JPS6134422A - Hot wire type air flowmeter - Google Patents

Hot wire type air flowmeter

Info

Publication number
JPS6134422A
JPS6134422A JP15635384A JP15635384A JPS6134422A JP S6134422 A JPS6134422 A JP S6134422A JP 15635384 A JP15635384 A JP 15635384A JP 15635384 A JP15635384 A JP 15635384A JP S6134422 A JPS6134422 A JP S6134422A
Authority
JP
Japan
Prior art keywords
resistor
air
passage
air temperature
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15635384A
Other languages
Japanese (ja)
Other versions
JPH0477856B2 (en
Inventor
Mitsukuni Tsutsui
筒井 光圀
Minoru Takahashi
実 高橋
Tadao Suzuki
忠雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15635384A priority Critical patent/JPS6134422A/en
Publication of JPS6134422A publication Critical patent/JPS6134422A/en
Publication of JPH0477856B2 publication Critical patent/JPH0477856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve accuracy of an air flowmeter, by making a bypass, in which an air temperature measuring resistor is arranged, larger than a bypass, in which a heating resistor is arranged, and equalizing the effect of the temperature of a body on both resistors. CONSTITUTION:In a body 50, a main path 51 and a bypass 52 are provided. The bypass 52 is constituted of a straight tube part 53, a tapered part 58, a straight tube part 54, whose diameter is larger than that of the straight tube part 53, and a bent part 55. In the straight tube part 53, a heating resistor 1 is supported by a supporting pin 5. In the straight tube part 54, an air temperature measuring resistor 2 is supported by a supporting pin 6. The resistor 2 is deviated from a part, where the airflow heated by a resistor 1 passes. Since the straight tube part 54 is thicker than the straight tube part 53, the distance between the resistor 1 and the body is made equal to the distance between the resistor 2 and the body. Thus the effect of the body temperature is made equal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は熱線式空気流量計に係シ、特に内燃機関の吸入
空気流量を測定する熱線式空気流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a hot wire air flow meter, and more particularly to a hot wire air flow meter for measuring the intake air flow rate of an internal combustion engine.

〔発明の背景〕[Background of the invention]

流量を測定する発熱抵抗体が取付けられ、吸入空気通路
の一部を構成しているボディの温度が吸入空気温度と異
なる場合、吸入空気量の検出測定顛偕−ル、−フシ1−
JJべ一1bL−一ふ11□フ  ν^ぬ1れるように
、発熱抵抗体と空気温度測定抵抗体を同一形状、同一長
さの支持ピンで支持し、空気流に対して同一直角面上に
、対称な位置に配置するものが知られている。′ しかし、発熱抵抗体と空気温度測定抵抗体を近接して配
置すると、発熱抵抗体の輻射熱によって空気温度測定抵
抗体が加熱され測定誤差を生じたり、逆に空気温度測定
抵抗体によって乱された空気流が発熱抵抗体に尚シ、安
定した出力を示さず脈流を起す。いわゆる信号出力のノ
ズルが増加するという不具合を発生する。
If a heating resistor for measuring the flow rate is installed and the temperature of the body that forms part of the intake air passage is different from the intake air temperature, the procedure for detecting and measuring the amount of intake air, - Fushi 1 -
JJB11bL-1F11□F ν^N1 Support the heating resistor and the air temperature measuring resistor with support pins of the same shape and length, and place them on the same plane perpendicular to the air flow. It is known that the elements are placed in symmetrical positions. ' However, if the heating resistor and the air temperature measuring resistor are placed close to each other, the air temperature measuring resistor may be heated by the radiant heat of the heating resistor, causing measurement errors, or conversely, the air temperature measuring resistor may be disturbed by the air temperature measuring resistor. When the airflow hits the heating resistor, it does not provide a stable output and causes pulsating current. This causes a problem that the number of so-called signal output nozzles increases.

このため、発熱抵抗体を配置する部分の通路断面積を大
きくすることが必要となυ、流量計が大形になるという
問題があった。
For this reason, there is a problem in that it is necessary to increase the cross-sectional area of the passage where the heating resistor is disposed, and the flowmeter becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸入空振通路を構成しているボディの
温度と、吸入空気温度とが異なる場合にも、精度良く質
量空気流(・を測宇すふと2の〒餐る熱線式空気流量計
を提供することにある。
An object of the present invention is to accurately measure the mass air flow (.) even when the temperature of the body constituting the suction air vibration passage and the temperature of the intake air are different. Our purpose is to provide flowmeters.

本発明の要旨は次の如くである。The gist of the present invention is as follows.

すなわち、バイパス通路中の空気温度測定抵抗体を配置
した部分の通路断面を、流量を測定する発熱抵抗体を配
置した通路断面より大きくして、空気温度測定抵抗体の
支持体の取付面と通路中心との距離が、発熱抵抗体の支
持体の取付面と通路中心との距離より太きくシ、ボディ
と空気温度測定抵抗体および発熱抵抗体との間の熱伝導
率を制御することにより、吸入空気温度と吸入空気通路
を構成しているボディの温度が異なる場合にも、精度良
く質量空気流量を測定しようというものである。
In other words, the passage cross section of the portion of the bypass passage where the air temperature measuring resistor is placed is made larger than the passage cross section where the heating resistor for measuring the flow rate is placed, so that the mounting surface of the support for the air temperature measuring resistor and the passage are made larger. By making the distance from the center larger than the distance between the mounting surface of the support of the heating resistor and the center of the passage, and controlling the thermal conductivity between the body, the air temperature measuring resistor, and the heating resistor, The aim is to accurately measure the mass air flow rate even when the temperature of the intake air and the temperature of the body forming the intake air passage are different.

このように本発明に係る熱線式空気流量計は、発熱抵抗
体と空気の温度差を一定に保ち、その放熱量から質量空
気流量を測定するもので、ボディの温度の影響を受けず
に正しく質量空気流量を測定するためには上記した放熱
量がボディの温度の影響を受けないようにする必要があ
る。そζで、バイパス通路中の空気温度測定抵抗体を配
置した部分の通路断面を流量を測定する発熱抵抗体を配
置した部分よシ犬きくシ、空気温度測定抵抗体の支持体
の取付面と通路中心との距離を発熱抵抗体: の支持体
の取付面と通路中心との距離よシ大きくすることによっ
て、ボディと空気温度測定抵抗体及び発熱抵抗体との間
の熱伝導率を制御し、吸入空気温度とボディの温度が異
なる場合のボディ温度の影響を発熱抵抗体と空気温度測
定抵抗体に同等に与え、発熱抵抗体からの放熱量がボデ
ィ温度;1 の影響を受けないようにして、精度良く質量空気流量を
測定できるようにしたものである。
In this way, the hot wire air flow meter according to the present invention maintains a constant temperature difference between the heating resistor and the air, and measures the mass air flow rate from the heat radiation amount, and can accurately measure the mass air flow rate without being affected by the body temperature. In order to measure the mass air flow rate, it is necessary to ensure that the above-mentioned amount of heat radiation is not affected by the temperature of the body. Therefore, the passage cross section of the part of the bypass passage where the air temperature measuring resistor is placed is parallel to the part where the heating resistor for measuring the flow rate is placed, and the mounting surface of the support of the air temperature measuring resistor is Thermal conductivity between the body and the air temperature measuring resistor and the heating resistor can be controlled by increasing the distance between the center of the passage and the heating resistor: the mounting surface of the support and the center of the passage. , when the intake air temperature and the body temperature are different, the influence of the body temperature is applied equally to the heating resistor and the air temperature measuring resistor, so that the amount of heat released from the heating resistor is not affected by the body temperature; This makes it possible to measure the mass air flow rate with high accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には、本発明の一実施例が示されておシ第2図は
第1図の平面図である。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1.

図において、ボディ50には、メイン通路5.1・と、
゛バイパス通路52とが設けられている。この・・イパ
・通路52は、直管部53と、チー/<58     
  ’と、直管部53より径の大きい直管部54と、バ
イパス通路52を通ってきた空気をメイン通路51に戻
すための19部55と、リング部56と出口部52とに
よって構成されている。この直管部53内に発熱抵抗体
1が支持ピン5によって支持されておシ、直管部54内
に空気温度測定抵抗体2が支持ピン6によって支持され
ている。この空気流量を測定する発熱抵抗体1及び空気
温度測定抵抗体又は同一素子を使用しておシ、第3図に
示すように直径0.5 m 、長さ2mのアルミナのボ
ビン101に白金線102を巻線し、その両端をリード
線103に溶接した後、表面に薄くガラスコーティング
104を行ったもので、これらは吸入空気の大部分が通
るメイン通路51、吸入空気の一部が分流するバイパス
通路52を有してなるボディ50のバイパス通路52中
に設置される。
In the figure, the body 50 includes a main passage 5.1.
A bypass passage 52 is provided. This IPA passage 52 has a straight pipe section 53 and a Q/<58
', a straight pipe part 54 having a larger diameter than the straight pipe part 53, a 19 part 55 for returning the air that has passed through the bypass passage 52 to the main passage 51, a ring part 56, and an outlet part 52. There is. The heating resistor 1 is supported within the straight pipe portion 53 by support pins 5, and the air temperature measuring resistor 2 is supported within the straight pipe portion 54 by support pins 6. Using the heating resistor 1 for measuring the air flow rate and the air temperature measuring resistor or the same element, a platinum wire is attached to an alumina bobbin 101 with a diameter of 0.5 m and a length of 2 m, as shown in Fig. 3. 102 is wound, both ends of which are welded to lead wires 103, and then a thin glass coating 104 is applied to the surface. It is installed in a bypass passage 52 of a body 50 having a bypass passage 52.

ここで発熱抵抗体1の温度は第4図に示す駆動回路3に
より空気温度測定抵抗体2の温度より 一定値だけ高く
保たれる。
Here, the temperature of the heating resistor 1 is maintained by a constant value higher than the temperature of the air temperature measuring resistor 2 by a drive circuit 3 shown in FIG.

また、発熱抵抗体1及び空気温度測定抵抗体2は第1図
に示す如くそれぞれ合成樹脂によシ成形された駆動回路
30ケース4に一体にインサート成形されている支持ピ
ン5.6の先端部にリード103を溶接し、バイパス通
路52中に設置されている。このようにして、支持ピン
5.6によって発熱抵抗体1、空気温度測定抵抗体2は
駆動回路3に電気的接続されている。
Furthermore, as shown in FIG. 1, the heating resistor 1 and the air temperature measuring resistor 2 are connected to the tips of support pins 5 and 6 that are integrally insert-molded into the drive circuit 30 case 4, which is molded from synthetic resin, respectively. A lead 103 is welded to the bypass passage 52 and installed in the bypass passage 52. In this way, the heating resistor 1 and the air temperature measuring resistor 2 are electrically connected to the drive circuit 3 by the support pins 5.6.

吸入空気は図示してないエアクリーナを通って矢印P1
方向からボディ50に流入し、メイン通路51とバイパ
ス通路52に分流する。バイパス通路52に分流した空
気は発熱抵抗体1が設置された直管部53、空気温度測
定抵抗体2が設置された直管部54を通って19部55
に至シ、第5   ′図に示す如くリング部56を通っ
てメイン通路51の最狭部に開口した出口部57でメイ
ン通路51の空気とせ流する。
The intake air passes through an air cleaner (not shown) as indicated by arrow P1.
It flows into the body 50 from this direction and is divided into a main passage 51 and a bypass passage 52. The air branched into the bypass passage 52 passes through a straight pipe section 53 in which the heat generating resistor 1 is installed and a straight pipe section 54 in which the air temperature measuring resistor 2 is installed, and then flows into 19 sections 55.
Finally, as shown in FIG. 5', the air in the main passage 51 is flushed out through the ring part 56 and at the outlet part 57 which opens at the narrowest part of the main passage 51.

バイパス通路52を構成する直管部53.54曲υ部5
5、リング部56、出口部57の各断面積は発熱抵抗体
1が配置されている直管部53が最も小さくなっている
Straight pipe portion 53, 54 curved υ portion 5 constituting the bypass passage 52
5. The cross-sectional area of the ring portion 56 and the outlet portion 57 is the smallest in the straight pipe portion 53 where the heating resistor 1 is disposed.

また、直管部53と直管部54の接続部は空気流に乱れ
が生じないようテーパ58が設けられており、ケース4
0通路壁を構成する部分の形状も同一である。
In addition, a taper 58 is provided at the connecting part between the straight pipe part 53 and the straight pipe part 54 so as not to cause turbulence in the air flow.
The shapes of the parts constituting the 0 passage wall are also the same.

ここで、発熱抵抗体1は乱れのない空気流を当てるため
、空気温7度測定抵抗2の上流に設置されている。
Here, the heating resistor 1 is installed upstream of the resistor 2 for measuring an air temperature of 7 degrees in order to apply an undisturbed air flow.

また、第6図に示す如く、発熱抵抗体1の下流部59は
発熱抵抗体1で加熱された空気流が通るため、空気温度
測定抵抗体2はこの加熱された空気流の通過する部分か
らずらして設置されている。
Further, as shown in FIG. 6, since the air flow heated by the heat generating resistor 1 passes through the downstream part 59 of the heat generating resistor 1, the air temperature measuring resistor 2 is connected to the downstream part 59 of the heat generating resistor 1 from the part through which this heated air flow passes. It is staggered and installed.

従来公知の技術で、前記した発熱抵抗体1の加熱された
空気液の影響をさけるという条件を満足させたものが第
8図に示されている。すなわち、発熱抵抗体1からバイ
パス通路52の壁面の一部を構成するケース4までの長
さLssと空気温度測定抵抗体2からケース4までの長
さLcが異なるため、発熱抵抗体1とケース4すなわち
ケース4が取付けられているボディ5oとの間の熱伝導
係数λHと空気温度測定抵抗体とケース4との熱伝導係
数λCが異なシ、ボディ50の温度の影響が異なる。そ
のため、吸入空気温度とボディ50の温度が異なる場合
には、熱伝導の相違がそのまま測定誤差となって発生し
てくる。
FIG. 8 shows a conventionally known technique that satisfies the above-mentioned condition of avoiding the influence of the heated air liquid on the heating resistor 1. That is, since the length Lss from the heating resistor 1 to the case 4 forming a part of the wall surface of the bypass passage 52 is different from the length Lc from the air temperature measuring resistor 2 to the case 4, 4, that is, the heat conduction coefficient λH between the body 5o to which the case 4 is attached and the heat conduction coefficient λC between the air temperature measuring resistor and the case 4 are different, and the influence of the temperature on the body 50 is different. Therefore, if the temperature of the intake air differs from the temperature of the body 50, the difference in heat conduction directly causes a measurement error.

これに対し、本発明の実施例においては、空気温度測定
抵抗体2を設置する部分の通路54の断面積を発熱抵抗
体1を設置する部分の通路53の断面より大きくするこ
とによって、発熱抵抗体lで加熱された空気が通らない
位置に空気温度測定抵抗体2を設置した状態で、発熱抵
抗体1からケース4の間の長さLmと空気温度測定抵抗
体2からケース4の長さLcを等しくしている。
In contrast, in the embodiment of the present invention, the cross-sectional area of the passage 54 in the part where the air temperature measuring resistor 2 is installed is made larger than the cross-section of the passage 53 in the part where the heating resistor 1 is installed. When the air temperature measuring resistor 2 is installed in a position where the air heated by the body L does not pass through, the length Lm between the heating resistor 1 and the case 4 and the length from the air temperature measuring resistor 2 to the case 4 are determined. Lc is made equal.

このため、発熱抵抗体1とケース4との間の熱伝導係数
λHと空気温度測定抵抗体2とケース4との間の熱伝導
係数λCをほぼ同一にしている。
Therefore, the thermal conductivity coefficient λH between the heating resistor 1 and the case 4 and the thermal conductivity coefficient λC between the air temperature measuring resistor 2 and the case 4 are made almost the same.

ボディ50の温度の測定精度に与える影響は、熱伝導係
数λ庇、λCのみでなく、支持ビン5゜6から空気中へ
の放熱量も影看するため、寸法。
The influence on the measurement accuracy of the temperature of the body 50 is determined not only by the thermal conductivity coefficients λ and λC, but also by the amount of heat radiated from the support bin 5°6 into the air.

LHとLcを同一にすれば必ず誤差が最小になるもので
なく、詳細は空気の流れを含めた実験によ、9LiとL
cの関係や通路53と54の関係を決定することが必要
である。
Making LH and Lc the same does not necessarily minimize the error, and the details are based on experiments including air flow.
It is necessary to determine the relationship between c and the passages 53 and 54.

ボディの温度と空気の温度が異なる場合の測定誤差を発
生させる他の原因に、ボディ温度によりバイパス通路を
通る空気が加熱又は冷却され、メイン通路の空気温度と
異なってしまうことがある。
Another cause of measurement error when the body temperature and air temperature are different is that the body temperature heats or cools the air passing through the bypass passage, making it different from the air temperature in the main passage.

以下これについて、ボディの温度が吸入空気よ)高い場
合を例にとって説明する。
This will be explained below, taking as an example a case where the temperature of the body is higher than that of the intake air.

メイン通路51とバイパス通路52の空気流速の関係は
次のようになる。
The relationship between the air flow velocities in the main passage 51 and the bypass passage 52 is as follows.

ここに、ΔP:バイパス通路52の入口60と出口57
の圧力差 UM 、 Us :メイン通路51、バイパス通路52
の流速 CM、C1:メイン通路51、バイパス通路52の流量
係数 ρM、ρ11=メイン通路51、バイパス通路52の空
気密度 ボディ50の温度が吸入空気温度よシ高い場合、バイパ
ス空気流の温度は、メイン空気流の温度に比べ、通路断
面積に対するバイパス通路に面するボディ壁面積の割合
が大きいため高くなり易い。
Here, ΔP: Inlet 60 and outlet 57 of the bypass passage 52
Pressure difference UM, Us: main passage 51, bypass passage 52
Flow velocity CM, C1: Flow coefficient ρM of the main passage 51 and bypass passage 52, ρ11 = Air density of the main passage 51 and bypass passage 52 If the temperature of the body 50 is higher than the intake air temperature, the temperature of the bypass air flow is Compared to the temperature of the main airflow, the temperature tends to be high because the ratio of the body wall area facing the bypass passage to the cross-sectional area of the passage is large.

この場合、(8)弐において、ρBが小さく、CIが大
きくなる。その結果、メイン通路51とバイパス通路5
2の質量流速比(ρ1・Ul/ρMllUM)が小さく
なシ、マイナス側の測定誤差が生ずる。
In this case, in (8) 2, ρB is small and CI is large. As a result, the main passage 51 and the bypass passage 5
When the mass flow rate ratio (ρ1·Ul/ρMllUM) of 2 is small, a measurement error on the negative side occurs.

ここで、この変化量を小さくするには、バイパス通路5
2の断面積に対するバイパス通路に面す。
Here, in order to reduce this amount of change, the bypass passage 5
Facing the bypass passage for a cross-sectional area of 2.

るボディ壁面積を減らすこと、すなわちバイパス通路面
積を大きくして、バイパスの空気がボディで加熱されに
くくすればよい。また、バイパス通路の温度による流量
係数CJIの変化を小さくすればよい。一方、バイパス
通路52全体の断面積を大きくすると、上記2点につい
ては効果があるが、同一流量における発生抵抗体1の部
分の流速か断面積の増加に伴ない低下するため、検出感
度が低下する。流速の小さい程ボディ壁温の発熱抵抗体
に与える影響が大きい等の不具合がある。
What is necessary is to reduce the body wall area, that is, increase the area of the bypass passage to make it difficult for the bypass air to be heated by the body. Further, it is sufficient to reduce the change in the flow rate coefficient CJI due to the temperature of the bypass passage. On the other hand, increasing the cross-sectional area of the bypass passage 52 as a whole has an effect on the above two points, but the flow velocity of the generating resistor 1 at the same flow rate decreases as the cross-sectional area increases, resulting in a decrease in detection sensitivity. do. There are problems such as the smaller the flow velocity, the greater the influence of the body wall temperature on the heating resistor.

これに対し、本発明による実施例においては、発熱抵抗
体1を設置しである部分(直管部53)の断面積に対し
、バイパス通路52を構成する他の部分、直管部54.
19部55、リング部56、出口部57の断面積を大き
くしであるため、発熱抵抗体1を通る空気流の流速を低
下させることなく、ρ誌の低下及びCIの増加を小さく
することができ、吸入空気温度とボディ温度が異なる場
合の測定精度を向上させることができる。
On the other hand, in the embodiment according to the present invention, the cross-sectional area of the part (straight pipe part 53) where the heating resistor 1 is installed is different from that of the other part constituting the bypass passage 52, the straight pipe part 54.
Since the cross-sectional areas of the 19 part 55, the ring part 56, and the outlet part 57 are made large, it is possible to reduce the decrease in ρ magazine and the increase in CI without reducing the flow velocity of the air flow passing through the heating resistor 1. This can improve measurement accuracy when the intake air temperature and body temperature are different.

なおC腸はバイパス通路全体の流量係数であシ、発熱抵
抗体1の配置部(直管部53)のみ断面積を小さくシ、
他を大きくすれば、全体を大きくした時に比べ差はほと
んどなく、54〜57を拡大する前よシ流速は向上する
Note that C is the flow coefficient of the entire bypass passage, and only the section where the heating resistor 1 is placed (straight pipe section 53) has a small cross-sectional area.
If you make the other parts larger, there will be almost no difference compared to making the whole part larger, and the flow velocity will improve before you enlarge 54 to 57.

本発明の実施例を適用し、吸入空気温度とボディ温度を
考え、実験した結果が第9図に示されている。図におい
て、Aがボディ温度を示し、iが吸入空気温度を示して
いる。
FIG. 9 shows the results of an experiment in which the embodiment of the present invention was applied and the intake air temperature and body temperature were considered. In the figure, A indicates the body temperature, and i indicates the intake air temperature.

従来の熱線式空気流量計では、第9図Cに示す如く吸入
空気流量が低い値のとき、すなわち低速始動時、アイド
リンク時にはなはだしい測定誤差を生じてしまい、安定
したエンジン回転を得ることができない。これに対し本
発明の実施例によると、第9図りに示す如く測定誤差は
甚しく小さくすることができた。このためエンジン回転
はむらを生じることなく適正回転数を得ることができる
As shown in Figure 9C, conventional hot-wire air flowmeters cause significant measurement errors when the intake air flow rate is low, that is, at low-speed starting or idling, making it impossible to obtain stable engine rotation. . In contrast, according to the embodiment of the present invention, the measurement error could be significantly reduced as shown in Figure 9. Therefore, it is possible to obtain an appropriate engine speed without causing unevenness in the engine speed.

第10図には、本発明の他の実施例が示されている。本
実施例が第1図図示実施例と異る点は、発熱抵抗体1を
下流側に設け、空気温度測定抵抗体2を上流側に設け、
発熱抵抗体1の装着されるバイパス通路52の直管部5
4より、空気温度測定抵抗体2の装着されるバイパス通
路52の直管部53の係を大きくした点である。
Another embodiment of the invention is shown in FIG. This embodiment differs from the embodiment shown in FIG. 1 in that the heating resistor 1 is provided on the downstream side, the air temperature measuring resistor 2 is provided on the upstream side,
Straight pipe section 5 of bypass passage 52 to which heating resistor 1 is attached
4, the relationship between the straight pipe portion 53 of the bypass passage 52 to which the air temperature measuring resistor 2 is mounted is increased.

すなわち、バイパス通路52は、直管部153と、テー
バ158と、直管部154と、バイパス       
′1通路52を通ってきた空気をメイン通路51に戻す
ための19部155と、リング部156と、出口部15
2とによって構成されている。この直管部153は直管
部154よシ大きい径に形成されている。また直管部5
4内に発熱抵抗体1が支持ピ/6によって支持されてお
シ、直管部153内に空気温度測定抵抗体2が支持ピン
5によって支持されている。
That is, the bypass passage 52 includes the straight pipe section 153, the taper 158, the straight pipe section 154, and the bypass
19 part 155 for returning the air that has passed through the passage 52 to the main passage 51, a ring part 156, and an outlet part 15.
2. This straight pipe portion 153 is formed to have a larger diameter than the straight pipe portion 154. Also, the straight pipe part 5
The heat generating resistor 1 is supported within the straight pipe portion 153 by a support pin 6, and the air temperature measuring resistor 2 is supported within the straight pipe portion 153 by a support pin 5.

吸入空気は、図示されていないエアクリーナを通って矢
印P1方向からボディ50に流入し、メイン通路51と
バイパス通路52に分流する。バイパス通路52+に分
流した空気は空気温度測定抵抗体2が設置された直管部
153、発熱抵抗体1が設置された直管部154を通っ
て曲υ部155に至シ、リング部156を通ってメイン
通路51の最狭部罠開口した出口部157でメイン通路
51の空気と合流する。バイパス通路52を構成する直
管部153,154.19部155、リシグ部156、
出口部157の各断面積は′発熱抵抗体1が配置されて
いる直管部154が最も小さくなっている。
Intake air flows into the body 50 from the direction of arrow P1 through an air cleaner (not shown), and is divided into a main passage 51 and a bypass passage 52. The air diverted to the bypass passage 52+ passes through the straight pipe part 153 where the air temperature measuring resistor 2 is installed, the straight pipe part 154 where the heat generating resistor 1 is installed, reaches the curved υ part 155, and passes through the ring part 156. The air passes through the narrowest part of the main passage 51 and merges with the air in the main passage 51 at an open outlet section 157. Straight pipe parts 153, 154, 19 part 155, resig part 156, which constitute bypass passage 52,
The cross-sectional area of each outlet portion 157 is the smallest in the straight pipe portion 154 where the heating resistor 1 is disposed.

また、直管部153と直管部154の接続部は空気流に
乱れが生じないよう、テーバ158が設けられておシ、
ケース4の通路壁へ構成する部分の形状も同一である。
Further, a taper 158 is provided at the connecting portion between the straight pipe portion 153 and the straight pipe portion 154 so as not to cause turbulence in the air flow.
The shape of the portion of the case 4 that forms the passage wall is also the same.

空気温度測定抵抗体2が発熱抵抗体1の上流に設けられ
ているが、空気温度測定抵抗体2が装着されている直管
部153が、発熱抵抗体1が装着されている直管部15
4よυも大きな径に形成されているため、空気温度測定
抵抗体2によって空気流の乱れを生じ、発熱抵抗体1が
影響を受けることのない位置に空気温度測定抵抗体2が
設けられている。このようにすることによシ第1図図示
実施例と同様の効果を得ることができる。
The air temperature measuring resistor 2 is provided upstream of the heating resistor 1, and the straight pipe section 153 to which the air temperature measuring resistor 2 is mounted is the same as the straight pipe section 15 to which the heating resistor 1 is mounted.
Since 4 and υ are formed to have large diameters, the air temperature measuring resistor 2 causes turbulence in the air flow, and the air temperature measuring resistor 2 is installed at a position where the heating resistor 1 is not affected. There is. By doing so, it is possible to obtain the same effect as the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、本発明によれば、吸入空気通路を
構成しているボディの温度と吸入空気温度とが異なる場
合にも精度良く質量空気流量を測定することができる。
As described above, according to the present invention, it is possible to accurately measure the mass air flow rate even when the temperature of the body constituting the intake air passage and the intake air temperature are different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は第1図
の平面図、第3図は抵抗体の全体構成図、第4図は制御
回路図、第5図は第1図I−I断面図、第6図は第1図
の抵抗体取付部の一部拡大図、第7図は第6図の平面図
、第8図は従来の抵抗体の取付部の一部拡大図、第9図
は従来例と本実施例の流量誤差の測定図、第10図は本
発明の他の実施例を示す断面図である。 1・・・発熱抵抗体、2・・・空気温度測定抵抗体、5
ドメイン通路、52・・・バイパス通路、53,54゜
153.154・・・直管部、55.155・・・曲シ
部、56.156・・・リング部、57.157・・・
出口部。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, FIG. 3 is an overall configuration diagram of a resistor, FIG. 4 is a control circuit diagram, and FIG. Figure I-I sectional view, Figure 6 is a partially enlarged view of the resistor mounting part in Figure 1, Figure 7 is a plan view of Figure 6, and Figure 8 is a part of the conventional resistor mounting part. An enlarged view, FIG. 9 is a measurement diagram of flow rate errors between the conventional example and this embodiment, and FIG. 10 is a sectional view showing another embodiment of the present invention. 1... Heat generating resistor, 2... Air temperature measuring resistor, 5
Domain passage, 52... Bypass passage, 53, 54° 153.154... Straight pipe part, 55.155... Curved part, 56.156... Ring part, 57.157...
Exit part.

Claims (1)

【特許請求の範囲】[Claims] 1、空気流量を測定する発熱抵抗体と空気温度測定抵抗
体をバイパス通路に設置してなる熱線式空気流量計にお
いて、上記バイパス通路の一部を他の径よりも大きい径
に形成し、上記発熱抵抗体の装着されるバイパス通路よ
りも大きい径のバイパス通路内に、上記空気温度測定抵
抗体を装着することを特徴とする熱線式空気流量計。
1. In a hot-wire air flow meter in which a heating resistor for measuring air flow rate and an air temperature measuring resistor are installed in a bypass passage, a part of the bypass passage is formed to have a larger diameter than the other part, and the above-mentioned A hot wire air flowmeter characterized in that the air temperature measuring resistor is installed in a bypass passage having a diameter larger than that of the bypass passage in which the heating resistor is installed.
JP15635384A 1984-07-26 1984-07-26 Hot wire type air flowmeter Granted JPS6134422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15635384A JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15635384A JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Publications (2)

Publication Number Publication Date
JPS6134422A true JPS6134422A (en) 1986-02-18
JPH0477856B2 JPH0477856B2 (en) 1992-12-09

Family

ID=15625899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15635384A Granted JPS6134422A (en) 1984-07-26 1984-07-26 Hot wire type air flowmeter

Country Status (1)

Country Link
JP (1) JPS6134422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502392A (en) * 2002-10-07 2006-01-19 ワグナー アラーム− ウント ジッヒャルンクスシャテム ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluid flow parameter determination apparatus and operation method thereof
DE102005019581B4 (en) * 2004-04-28 2016-04-07 Denso Corporation Air flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502392A (en) * 2002-10-07 2006-01-19 ワグナー アラーム− ウント ジッヒャルンクスシャテム ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluid flow parameter determination apparatus and operation method thereof
DE102005019581B4 (en) * 2004-04-28 2016-04-07 Denso Corporation Air flow meter

Also Published As

Publication number Publication date
JPH0477856B2 (en) 1992-12-09

Similar Documents

Publication Publication Date Title
US6240775B1 (en) Flow rate sensor
US4825704A (en) Fluid flow speed measuring apparatus
US5086650A (en) Low noise fluid flow sensor mounting
US4320650A (en) Flow rate measuring apparatus having vortex-generating element and hot wire element
JP3783896B2 (en) Air flow measurement device
US4418568A (en) Hot film fluid flowmeter with auxiliary flow sensing
JP5182314B2 (en) Air flow measurement device
JPS6148721A (en) Air-current sensor
JP2005156570A (en) Device with thermal flowmeter used for internal combustion engine
JPH11326000A (en) Thermosensitive type flow sensor
US5485746A (en) Hot-wire type airflow meter having a flow smoothing core
GB2143951A (en) Flow rate measuring means
JPS6134422A (en) Hot wire type air flowmeter
JPS604813A (en) Gas flow rate measuring apparatus
JPH07190821A (en) Flowmeter
JPS60185118A (en) Air flowmeter
JPH09280913A (en) Differential pressure flowmeter
JP3106449B2 (en) Flowmeter
JPH05172835A (en) Thermal flow direction judging device
JPS62812A (en) Hot-wire air flow meter
JPH0320619A (en) Hot-wire type air flowmeter
JPS61124825A (en) Hot-wire flowmeter
JP3070642B2 (en) Flowmeter
JPH06288805A (en) Air flowmeter
JP2871130B2 (en) Air flow meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees