JPH01201117A - Hot-wire type air flowmeter - Google Patents
Hot-wire type air flowmeterInfo
- Publication number
- JPH01201117A JPH01201117A JP63026327A JP2632788A JPH01201117A JP H01201117 A JPH01201117 A JP H01201117A JP 63026327 A JP63026327 A JP 63026327A JP 2632788 A JP2632788 A JP 2632788A JP H01201117 A JPH01201117 A JP H01201117A
- Authority
- JP
- Japan
- Prior art keywords
- air flow
- resistor
- resistance body
- heating resistor
- heat generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 claims description 36
- 230000004044 response Effects 0.000 abstract description 19
- 238000005259 measurement Methods 0.000 abstract description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱線式空気流量計に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a hot wire air flowmeter.
従来より、例えば内燃機関等の分野においては、吸入空
気量を測定する手段として熱線式空気流量計が使用され
ている。この種の熱線式空気流量計には、種々の形式の
ものがある。その中で、例えば特開昭59−19062
4号公報等に開示される如く吸気系の主通路の一部にバ
イパス通路を設け、このバイパス通路中に空気流量測定
用の発熱抵抗体(熱線)及び温度補償用の感温抵抗体を
配置した方式のものは、通路径の小さなバイパスに発熱
抵抗体を設けるので、吸気通路そのものに発熱抵抗体を
設ける方式に較べて、抵抗体ひいては熱線式空気流計の
小形化を図り得る。また、バイパス通路構造に工夫を施
すことで抵抗体への塵埃付着防止を図り得る等の利点を
有している。2. Description of the Related Art Conventionally, in the field of internal combustion engines, for example, hot wire air flowmeters have been used as a means for measuring the amount of intake air. There are various types of hot wire air flowmeters of this type. Among them, for example, JP-A-59-19062
As disclosed in Publication No. 4, etc., a bypass passage is provided in a part of the main passage of the intake system, and a heating resistor (hot wire) for measuring air flow rate and a temperature-sensitive resistor for temperature compensation are arranged in this bypass passage. In the above system, the heat generating resistor is provided in the bypass having a small passage diameter, so compared to a system in which the heat generating resistor is provided in the intake passage itself, the resistor and thus the hot wire airflow meter can be made smaller. Further, by devising the bypass passage structure, it is possible to prevent dust from adhering to the resistor.
この種の熱線式空気流量計は、吸入空気流(バイパス空
気量)の変化により発熱抵抗体の空気流に対する熱伝達
度合ひいては抵抗値が変化しても、発熱抵抗体に所定温
度を保つように出力電流を流し、この電流の出力状態に
基づき空気量を測定しようとするものである。そのため
、空気量の変化に対応する発熱抵抗体の出力応答性を早
めることが、熱線式空気流量計の性能を決めることにな
り、特に自′IjJ14Fエンジン制御等では、吸入空
気量の変化に対応する応答性の向上が強く要求されてい
る。This type of hot wire air flow meter maintains a predetermined temperature in the heating resistor even if the degree of heat transfer of the heating resistor to the airflow, and hence the resistance value, changes due to changes in the intake air flow (bypass air amount). The purpose is to flow an output current and measure the amount of air based on the output state of this current. Therefore, speeding up the output response of the heating resistor in response to changes in the amount of air determines the performance of the hot wire air flowmeter.Especially in engine control, etc., speeding up the output response of the heating resistor in response to changes in the amount of intake air There is a strong demand for improved responsiveness.
ところで、この種発熱抵抗体は次のような特性を有して
いる。これを、第5図及び第6図に基づき説明する。By the way, this type of heating resistor has the following characteristics. This will be explained based on FIGS. 5 and 6.
第5図は発熱抵抗体5(発熱抵抗体はアルミナ等の耐熱
絶縁筒に白金線等の熱線を巻装したり。FIG. 5 shows a heating resistor 5 (the heating resistor is a heat-resistant insulating cylinder made of alumina or the like wrapped around a hot wire such as platinum wire).
或いは白金膜を蒸着もの)の表面温度分布と空気流量(
流束)との関係を表わすものである。同図に示すように
発熱抵抗体を通過する空気流量が高流量になる程、発熱
抵抗体の表面の温度分布の変化が大きくなる。Alternatively, the surface temperature distribution of the platinum film deposited and the air flow rate (
It expresses the relationship with the flux). As shown in the figure, the higher the flow rate of air passing through the heating resistor, the greater the change in temperature distribution on the surface of the heating resistor.
また、第6図は空気流@(流速)変化時の空気流量計(
発熱抵抗体5)の出力特性を示すものであり、実線は空
気流量の変化状態、点線は空気流量計の出力信号を示す
ものである。しかして、空気流量によって発熱抵抗体5
の表面温度分布が変化すると、空気流量変化時の空気流
量計出力信号(以下、H/W信号とする)の応答は、第
6図の点線に示すように遅れが生じる。H/W信号の遅
れのうちA部は、発熱抵抗体の熱容量と回路定数によっ
て決まり、B部の遅れは、第S図の実線から破線への温
度分布の移動に要する時間である。In addition, Figure 6 shows the air flow meter (
It shows the output characteristics of the heating resistor 5), where the solid line shows the state of change in air flow rate and the dotted line shows the output signal of the air flow meter. Therefore, depending on the air flow rate, the heating resistor 5
When the surface temperature distribution changes, the response of the air flow meter output signal (hereinafter referred to as H/W signal) when the air flow rate changes is delayed as shown by the dotted line in FIG. Part A of the delay in the H/W signal is determined by the heat capacity of the heating resistor and the circuit constant, and the delay in part B is the time required for the temperature distribution to move from the solid line to the broken line in FIG.
従って、B部の遅れは、第5図の温度分布の変化が小さ
ければ、その遅れも小さくなる。こ\で、温度分布の変
化は、第5図の勾配温度領域Qcで表わされる。Qcは
、計算によれば(1)式となる。Therefore, the delay in section B becomes smaller if the change in temperature distribution shown in FIG. 5 is smaller. Here, the change in temperature distribution is represented by a gradient temperature region Qc in FIG. Qc is calculated as equation (1).
二\で、dは発熱抵抗体プローブ(H/Wプローブ)の
直径、λはH/Wプローブの熱伝導率、hはH/Wプロ
ーブと空気流の熱伝達関数である。2\, where d is the diameter of the heating resistor probe (H/W probe), λ is the thermal conductivity of the H/W probe, and h is the heat transfer function between the H/W probe and the air flow.
また、H/Wプローブの長さQに比較して上述のQcが
小さげ九ば、温度分布の変化は小さく、第5図の遅れは
小となる。Furthermore, since the above-mentioned Qc is smaller than the length Q of the H/W probe, the change in temperature distribution is small, and the delay in FIG. 5 is small.
従って、これを式で表わせば、 となる。Therefore, if we express this in the formula, becomes.
以上からすれば、熱線式空気流量計の出力応答性を高め
るためには、発熱抵抗体の長さQをできるだけ長くする
ことが望ましいが、従来のバイパス型の熱線式空気流量
計は、発熱抵抗体がバイパス通路の空気流に対して直角
に配置されるため、その長さがバイパス通路径、支持ピ
ンの位置等によって制約を受けていた。Considering the above, in order to improve the output response of a hot wire air flow meter, it is desirable to make the length Q of the heating resistor as long as possible. Since the body is disposed perpendicular to the air flow in the bypass passage, its length is limited by the diameter of the bypass passage, the position of the support pin, etc.
本発明は以上の点に鑑みてなされたものであり、その目
的とするところは、バイパス通路を大きくすることなく
発熱抵抗体の全長を増加させ、ひいては出力応答性、性
能の向上化を図り得る熱線式空気流量計を提供すること
にある。The present invention has been made in view of the above points, and its purpose is to increase the total length of the heat generating resistor without enlarging the bypass passage, thereby improving output response and performance. The purpose of the present invention is to provide a hot wire air flow meter.
上記目的は、この種のバイパス通路形の熱線式空気流量
計において、バイパス通路の内部に配置される空気流N
測定用の発熱抵抗体を前記バイパス通路の空気流に対し
て斜め配置に設定することで達成される。The above purpose is to provide an air flow N disposed inside the bypass passage in this type of bypass passage type hot wire air flow meter.
This is achieved by arranging the heating resistor for measurement at an angle with respect to the air flow in the bypass passage.
以上のように、発熱抵抗体を空気流に対し従来の直角配
置から斜め配置に変更することにより、バイパス通路径
を変えなくとも発熱抵抗体の長さを増長させることがで
きる。そして、既述した(2)式で示したように、発熱
抵抗体の長さQを長くすることによって、空気流量に対
する温度分布の変化を小さくでき、ひいては温度分布変
化に起因する発熱抵抗体の出力応答特性の遅れを小とし
、その結果、空気流量計の出力応答性を高めることがで
きる。As described above, by changing the arrangement of the heat generating resistor from the conventional arrangement perpendicular to the airflow to the oblique arrangement, the length of the heat generating resistor can be increased without changing the diameter of the bypass passage. As shown in equation (2) above, by increasing the length Q of the heating resistor, it is possible to reduce the change in temperature distribution with respect to the air flow rate. The delay in the output response characteristic can be reduced, and as a result, the output response of the air flow meter can be improved.
本発明の一実施例を第1図及び第2図に基づき説明する
。An embodiment of the present invention will be described based on FIGS. 1 and 2.
第1図は本発明の一実施例を示す縦断面図、第2図は第
1図のA方向からみたバイパス通路の部分断面図である
。FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIG. 2 is a partial sectional view of a bypass passage viewed from direction A in FIG.
第1図において、1は内燃機関の吸気系の一部を構成す
るボディで、ボディ1の内部には、主吸気通路2とバイ
パス通路3が形成されている。In FIG. 1, a body 1 constitutes a part of an intake system of an internal combustion engine, and inside the body 1, a main intake passage 2 and a bypass passage 3 are formed.
4は発熱抵抗体5及び温度補償用の感温抵抗体6を支持
するための支持体で、支持体4には、抵抗体支持用のピ
ン7a、7b及び8a、8bが取付けられている。本実
施例における支持体4は真円の筒形を呈し、バイパス通
路3のある位置のボディ1の壁部に嵌装される。また、
第2図に示すようにピン7a、7bで対をなし、ピン8
a。Reference numeral 4 denotes a support body for supporting the heat generating resistor 5 and the temperature sensitive resistor 6 for temperature compensation, and pins 7a, 7b and 8a, 8b for supporting the resistors are attached to the support body 4. The support body 4 in this embodiment has a perfectly circular cylindrical shape, and is fitted into the wall of the body 1 at a position where the bypass passage 3 is located. Also,
As shown in FIG. 2, pins 7a and 7b form a pair, and pin 8
a.
8bで対をなすものである。各対のピンのうち7a、7
b及び8a、8bの夫々は、高さ位置をずらした配置構
造でバイパス通路3内に面し、ピン7a、7bを介して
発熱抵抗体5が空気流に対し斜め配置に支持され、また
、ピン8a、8bを介して温度補償用抵抗体6も空気流
に対し斜め配置により支持される。It is paired with 8b. 7a, 7 of each pair of pins
b, 8a and 8b each face the inside of the bypass passage 3 in a height-shifted arrangement structure, and the heating resistor 5 is supported in an oblique arrangement with respect to the air flow via pins 7a and 7b, and The temperature compensating resistor 6 is also supported by the pins 8a and 8b in an oblique arrangement with respect to the air flow.
発熱抵抗体5は、例えば、アルミナよりなる耐熱性絶縁
筒に白金線を巻装したり、白金膜を蒸着したものが使用
される。この発熱抵抗体5は、温度補償用抵抗体6及び
その他の抵抗要素と組んでブリッジを構成し、且つ駆動
回路9と接続される。The heat generating resistor 5 is made of, for example, a heat-resistant insulating tube made of alumina wrapped around a platinum wire or a platinum film deposited thereon. The heating resistor 5 is combined with the temperature compensating resistor 6 and other resistance elements to form a bridge, and is connected to the drive circuit 9.
駆動回路9は、発熱抵抗体6が所定の発熱温度を保つよ
うな電流を流すもので、吸入空気流量が変動すると、そ
れに対応して熱伝達量ひいては抵抗値、出力電流値が変
化するため、この出力電流の変化を信号(出力電圧)と
してとり出すことにより、吸入空気流量の測定が可能と
なる。温度補償用の抵抗体6は、吸入空気温度を検出し
て、その空気温度の変化による吸入空気流量の質量誤差
分を補償する。The drive circuit 9 supplies a current to keep the heat generating resistor 6 at a predetermined heat generation temperature, and when the intake air flow rate changes, the amount of heat transfer, and therefore the resistance value and output current value change accordingly. By extracting this change in output current as a signal (output voltage), the intake air flow rate can be measured. The temperature compensation resistor 6 detects the intake air temperature and compensates for a mass error in the intake air flow rate due to a change in the air temperature.
しかして本実施例では、発熱抵抗体5をバイパス通路3
の空気流に対し斜め配置となるよう設定しているので、
発熱抵抗体5の長さをバイパス通路の径を変更せずして
従来の発熱抵抗体の長さに較べて長くすることができる
。具体的には、支持体4を真円形状にして、この支持体
面上に発熱抵抗体5及び温度補償用抵抗体6を上下に平
行配置する場合、ピンの取付位置等の制約を受けつつも
、抵抗体5,6を空気流に対して45°の斜め配置とす
る場合が抵抗体の長さを最も長くすることができる。こ
の45°斜め配置の場合には、第7図に示すような従来
の抵抗体配置方式(第7図はバイパス通路3に発熱抵抗
体5及び温度補償用抵抗体6を空気流に対し直角に配置
したもので、これらの抵抗体5,6を支持体4面上にピ
ン7a。However, in this embodiment, the heating resistor 5 is connected to the bypass passage 3.
Since it is set to be placed diagonally with respect to the airflow,
The length of the heating resistor 5 can be made longer than that of a conventional heating resistor without changing the diameter of the bypass passage. Specifically, when the support body 4 is made into a perfect circular shape and the heating resistor 5 and the temperature compensation resistor 6 are arranged vertically and parallel to each other on the surface of the support body, it is possible to The length of the resistor can be made the longest when the resistors 5 and 6 are arranged diagonally at 45 degrees with respect to the air flow. In the case of this 45° diagonal arrangement, the conventional resistor arrangement method as shown in Fig. 7 (Fig. 7 shows that the heating resistor 5 and the temperature compensation resistor 6 are placed in the bypass passage 3 at right angles to the airflow) These resistors 5 and 6 are placed on the surface of the support 4 using pins 7a.
7b、8a、8bを介して上下に平行配置した状態を表
わしている)に較べて、抵抗体5,6の長さをバイパス
径を変更することなく約1.4倍増加させることができ
る。7b, 8a, 8b), the length of the resistors 5 and 6 can be increased by about 1.4 times without changing the bypass diameter.
従って、本実施例によれば、発熱抵抗体の長さQを長く
することによって、発明の「作用」の項でも既述したよ
うに、空気流量に対する発熱抵抗体の温度分布の変化を
小さくでき、ひいては温度分布変化に起因する発熱抵抗
体5の出力応答特性の遅れを小とし、その結果、空気流
量計の出力応答性を高めることができる。Therefore, according to this embodiment, by increasing the length Q of the heating resistor, the change in the temperature distribution of the heating resistor with respect to the air flow rate can be reduced, as already mentioned in the "effects" section of the invention. Furthermore, the delay in the output response characteristics of the heating resistor 5 due to changes in temperature distribution can be reduced, and as a result, the output response of the air flowmeter can be improved.
第4図の点線は、本実施例の発熱抵抗体5を空気流に対
して配置角度θを変え、且つその時にとり得る発熱抵抗
体5の長さを変えて空気流量計の出力応答性を調べたも
ので、実線はその時の発熱抵抗体の感度特性を表わした
ものであり、第7図の従来例(現状)を100%として
、これを基準に特性値を表わしている。しかして、第4
図の特性図に示すように、出力応答性は、発熱抵抗体5
の長さが比例し、その特性値も、抵抗体の長さが最大炎
となり得る角度θ(約45度)で出力応答性がピーク値
に至る。そして、第4図の斜線の領域に示すように角度
θが45°直前からはソ45゜の範囲では、発熱抵抗体
の出力応答性を顕著に高め、しかも、抵抗体の感度特性
も支障のない範囲にとどめることができるので、この斜
線領域に抵抗体配置角度を設定することが最も好ましい
。The dotted line in FIG. 4 indicates the output response of the air flow meter by changing the arrangement angle θ of the heating resistor 5 of this example with respect to the air flow and changing the length of the heating resistor 5 that can be taken at that time. The solid line represents the sensitivity characteristic of the heating resistor at that time, and the characteristic value is expressed based on the conventional example (current state) of FIG. 7 as 100%. However, the fourth
As shown in the characteristic diagram in the figure, the output responsiveness is
The length of the resistor is proportional to its characteristic value, and the output response reaches its peak value at an angle θ (approximately 45 degrees) at which the length of the resistor can reach its maximum flame. As shown in the shaded area in Fig. 4, when the angle θ is in the range from just before 45° to 45°, the output response of the heating resistor is significantly improved, and the sensitivity characteristics of the resistor are not affected. Therefore, it is most preferable to set the resistor arrangement angle within this shaded area.
更に、本実施例によればバイパス通路3の径を拡大させ
ることなく抵抗体の長さを増長できるので、装置全体を
大形化することなく空気流量計の性能を向上させること
ができる。Furthermore, according to this embodiment, the length of the resistor can be increased without increasing the diameter of the bypass passage 3, so the performance of the air flow meter can be improved without increasing the size of the entire device.
なお、上記実施例では、発熱抵抗体5及び温度補償用抵
抗体6を平行な斜め配置状態とするが、第3図に示すよ
うに抵抗体5及び6を支持体4面上でクロスさせて斜め
配置状態としても、上記実流側同様の効果を奏し得る。In the above embodiment, the heating resistor 5 and the temperature compensating resistor 6 are arranged diagonally in parallel, but the resistors 5 and 6 are crossed on the surface of the support 4 as shown in FIG. Even in the diagonal arrangement state, the same effect as described above on the actual flow side can be achieved.
また、支持体4は真円とするが、これに代えて楕円形そ
の他種々の形状としてもよい。Further, although the support body 4 is made into a perfect circle, it may be made into an ellipse or other various shapes instead.
以北のように本発明によれば、バイパス通路を大きくす
ることなく発熱抵抗体の全長を増加させ、ひいては熱線
式空気流量計の出力応答性、性能の向上化を図ることが
できる。As described above, according to the present invention, the total length of the heating resistor can be increased without enlarging the bypass passage, and as a result, the output response and performance of the hot wire air flow meter can be improved.
第1図は本発明の第1実施例を示す縦断面図、第2図は
第1図をA方向からみた部分断面図、第3図は本発明の
第2実施例を示す部分断面図、第4図は上記第1実施例
における発熱抵抗体の配置角度及び長さに対する出力応
答特性、感度特性を表わす線図、第5図は発熱抵抗体の
表面温度分布特性図、第6図は発熱抵抗体の出力応答特
性図、第7図は熱線式空気流量計の従来例を示す部分断
面図である。
1・・・ボディ、2・・・吸気系主通路、3・・・バイ
パス通第1図
躬4.図
率5図FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention, FIG. 2 is a partial sectional view of FIG. 1 viewed from direction A, and FIG. 3 is a partial sectional view showing a second embodiment of the present invention. Figure 4 is a diagram showing the output response characteristics and sensitivity characteristics with respect to the arrangement angle and length of the heat generating resistor in the first embodiment, Figure 5 is a surface temperature distribution characteristic diagram of the heat generating resistor, and Figure 6 is the heat generation characteristic. FIG. 7 is a partial cross-sectional view showing a conventional example of a hot wire air flowmeter. 1...Body, 2...Intake system main passage, 3...Bypass passage Figure 1 4. Illustration rate 5 figures
Claims (1)
バイパス通路の内部に空気流量測定用の発熱抵抗体及び
温度補償用の感温抵抗体とを配置してなる熱線式空気流
量計において、前記発熱抵抗体を前記バイパス通路の空
気流に対して斜め配置に設定してなることを特徴とする
熱線式空気流量計。 2、第1請求項の記載において、前記発熱抵抗体は、前
記バイパス通路の空気流に対して略45度の斜め配置に
設定してなる熱線式空気流量計。[Claims] 1. A bypass passage is provided in a part of the main passage of the intake system, and a heating resistor for measuring air flow rate and a temperature-sensitive resistor for temperature compensation are arranged inside this bypass passage. What is claimed is: 1. A hot wire air flow meter, characterized in that the heating resistor is arranged obliquely with respect to the air flow in the bypass passage. 2. The hot wire air flow meter according to claim 1, wherein the heating resistor is arranged at an angle of about 45 degrees with respect to the air flow in the bypass passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63026327A JPH0617809B2 (en) | 1988-02-06 | 1988-02-06 | Air flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63026327A JPH0617809B2 (en) | 1988-02-06 | 1988-02-06 | Air flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01201117A true JPH01201117A (en) | 1989-08-14 |
JPH0617809B2 JPH0617809B2 (en) | 1994-03-09 |
Family
ID=12190321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63026327A Expired - Lifetime JPH0617809B2 (en) | 1988-02-06 | 1988-02-06 | Air flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617809B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113978A (en) * | 2005-10-19 | 2007-05-10 | Hitachi Ltd | Heating resistor type air flow measuring instrument |
JP2008249393A (en) * | 2007-03-29 | 2008-10-16 | Denso Corp | Air flow rate measuring device |
JP2010181354A (en) * | 2009-02-09 | 2010-08-19 | Denso Corp | Airflow rate measuring device |
-
1988
- 1988-02-06 JP JP63026327A patent/JPH0617809B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113978A (en) * | 2005-10-19 | 2007-05-10 | Hitachi Ltd | Heating resistor type air flow measuring instrument |
JP2008249393A (en) * | 2007-03-29 | 2008-10-16 | Denso Corp | Air flow rate measuring device |
DE102008000864B4 (en) * | 2007-03-29 | 2016-02-25 | Denso Corporation | Flowmeter |
JP2010181354A (en) * | 2009-02-09 | 2010-08-19 | Denso Corp | Airflow rate measuring device |
Also Published As
Publication number | Publication date |
---|---|
JPH0617809B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4559814A (en) | Thermal air flow meter | |
US4304130A (en) | Flow rate meter with temperature dependent resistor | |
US4870860A (en) | Direct-heated flow measuring apparatus having improved response characteristics | |
US3677085A (en) | Tandem-type hot-wire velocity meter probe | |
JPH0232563B2 (en) | ||
JPH039218A (en) | Device for measuring quantity of flowing medium | |
US4843882A (en) | Direct-heated flow measuring apparatus having improved sensitivity response speed | |
JPS6365892B2 (en) | ||
JP3240733B2 (en) | Thermal air flow meter | |
JP2571720B2 (en) | Flowmeter | |
JPS61194317A (en) | Direct-heating type flow-rate sensor | |
JPH01201117A (en) | Hot-wire type air flowmeter | |
US4425792A (en) | Apparatus for measuring a fluid flow rate | |
US5058426A (en) | Flow rate sensor | |
US4761995A (en) | Direct-heated flow measuring apparatus having improved sensitivity and response speed | |
CN107957301A (en) | Platinum temperature-sensing element | |
JPS6050289B2 (en) | thermal flow meter | |
JPH0674805A (en) | Heat sensing flow rate sensor | |
JP3184401B2 (en) | Thermal air flow detector | |
JPH07190821A (en) | Flowmeter | |
JP3133609B2 (en) | Thermal air flow detector | |
JPH0514179Y2 (en) | ||
JPS592498Y2 (en) | hot wire flowmeter | |
JPS6273124A (en) | Heat type flow rate detector | |
JPH0143883B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |