接続されている。
In addition, a heating resistor 1 and an air temperature measuring resistor 2
As shown in FIG. 1, leads 103 are welded to the tips of support pins 5 and 6 that are integrally insert-molded into the case 4 of the drive circuit 3 molded from synthetic resin, and are installed in the bypass passage 52. ing. In this way, the heating resistor 1 and the air temperature measuring resistor 2 are electrically connected to the drive circuit 3 by the support pins 5 and 6.

吸入空気は図示してないエアクリーナを通つて
矢印P1方向からボデイ50に流入し、メイン通
路51とバイパス通路52に分流する。バイパス
通路52に分流した空気は発熱抵抗体1が設置さ
れた直管部53、空気温度測定抵抗体2が設置さ
れた直管部54を通つて曲り部55に至り、第5
図に示す如くリング部56を通つてメイン通路5
1の最狭部に開口した出口部57でメイン通路5
1の空気と合流する。
Intake air flows into the body 50 from the direction of arrow P1 through an air cleaner (not shown), and is divided into a main passage 51 and a bypass passage 52. The air branched into the bypass passage 52 passes through the straight pipe section 53 where the heating resistor 1 is installed, the straight pipe section 54 where the air temperature measuring resistor 2 is installed, and reaches the bent section 55.
The main passage 5 passes through the ring portion 56 as shown in the figure.
The outlet section 57 opened at the narrowest part of the main passage 5
It merges with the air of 1.

バイパス通路52を構成する直管部53,54
曲り部55、リング部56、出口部57の各断面
積は発熱抵抗体1が配置されている直管部53が
最も小さくなつている。
Straight pipe portions 53 and 54 forming the bypass passage 52
The cross-sectional area of each of the bent portion 55, the ring portion 56, and the outlet portion 57 is the smallest in the straight pipe portion 53 where the heating resistor 1 is disposed.

また、直管部53と直管部54の接続部は空気
流に乱れが生じないようテーパ58が設けられて
おり、ケース4の通路壁を構成する部分の形状も
同一である。
Further, a taper 58 is provided at the connecting portion between the straight pipe portion 53 and the straight pipe portion 54 so as not to cause disturbance in the air flow, and the shape of the portion forming the passage wall of the case 4 is also the same.

ここで、発熱抵抗体1は乱れのない空気流を当
てるため、空気温度測定抵抗2の上流に設置され
ている。
Here, the heating resistor 1 is installed upstream of the air temperature measuring resistor 2 in order to apply an undisturbed air flow.

また、第6図に示す如く、発熱抵抗体1の下流
部59は発熱抵抗体1で加熱された空気流が通る
ため、空気温度測定抵抗体2はこの加熱された空
気流の通過する部分からずらして設置されてい
る。
Further, as shown in FIG. 6, since the air flow heated by the heat generating resistor 1 passes through the downstream part 59 of the heat generating resistor 1, the air temperature measuring resistor 2 is connected to the downstream part 59 of the heat generating resistor 1 from the part through which this heated air flow passes. It is staggered and installed.

従来公知の技術で、前記した発熱抵抗体1の加
熱された空気流の影響をさけるという条件を満足
させたものが第8図に示されている。すなわち、
発熱抵抗体1からバイパス通路52の壁面の一部
を構成するケース4までの長さLHと空気温度測
定抵抗体2からケース4までの長さLCが異なる
ため、発熱抵抗体1とケース4すなわちケース4
が取付けられているボデイ50との間の熱伝導係
数λHと空気温度測定抵抗体とケース4との熱伝導
係数λCが異なり、ボデイ50の温度の影響が異な
る。そのため、吸入空気温度とボデイ50の温度
が異なる場合には、熱伝導の相違がそのまま測定
誤差となつて発生してくる。
FIG. 8 shows a conventionally known technique that satisfies the condition of avoiding the influence of the heated air flow of the heating resistor 1 described above. That is,
Since the length L H from the heating resistor 1 to the case 4 that forms part of the wall surface of the bypass passage 52 is different from the length L C from the air temperature measuring resistor 2 to the case 4, the length L C from the heating resistor 1 to the case 4 is different. 4 or case 4
The heat conduction coefficient λ H between the case 4 and the body 50 to which it is attached differs, and the heat conduction coefficient λ C between the air temperature measuring resistor and the case 4 differs, and the influence of the temperature of the body 50 differs. Therefore, if the temperature of the intake air differs from the temperature of the body 50, the difference in heat conduction directly causes a measurement error.

これに対し、本発明の実施例においては、空気
温度測定抵抗体2を設置する部分の通路54の断
面積を発熱抵抗体1を設置する部分の通路53の
断面より大きくすることによつて、発熱抵抗体1
で加熱された空気が通らない位置に空気温度測定
抵抗体2を設置した状態で、発熱抵抗体1からケ
ース4の間の長さLHと空気温度測定抵抗体2か
らケース4の長さLCを等しくしている。
In contrast, in the embodiment of the present invention, the cross-sectional area of the passage 54 in the part where the air temperature measuring resistor 2 is installed is made larger than the cross-section of the passage 53 in the part where the heating resistor 1 is installed. Heat generating resistor 1
With the air temperature measuring resistor 2 installed in a position where the heated air does not pass through, the length L H between the heating resistor 1 and the case 4, and the length L from the air temperature measuring resistor 2 to the case 4. C is made equal.

このため、発熱抵抗体1とケース4との間の熱
伝導係数λHと空気温度測定抵抗体2とケース4と
の間の熱伝導係数λCをほぼ同一にしている。
Therefore, the thermal conductivity coefficient λ H between the heating resistor 1 and the case 4 and the thermal conductive coefficient λ C between the air temperature measuring resistor 2 and the case 4 are made almost the same.

ボデイ50の温度の測定精度に与える影響は、
熱伝導係数λH,λCのみでなく、支持ピン5,6か
ら空気中への放熱量も影響するため、寸法LH
LCを同一にすれば必ず誤差が最小になるもので
なく、詳細は空気の流れを含めた実験によりLH
とLCの関係や通路53と54の関係を決定する
ことが必要である。
The influence on the measurement accuracy of the temperature of the body 50 is as follows.
The dimensions L H and
Making L C the same does not necessarily minimize the error, and the details are determined by experiments including air flow .
It is necessary to determine the relationship between L C and L C and the relationship between passages 53 and 54.

ボデイの温度と空気の温度が異なる場合の測定
誤差を発生させる他の原因に、ボデイ温度により
バイパス通路を通る空気が加熱又は冷却され、メ
イン通路の空気温度と異なつてしまうことがあ
る。
Another cause of measurement errors when the body temperature and air temperature are different is that the body temperature heats or cools the air passing through the bypass passage, causing it to differ from the air temperature in the main passage.

以下これについて、ボデイの温度が吸入空気よ
り高い場合を例にとつて説明する。
This will be explained below using an example in which the temperature of the body is higher than the intake air.

メイン通路51とバイパス通路52の空気流速
の関係は次のようになる。
The relationship between the air flow velocities in the main passage 51 and the bypass passage 52 is as follows.

メイン通路ΔP/ρM=CMUM 2/2g ……(1) バイパス通路ΔP/ρB=CBUB 2/2g ……(2) (1),(2)より ここに、ΔP:バイパス通路52の入口60と
出口57の圧力差 UM,UB:メイン通路51、バイパス通路
52の流速 CM,CB:メイン通路51、バイパス通路
52の流量係数 ρM,ρB:メイン通路51、バイパス通路5
2の空気密度 ボデイ50の温度が吸入空気温度より高い場
合、バイパス空気流の温度は、メイン空気流の温
度に比べ、通路断面積に対するバイパス通路に面
するボデイ壁面積の割合が大きいため高くなり易
い。この場合、(3)式において、ρBが小さく、CB
大きくなる。その結果、メイン通路51とバイパ
ス通路52の質量流速化(ρB・UB/ρM・UM)が
小さくなり、マイナス側の測定誤差が生ずる。
Main passage ΔP/ρ M = C M U M 2 /2g ...(1) Bypass passage ΔP/ρ B = C B U B 2 /2g ...(2) From (1) and (2) Here, ΔP: Pressure difference between the inlet 60 and outlet 57 of the bypass passage 52 U M , U B : Flow velocity of the main passage 51 and the bypass passage 52 C M , C B : Flow coefficient of the main passage 51 and the bypass passage 52 ρ M , ρ B : Main passage 51, bypass passage 5
Air density of 2 When the temperature of the body 50 is higher than the intake air temperature, the temperature of the bypass air flow becomes higher than the temperature of the main air flow because the ratio of the body wall area facing the bypass passage to the cross-sectional area of the passage is large. easy. In this case, in equation (3), ρ B becomes small and C B becomes large. As a result, the mass flow rate (ρ B ·U BM · UM ) in the main passage 51 and the bypass passage 52 becomes small, resulting in a measurement error on the negative side.

ここで、この変化量を小さくするには、バイパ
ス通路52の断面積に対するバイパス通路に面す
るボデイ壁面積を減らすこと、すなわちバイパス
通路面積を大きくして、バイパスの空気がボデイ
で加熱されにくくすればよい。また、バイパス通
路の温度による流量係数CBの変化を小さくすれ
ばよい。一方、バイパス通路52全体の断面積を
大きくすると、上記2点については効果がある
が、同一流量における発熱抵抗体1の部分の流速
が断面積の増加に伴ない低下するため、検出感度
が低下する。流速の小さい程ボデイ壁温の発熱抵
抗体に与える影響が大きい等の不具合がある。
Here, in order to reduce this amount of change, it is necessary to reduce the body wall area facing the bypass passage with respect to the cross-sectional area of the bypass passage 52, that is, to increase the area of the bypass passage to make it difficult for the air in the bypass to be heated by the body. Bye. Further, it is sufficient to reduce the change in the flow rate coefficient C B due to the temperature of the bypass passage. On the other hand, increasing the cross-sectional area of the entire bypass passage 52 has an effect on the above two points, but the flow velocity at the heating resistor 1 portion at the same flow rate decreases as the cross-sectional area increases, resulting in a decrease in detection sensitivity. do. There are problems such as the smaller the flow velocity, the greater the influence of the body wall temperature on the heating resistor.

これに対し、本発明による実施例においては、
発熱抵抗体1を設置してある部分(直管部53)
の断面積に対し、バイパス通路52を構成する他
の部分、直管部54、曲り部55、リング部5
6、出口部57の断面積を大きくしてあるため、
発熱抵抗体1を通る空気流の流速を低下させるこ
となく、ρBの低下及びCBの増加を小さくすること
ができ、吸入空気温度とボデイ温度が異なる場合
の測定精度を向上させることができる。
On the other hand, in the embodiment according to the present invention,
Part where heating resistor 1 is installed (straight pipe part 53)
With respect to the cross-sectional area of
6. Since the cross-sectional area of the outlet portion 57 is increased,
It is possible to reduce the decrease in ρ B and the increase in C B without reducing the flow velocity of the air flow passing through the heating resistor 1, and it is possible to improve measurement accuracy when the intake air temperature and the body temperature are different. .

なおCBはバイパス通路全体の流量係数であり、
発熱抵抗体1の配置部(直管部53)のみ断面積
を小さくし、他を大きくすれば、全体を大きくし
た時に比べ差はほとんどなく、54〜57を拡大
する前より流速を向上する。
Note that C B is the flow coefficient of the entire bypass passage,
If only the cross-sectional area of the heating resistor 1 placement part (straight pipe part 53) is made smaller and the other parts made larger, there will be almost no difference compared to when the whole is made larger, and the flow velocity will be improved compared to before enlarging 54 to 57.

本発明の実施例を適用し、吸入空気温度とボデ
イ温度を考え、実験した結果が第9図に示されて
いる。図において、Aがボデイ温度を示し、Bが
吸入空気温度を示している。
FIG. 9 shows the results of an experiment in which the embodiment of the present invention was applied and the intake air temperature and body temperature were considered. In the figure, A indicates the body temperature, and B indicates the intake air temperature.

従来の発熱抵抗式空気流量計では、第9図Cに
示す如く吸入空気流量が低い値のとき、すなわち
低速始動時、アイドリング時にはなはだしい測定
誤差を生じてしまい、安定したエンジン回転を得
ることができない。これに対し本発明の実施例に
よると、第9図Dに示す如く測定誤差は甚しく小
さくすることができた。このためエンジン回転は
むらを生じることなく適正回転数を得ることがで
きる。
As shown in Figure 9C, conventional heating resistance type air flowmeters cause significant measurement errors when the intake air flow rate is low, that is, when starting at low speed or idling, making it impossible to obtain stable engine rotation. . In contrast, according to the embodiment of the present invention, the measurement error could be significantly reduced as shown in FIG. 9D. Therefore, it is possible to obtain an appropriate engine speed without causing unevenness in the engine speed.

第10図には、本発明の他の実施例が示されて
いる。本実施例が第1図図示実施例と異る点は、
発熱抵抗体1を下流側に設け、空気温度測定抵抗
体2を上流側に設け、発熱抵抗体1の装着される
バイパス通路52の直管部154より、空気温度
測定抵抗体2の装着されるバイパス通路52の直
管部53の径を大きくした点である。
Another embodiment of the invention is shown in FIG. This embodiment differs from the embodiment illustrated in FIG.
The heating resistor 1 is provided on the downstream side, the air temperature measuring resistor 2 is provided on the upstream side, and the air temperature measuring resistor 2 is installed from the straight pipe section 154 of the bypass passage 52 to which the heating resistor 1 is installed. This is because the diameter of the straight pipe portion 53 of the bypass passage 52 is increased.

すなわち、バイパス通路52は、直管部153
と、テーパ158と、直管部154と、バイパス
通路52を通つてきた空気をメイン通路51に戻
すための曲り部155と、リング部156と、出
口部157とによつて構成されている。この直管
部153は直管部154より大きい径に形成され
ている。また直管部154内に発熱抵抗体1が支
持ピン6によつて支持されており、直管部153
内に空気温度測定抵抗体2が支持ピン5によつて
支持されている。
That is, the bypass passage 52 is connected to the straight pipe section 153.
, a taper 158 , a straight pipe section 154 , a bent section 155 for returning air that has passed through the bypass passage 52 to the main passage 51 , a ring section 156 , and an outlet section 157 . This straight pipe portion 153 is formed to have a larger diameter than the straight pipe portion 154. Further, the heating resistor 1 is supported within the straight pipe portion 154 by the support pin 6, and the straight pipe portion 153
An air temperature measuring resistor 2 is supported therein by a support pin 5.

吸入空気は、図示されていないエアクリーナを
通つて矢印P1方向からボデイ50に流入し、メ
イン通路51とバイパス通路52に分流する。バ
イパス通路52に分流した空気は空気温度測定抵
抗体2が設置された直管部153、発熱抵抗体1
が設置された直管部154を通つて曲り部155
に至り、リング部156を通つてメイン通路51
の最狭部に開口した出口部157でメイン通路5
1の空気と合流する。バイパス通路52を構成す
る直管部153,154、曲り部155、リング
部156、出口部157の各断面積は発熱抵抗体
1が配置されている直管部154が最も小さくな
つている。
Intake air flows into the body 50 from the direction of arrow P1 through an air cleaner (not shown), and is divided into a main passage 51 and a bypass passage 52. The air branched into the bypass passage 52 passes through the straight pipe section 153 where the air temperature measuring resistor 2 is installed, and the heating resistor 1.
The bent portion 155 passes through the straight pipe portion 154 where the
The main passage 51 passes through the ring portion 156.
The outlet section 157 opens at the narrowest part of the main passage 5.
It merges with the air of 1. The cross-sectional area of each of the straight pipe portions 153, 154, bent portion 155, ring portion 156, and outlet portion 157 constituting the bypass passage 52 is the smallest in the straight pipe portion 154 where the heating resistor 1 is disposed.

また、直管部153と直管部154の接続部は
空気流に乱れが生じないよう、テーパ158が設
けられており、ケース4の通路壁を構成する部分
の形状も同一である。空気温度測定抵抗体2が発
熱抵抗体1の上流に設けられているが、空気温度
測定抵抗体2が装着されている直管部153が、
発熱抵抗体1が装着されている直管部154より
も大きな径に形成されているため、空気温度測定
抵抗体2によつて空気流の乱れを生じ、発熱抵抗
体1が影響を受けることのない位置に空気温度測
定抵抗体2が設けられている。このようにするこ
とにより第1図図示実施例と同様の効果を得るこ
とができる。
Further, a taper 158 is provided at the connecting portion between the straight pipe portion 153 and the straight pipe portion 154 so as not to cause disturbance in the air flow, and the shape of the portion constituting the passage wall of the case 4 is also the same. Although the air temperature measuring resistor 2 is provided upstream of the heating resistor 1, the straight pipe section 153 to which the air temperature measuring resistor 2 is mounted is
Since it is formed to have a larger diameter than the straight pipe section 154 to which the heating resistor 1 is attached, there is no possibility that the air temperature measuring resistor 2 will cause turbulence in the air flow and the heating resistor 1 will be affected. An air temperature measuring resistor 2 is provided at a position where the air temperature is not present. By doing so, the same effect as the embodiment shown in FIG. 1 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、吸入空
気通路を構成しているボデイの温度と吸入空気温
度とが異なる場合にも精度良く質量空気流量を測
定することができる。
As described above, according to the present invention, it is possible to accurately measure the mass air flow rate even when the temperature of the body constituting the intake air passage and the intake air temperature are different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図
は第1図の平面図、第3図は抵抗体の全体構成
図、第4図は制御回路図、第5図は第1図−
断面図、第6図は第1図の抵抗体取付部の一部拡
大図、第7図は第6図の平面図、第8図は従来の
抵抗体の取付部の一部拡大図、第9図は従来例と
本実施例の流量誤差の測定図、第10図は本発明
の他の実施例を示す断面図である。 1…発熱抵抗体、2…空気温度測定抵抗体、5
1…メイン通路、52…バイパス通路、53,5
4,153,154…直管部、55,155…曲
り部、56,156…リング部、57,157…
出口部。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, FIG. 3 is an overall configuration diagram of a resistor, FIG. 4 is a control circuit diagram, and FIG. Figure-
6 is a partially enlarged view of the resistor mounting portion in FIG. 1, FIG. 7 is a plan view of FIG. 6, and FIG. 8 is a partially enlarged view of the conventional resistor mounting portion. FIG. 9 is a measurement diagram of flow rate errors between the conventional example and this embodiment, and FIG. 10 is a sectional view showing another embodiment of the present invention. 1... Heat generating resistor, 2... Air temperature measuring resistor, 5
1...Main passage, 52...Bypass passage, 53,5
4,153,154...straight pipe section, 55,155...bent section, 56,156...ring section, 57,157...
Exit part.

Claims (1)

【特許請求の範囲】 1 メイン通路より小さな通路断面積を有し、該
メイン通路へ流れる空気の一部が流れ込む副通路
内に、空気流量を測定する発熱抵抗体と空気温度
測定抵抗体とを設けるとともに、前記空気温度測
定抵抗体を前記発熱抵抗体に対して前記副通路の
半径方向外側にずらせて配置した発熱抵抗式空気
流量計において、 前記副通路のうち、前記空気温度測定抵抗体が
装着された部分の径を、前記発熱抵抗体が装着さ
れた部分の径よりも大きくしたことを特徴とする
発熱抵抗式空気流量計。
[Claims] 1. A heat generating resistor for measuring air flow rate and an air temperature measuring resistor are installed in a sub passage which has a passage cross-sectional area smaller than that of the main passage and into which a part of the air flowing into the main passage flows. and the air temperature measuring resistor is arranged to be shifted to the outside in the radial direction of the sub passage with respect to the heating resistor, 1. A heat generating resistor type air flow meter, characterized in that a diameter of a portion to which the heat generating resistor is attached is larger than a diameter of a portion to which the heat generating resistor is attached.
JP15635384A 1984-07-26 1984-07-26 Hot wire type air flowmeter Granted JPS6134422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15635384A JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15635384A JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Publications (2)

Publication Number Publication Date
JPS6134422A JPS6134422A (en) 1986-02-18
JPH0477856B2 true JPH0477856B2 (en) 1992-12-09

Family

ID=15625899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15635384A Granted JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Country Status (1)

Country Link
JP (1) JPS6134422A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502392A (en) * 2002-10-07 2006-01-19 ワグナー アラーム− ウント ジッヒャルンクスシャテム ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluid flow parameter determination apparatus and operation method thereof
JP4140553B2 (en) * 2004-04-28 2008-08-27 株式会社デンソー Air flow measurement device

Also Published As

Publication number Publication date
JPS6134422A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
US6240775B1 (en) Flow rate sensor
EP0023970B1 (en) Air flow meter
US4320650A (en) Flow rate measuring apparatus having vortex-generating element and hot wire element
JPH08510061A (en) Device for measuring the mass of flowing media
EP0458081A2 (en) Air flow meter
JP3240782B2 (en) Hot wire type air flow meter
JPH06273435A (en) Heat-generating resistor element and heat-type air flowmeter
JPS604813A (en) Gas flow rate measuring apparatus
JPH0477856B2 (en)
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPH07190821A (en) Flowmeter
JP3106449B2 (en) Flowmeter
JPH0434686B2 (en)
JPS62812A (en) Hot-wire air flow meter
JPH05172835A (en) Thermal flow direction judging device
JPH09280913A (en) Differential pressure flowmeter
JP2871130B2 (en) Air flow meter
JPH04290918A (en) Structure of flow straightening element for air flow meter
JPS592498Y2 (en) hot wire flowmeter
JPS63165714A (en) Sensor for airometer and airometer
JPH01201117A (en) Hot-wire type air flowmeter
JPH06288805A (en) Air flowmeter
JPH06102077A (en) Passage structure of sucked air
JPH03269323A (en) Thermal type flow meter
JPS6091211A (en) Hot wire type air flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees