JPH09280913A - Differential pressure flowmeter - Google Patents

Differential pressure flowmeter

Info

Publication number
JPH09280913A
JPH09280913A JP8096592A JP9659296A JPH09280913A JP H09280913 A JPH09280913 A JP H09280913A JP 8096592 A JP8096592 A JP 8096592A JP 9659296 A JP9659296 A JP 9659296A JP H09280913 A JPH09280913 A JP H09280913A
Authority
JP
Japan
Prior art keywords
throat
temperature
differential pressure
sensor
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096592A
Other languages
Japanese (ja)
Inventor
Masayoshi Kikuchi
正吉 菊池
Ryoichiro Matsumoto
良一郎 松本
Yuki Masuda
由紀 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP8096592A priority Critical patent/JPH09280913A/en
Publication of JPH09280913A publication Critical patent/JPH09280913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable correct measurement of a fluid temperature, reduction in a piping cost and shorten a wire by a constitution that a temperature sensor is embedded in a throat or in the vicinity of the throat. SOLUTION: Since a temperature sensor 18 is provided on a cone pipe 5b at a downstream closely to a throat 4, it is not necessary to provide an attaching seat for the sensor on a side of a pipe 2 or lengthen a wire 19, so that a flow meter can be inexpensively manufactured and correct temperature measurement is possible. That is, a flow speed distribution of fluid 17 flowing in a conduit is such that it flows faster at the center of the conduit while it flows slower near a pipe wall, but the distribution is approximately uniform in the vicinity of the throat 4 since a throat diameter (d) is small. Thus influence of the pipe wall to temperature characteristics is small, exhibiting an approximately uniform temperature distribution, whereby a fluid temperature can be correctly measured even if the sensor 18 is not made to protrude into the conduit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は絞り機構としてベン
チュリー管またはフローノズルを用い、上下流の圧力差
から流量を測定する差圧流量計に関し、更に詳しくは温
度による流体の密度補正を行うようにした絞り機構に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential pressure flow meter which measures a flow rate from an upstream / downstream pressure difference by using a Venturi tube or a flow nozzle as a throttle mechanism, and more specifically, to correct the density of a fluid by temperature. It relates to the diaphragm mechanism.

【0002】[0002]

【従来の技術】管路内を定常流で流れる液体、気体、蒸
気等の各種流体の流量測定に用いられる差圧流量計は、
絞り機構として通常ベンチュリー管、フローノズル、オ
リフィス等を用いて圧力差を発生させ、その差圧から流
量を測定している。すなわち、管路の途中に管路の断面
積を狭くする絞り機構を設けると、そこを流体が流れる
とき、絞り機構の前後に圧力差が生じる。この圧力差と
流量との間にはある一定の関係があるので、差圧を導圧
管によって差圧計に導いて電気信号に変換し演算するこ
とにより、その信号から管路内を流れる流体の流量を算
出することができる。このような差圧流量計のうちベン
チュリー管を用いた差圧流量計においては、円錐管によ
り流体を円滑に導いているので、オリフィス等の他の絞
り機構に比べて圧力損失が最小(発生差圧の10〜20
%)で、また差圧流量計の中で最高の測定精度をもつ。
また、スロート(絞り穴部分)の摩耗も少なく、沈澱に
よりスロートが塞がるおそれも少ないという特長を有し
ている。ベンチュリー管の管径をD、スロート径をdと
すると、絞り直径比(=d/D)は、通常0.25〜
0.5程度とされる。また、上流側の直管部は少なくと
も5D以上を必要とするが、下流側直管部の長さは測定
に大きく影響しない。
2. Description of the Related Art A differential pressure flow meter used for measuring the flow rate of various fluids such as liquid, gas, and steam flowing in a pipe line in a steady flow,
As a throttling mechanism, a venturi tube, a flow nozzle, an orifice or the like is usually used to generate a pressure difference, and the flow rate is measured from the pressure difference. That is, when a throttle mechanism for narrowing the cross-sectional area of the pipeline is provided in the middle of the pipeline, a pressure difference is generated before and after the throttle mechanism when the fluid flows therethrough. Since there is a certain relationship between this pressure difference and the flow rate, the differential pressure is introduced into a differential pressure gauge by a pressure guiding tube, converted into an electrical signal, and operated to calculate the flow rate of the fluid flowing in the pipeline. Can be calculated. Among such differential pressure flowmeters, in the differential pressure flowmeter using a Venturi tube, since the fluid is smoothly guided by the conical tube, the pressure loss is minimized (compared to the generated differential Pressure 10-20
%) And has the highest measurement accuracy among differential pressure flow meters.
In addition, the throat (throttle hole portion) is less worn, and the throat is less likely to be blocked by sedimentation. Assuming that the diameter of the Venturi tube is D and the throat diameter is d, the throttle diameter ratio (= d / D) is usually 0.25 to
It is set to about 0.5. Further, the upstream straight pipe portion requires at least 5D or more, but the length of the downstream straight pipe portion does not significantly affect the measurement.

【0003】[0003]

【発明が解決しようとする課題】このような差圧流量計
において、流体の温度変化により流体の密度が変化する
ため、測定誤差が生じる。そのため、流体の温度を測定
し密度変化による誤差を補正している。その場合、管路
中を流れる流体は、管路中心の流速が速く、管壁近辺の
流速が遅く、温度勾配をもつため、温度センサを管路内
に突出させて設置している。しかしながら、温度センサ
を管路内に突出させると、温度センサの後方に渦が発生
して流体の流れの乱れや、圧力反射を起こし圧力が変動
するため、スロートより上流側に10〜20D、もしく
は下流側に5D以上離して温度センサを設置する必要が
あった(JIS規格による)。そのため、配管に温度セ
ンサのための取付座を設けたり、配線が長くなるという
問題があった。また、スロートの上流側に10〜20D
も離して設けると、それだけ配管が長くなるため、配管
コストが高くなるという問題もあった。
In such a differential pressure flowmeter, a measurement error occurs because the density of the fluid changes due to the temperature change of the fluid. Therefore, the temperature of the fluid is measured and the error due to the density change is corrected. In that case, since the fluid flowing in the pipeline has a high flow velocity at the center of the pipeline, a low flow velocity near the pipe wall, and a temperature gradient, the temperature sensor is installed so as to protrude into the pipeline. However, when the temperature sensor is projected into the pipe, a vortex is generated behind the temperature sensor to cause turbulence of the fluid flow and pressure reflection to change the pressure, so that 10 to 20 D upstream of the throat, or It was necessary to install the temperature sensor at a distance of 5D or more on the downstream side (according to JIS standard). Therefore, there is a problem that a mounting seat for a temperature sensor is provided on the pipe and the wiring becomes long. Also, 10 to 20D on the upstream side of the throat
If they are provided separately, the piping becomes longer, and the piping cost becomes higher.

【0004】そこで、本発明者らは、JISによる規格
通りに温度センサを設けた流量計と、温度センサの取付
位置および取付状態を種々異ならせた流量計とを製作
し、これら流量計に同じ条件で流体を流した時、温度の
測定値がどのような影響を受けるかを比較試験した。そ
の結果、温度センサの後方に渦が発生して流体の流れが
乱れたり圧力反射を起こさなければ、温度センサをスロ
ートまたはその付近に近接して設けても忠実に流体の温
度を測定することができ、実用上何等問題がないことを
確認した。流体の流れが乱れたり圧力反射を起こさない
ようにするには、温度センサを管路中に突出させず、絞
り機構の内壁面と略同一面にするか、または外壁面に内
壁面にまで達する不貫通孔を形成し、この孔に温度セン
サを配置すればよい。なお、このような実験は、温度セ
ンサをスロートまたはスロートの近傍内に埋設すること
から、ベンチュリー管やフローノズルには適用可能であ
ってもオリフィスを用いた絞り機構には適用が困難であ
ることが判った。
Therefore, the inventors of the present invention have manufactured a flowmeter having a temperature sensor according to the JIS standard and a flowmeter having a different mounting position and mounting state of the temperature sensor. A comparative test was conducted to see how the measured temperature value was affected when the fluid was flowed under the conditions. As a result, if a vortex is generated behind the temperature sensor and the fluid flow is not disturbed or pressure reflection occurs, the temperature of the fluid can be measured faithfully even if the temperature sensor is installed close to or near the throat. It was confirmed that there was no problem in practical use. To prevent turbulence of the fluid flow or pressure reflection, make the temperature sensor not protrude into the pipe line and make it approximately flush with the inner wall surface of the throttle mechanism, or reach the outer wall up to the inner wall surface. A non-through hole may be formed and a temperature sensor may be arranged in this hole. It should be noted that, in such an experiment, since the temperature sensor is embedded in the throat or in the vicinity of the throat, it is difficult to apply it to the throttling mechanism using the orifice even though it can be applied to the Venturi tube or the flow nozzle. I understood.

【0005】本発明は上記した従来の問題点および実験
結果に基づいてなされたもので、その目的とするところ
は、流体の流れが乱れたり圧力反射を起こしたりするこ
となく流体の温度を正確に測定でき、また配管コストの
低減と配線の短縮化を可能にした差圧流量計を提供する
ことにある。
The present invention has been made on the basis of the above-mentioned conventional problems and experimental results. The object of the present invention is to accurately measure the temperature of a fluid without disturbing the flow of the fluid or causing pressure reflection. Another object of the present invention is to provide a differential pressure flowmeter that can perform measurement, reduce piping cost, and shorten wiring.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、スロートを有するベンチュリー管またはフ
ローノズルの上下流の差圧から流量を測定する差圧流量
計において、前記スロートまたはスロート近傍部内に温
度センサを埋設したことを特徴とする。また、本発明
は、スロートまたはスロート近傍部に管路内に連通する
センサ装填部を設け、このセンサ装填部内に温度センサ
をその測温部側端面がスロートまたはスロート近傍部の
内壁面と略同一面を形成するように装填したことを特徴
とする。さらに、本発明は、スロートまたはスロート近
傍部の外壁面に内壁面近傍にまで達する不貫通孔を形成
し、この不貫通孔内に温度センサを装填したことを特徴
とする。
In order to achieve the above object, the present invention provides a differential pressure flowmeter for measuring a flow rate from a differential pressure between an upstream and a downstream of a venturi tube or a flow nozzle having a throat, and the throat or the vicinity of the throat. The temperature sensor is embedded in the section. Further, according to the present invention, a sensor loading portion that communicates with the inside of the conduit is provided in the throat or in the vicinity of the throat, and the temperature sensor in the sensor loading portion has an end surface on the temperature measuring portion side substantially the same as the inner wall surface of the throat or the vicinity of the throat. It is characterized in that it is loaded so as to form a surface. Furthermore, the present invention is characterized in that a non-penetrating hole reaching the vicinity of the inner wall surface is formed on the outer wall surface of the throat or a portion near the throat, and a temperature sensor is loaded in the non-penetrating hole.

【0007】本発明においては、温度センサをスロート
またはスロート近傍部内に埋設しているので、配管およ
び配線が短くてすむ。また、本発明は、スロートまたは
スロート近傍に管路内に連通するように貫通して設けた
センサ装填部内に温度センサを装填し、その測温部側端
面をスロートまたはスロート近傍部の内壁面と略同一面
にするか、もしくはスロートまたはスロート近傍部の外
壁面に内壁面近傍にまで達する不貫通孔を形成し、この
不貫通孔内に温度センサを装填したので、温度センサに
よる流体の乱れや圧力反射は発生しない。管路内を流れ
る流体は、管路中心が速く、管壁近くが遅いという流速
分布をもっているが、スロート部分においてはスロート
径dが小さいことから流速分布が均一に近くなる。その
ため、温度特性も管壁の影響が少なく、温度センサを管
路内に突出させなくても正確に温度を測定することがで
きる。
In the present invention, since the temperature sensor is embedded in the throat or in the vicinity of the throat, the piping and wiring can be short. Further, the present invention, the temperature sensor is loaded in the sensor loading portion provided so as to communicate with the inside of the pipe in the throat or in the vicinity of the throat, and the temperature measuring portion side end surface thereof is used as an inner wall surface of the throat or in the vicinity of the throat. Since the same surface is used, or a non-through hole reaching the inner wall surface is formed in the outer wall surface of the throat or in the vicinity of the throat, and a temperature sensor is loaded in the non-through hole, so that the temperature sensor does not disturb the fluid. No pressure reflection occurs. The fluid flowing in the pipe has a flow velocity distribution in which the center of the pipe is fast and the velocity near the pipe wall is slow, but the throat diameter d is small in the throat portion, so that the flow velocity distribution becomes nearly uniform. Therefore, the temperature characteristic is less affected by the pipe wall, and the temperature can be accurately measured without protruding the temperature sensor into the pipe.

【0008】[0008]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。図1は本発明に係る差圧流量計の一実施
の形態を示す断面図である。本実施の形態においては、
絞り機構としてベンチュリー管を用いた差圧流量計に適
用した例を示す。同図において、差圧流量計1は、配管
2の直管部の途中に設けられたベンチュリー管3を備え
ている。ベンチュリー管3は、内径がdのスロート4
と、スロート4の両端にそれぞれ連設されたテーパの緩
やかな円錐管5a,5bと、内径がDで上流側の円錐管
5aに連設された直管6とからなり、下流側の円錐管5
bと直管6の端部に設けたフランジ7,8が配管2のフ
ランジ9,10にそれぞれ接続されている。スロート4
と直管6の上面には、圧力取出口11,12がそれぞれ
設けられ、これらの圧力取出口11,12を導圧管1
3,14によって差圧計15の高圧側と低圧側にそれぞ
れ接続している。下流側の円錐管5bの外壁面には、内
部が管路内に連通する筒状のセンサ装填部16が突設さ
れている。このセンサ装填部16は、下流側に適宜角度
傾斜して設けられ、内部に流体17の温度を測定する温
度センサ18が挿入され取付けられている。センサ装填
部16を下流側に傾斜させると内側開口端が上流側を指
向するので、流体17をセンサ装填部16内に進入し易
くし滞留するのを防止することができる。温度センサ1
8は熱電対、測温抵抗体等からなり、その測温部側端面
18aが円錐管5bの内壁面5aと略同一面を形成する
ように位置付けられ流体17と接液している。また、温
度センサ18とセンサ装填部16の内周面との間には適
宜な隙間が形成されている。そして、温度センサ18は
配線19によって前記差圧計15に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a differential pressure flowmeter according to the present invention. In the present embodiment,
An example of application to a differential pressure flowmeter using a Venturi tube as a throttling mechanism is shown. In the figure, the differential pressure flowmeter 1 includes a Venturi pipe 3 provided in the middle of a straight pipe portion of the pipe 2. The Venturi tube 3 has a throat 4 with an inner diameter d.
And a tapered tapered conical tube 5a, 5b connected to both ends of the throat 4, and a straight tube 6 connected to the upstream conical tube 5a having an inner diameter D, and the downstream conical tube. 5
b and flanges 7 and 8 provided at the ends of the straight pipe 6 are connected to the flanges 9 and 10 of the pipe 2, respectively. Throat 4
Pressure outlets 11 and 12 are provided on the upper surfaces of the straight pipe 6 and the straight pipe 6, and these pressure outlets 11 and 12 are connected to the pressure guiding pipe 1
3, 14 are connected to the high pressure side and the low pressure side of the differential pressure gauge 15, respectively. On the outer wall surface of the conical tube 5b on the downstream side, a cylindrical sensor loading portion 16 having an inside communicating with the inside of the conduit is provided in a protruding manner. The sensor loading portion 16 is provided on the downstream side with an appropriate angle inclination, and a temperature sensor 18 for measuring the temperature of the fluid 17 is inserted and attached inside. When the sensor mounting part 16 is inclined to the downstream side, the inner opening end is directed to the upstream side, so that the fluid 17 can easily enter the sensor mounting part 16 and can be prevented from staying in the sensor mounting part 16. Temperature sensor 1
Reference numeral 8 is composed of a thermocouple, a resistance temperature detector, etc., and its end surface 18a on the temperature measuring portion side is positioned so as to be substantially flush with the inner wall surface 5a of the conical tube 5b and is in contact with the fluid 17. Further, an appropriate gap is formed between the temperature sensor 18 and the inner peripheral surface of the sensor loading portion 16. The temperature sensor 18 is connected to the differential pressure gauge 15 by a wiring 19.

【0009】このような構造からなる差圧流量計1にお
いて、上流側の圧力P1 と下流側の圧力P2 を、導圧管
13,14を介して差圧計15に導き、その差圧を検出
して電気信号に変換し、次式に基づいて演算処理するこ
とにより配管2の管路内を流れる流体17の流量Qを算
出することができる。
In the differential pressure flowmeter 1 having such a structure, the upstream pressure P1 and the downstream pressure P2 are guided to the differential pressure gauge 15 through the pressure guiding pipes 13 and 14, and the differential pressure is detected. The flow rate Q of the fluid 17 flowing in the conduit of the pipe 2 can be calculated by converting it into an electric signal and performing arithmetic processing based on the following equation.

【0010】[0010]

【数1】 [Equation 1]

【0011】ただし、Fはスケールファクター、T1 は
設計上の流体の温度、P1 は設計上の高圧側圧力、ΔP
は発生差圧、ΔPSPAN は流量レンジ100Nm3/hに
対応する差圧である。
Where F is a scale factor, T1 is the temperature of the designed fluid, P1 is the designed high pressure, and ΔP
Is a generated differential pressure, and ΔPSPAN is a differential pressure corresponding to a flow rate range of 100 Nm 3 / h.

【0012】測定において流体17の温度が変化する
と、密度が変化して測定誤差が生じる。そこで、流体1
7の温度を温度センサ18によって検出し、次式によっ
て流量を補正する。
When the temperature of the fluid 17 changes in the measurement, the density changes and a measurement error occurs. Therefore, fluid 1
The temperature of No. 7 is detected by the temperature sensor 18, and the flow rate is corrected by the following equation.

【0013】[0013]

【数2】 [Equation 2]

【0014】だだし、Q’は補正後の流量、T1’は測
定した流体の温度、P1’ は測定した上流側圧力であ
る。
However, Q'is the corrected flow rate, T1 'is the measured fluid temperature, and P1' is the measured upstream pressure.

【0015】本発明においては、温度センサ18をスロ
ート4に近接して下流側の円錐管5bに設けているの
で、配管2側にセンサのための取付座を設けたり、配線
19を長くする必要がなく、安価に製作することがで
き、また正確な温度測定を行うことができる。すなわ
ち、管路内を流れる流体17の流速分布は、管路中心が
速く、管壁近くが遅いという流速分布をもっているが、
スロート4に近い部分においてはスロート径dが小さい
ことから流速分布が均一に近くなる。そのため、温度特
性も管壁の影響が少なく略一様な温度分布となるので、
温度センサ18を管路内に突出させなくても流体温度を
正確に測定することができる。
In the present invention, since the temperature sensor 18 is provided in the conical pipe 5b on the downstream side in the vicinity of the throat 4, it is necessary to provide a mounting seat for the sensor on the pipe 2 side and lengthen the wiring 19. It can be manufactured inexpensively, and accurate temperature measurement can be performed. That is, the flow velocity distribution of the fluid 17 flowing in the pipe has a flow velocity distribution that the center of the pipe is fast and the velocity near the pipe wall is slow,
Since the throat diameter d is small in the portion close to the throat 4, the flow velocity distribution becomes almost uniform. Therefore, the temperature characteristics are less affected by the pipe wall and the temperature distribution is almost uniform.
The fluid temperature can be accurately measured without projecting the temperature sensor 18 into the conduit.

【0016】また、温度センサ18を管路内に突出させ
ていないので、圧力取出部の上端部側に設けても流体1
7の流れが乱れたり、また下流側に設けても圧力反射を
起こすこともない。さらに、温度センサ18とセンサ装
填部16との間に隙間を設けておくと、温度センサ18
の周囲に流体17が入り込み温度センサ18の接液面積
を増大させることができるので、管壁の温度による影響
を少なくすることができる。
Further, since the temperature sensor 18 is not projected into the pipe, the fluid 1 can be provided even if it is provided on the upper end side of the pressure extracting portion.
The flow of 7 is not disturbed, and pressure reflection does not occur even if it is provided on the downstream side. Furthermore, if a gap is provided between the temperature sensor 18 and the sensor loading portion 16, the temperature sensor 18
Since the fluid 17 enters the surrounding area of the temperature sensor 18 and the contact area of the temperature sensor 18 can be increased, the influence of the temperature of the tube wall can be reduced.

【0017】上記した実施の形態においては、下流側の
円錐管5bに温度計18を配設した例を示したが、これ
に限らず例えば図2または図3に示すようにスロート4
に設けてもよい。すなわち、図2はスロート4の管壁に
センサ装填部16を下流側に傾斜させて一体に突設し、
このセンサ装填部16内に温度センサ18を装填した例
を示す。センサ装填部16はスロート4の内部に連通し
て形成されている。温度センサ18の測温側端面18a
は、上記した実施の形態と同様に、スロート4の内壁面
と略同一面を形成し、スロート4内には突出していな
い。
In the above-described embodiment, the example in which the thermometer 18 is provided in the conical tube 5b on the downstream side has been shown, but the present invention is not limited to this, and the throat 4 as shown in FIG. 2 or 3, for example.
May be provided. That is, FIG. 2 shows that the sensor loading portion 16 is provided on the pipe wall of the throat 4 so as to incline toward the downstream side and integrally project.
An example in which the temperature sensor 18 is loaded in the sensor loading unit 16 is shown. The sensor loading portion 16 is formed in communication with the inside of the throat 4. Temperature measurement side end surface 18a of the temperature sensor 18
Like the above-described embodiment, forms a substantially same surface as the inner wall surface of the throat 4 and does not project into the throat 4.

【0018】一方、図3はスロート4の管壁外側面に、
不貫通孔からなるセンサ装填28をスロート4の軸線と
直交するように形成し、このセンサ装填部28に温度セ
ンサ18を装填した例を示す。このため、温度センサ1
8は、スロート4内に突出しておらず、流体17とは直
接接触しない。センサ装填部28は、可能な限りスロー
ト4の管壁内側面の近傍にまで達するように深く形成さ
れている。このような構造においては、温度センサ18
が流体17に直接接液していないが、スロート4のセン
サ装填部28における肉厚がきわめて薄く設定されてい
るので、熱の伝達が良好で温度勾配が小さく、実用上何
等問題ないことが判った。
On the other hand, FIG. 3 shows the outer surface of the throat 4 on the tube wall.
An example is shown in which the sensor loading 28 made of a non-through hole is formed so as to be orthogonal to the axis of the throat 4 and the temperature sensor 18 is loaded in the sensor loading portion 28. Therefore, the temperature sensor 1
8 does not project into the throat 4 and does not come into direct contact with the fluid 17. The sensor loading portion 28 is deeply formed so as to reach as close as possible to the inner surface of the throat 4 on the tube wall. In such a structure, the temperature sensor 18
Is not in direct contact with the fluid 17, but the wall thickness of the sensor loading portion 28 of the throat 4 is set to be extremely thin, so that heat transfer is good, the temperature gradient is small, and there is no problem in practical use. It was

【0019】なお、上記した実施の形態においては、い
ずれもスロートを有する絞り機構としてベンチュリー管
を用いた差圧流量計に適用した例を示したが、本発明は
これに限らずフローノズルを用いた差圧流量計にも適用
することができる。また、本発明においては、センサ装
填部16,28を下流側の円錐管5bとスロート4に設
けた例を示したが、上流側の円錐管5aに設けてもよ
い。
In each of the above-described embodiments, an example in which the present invention is applied to a differential pressure flow meter using a Venturi tube as a throttle mechanism having a throat has been shown, but the present invention is not limited to this and uses a flow nozzle. It can also be applied to differential pressure flowmeters. Further, in the present invention, an example in which the sensor loading portions 16 and 28 are provided in the downstream conical tube 5b and the throat 4 is shown, but they may be provided in the upstream conical tube 5a.

【0020】[0020]

【発明の効果】以上説明したように本発明に係る差圧流
量計は、スロートを有するベンチュリー管またはフロー
ノズルの上下流の差圧から流量を測定する差圧流量計に
おいて、前記スロートまたはスロート近傍部内に温度セ
ンサを埋設したので、配管を長くしたりセンサの取付座
を設けたり、配線を長くしたりする必要がなく、安価に
製作することができる。また、スロートまたはスロート
に近い部分はスロート径が小さいことから流速分布が均
一に近く、そのため、温度特性も管壁の影響が少ないの
で、正確な温度測定を行いことができる。また、本発明
は、温度センサの測温部側端面をスロートもしくはスロ
ート近傍部の内壁面と略同一面にするか、またはスロー
トもしくはスロート近傍部の外壁面に内壁面近傍にまで
達する不貫通孔を形成し、この不貫通孔内に温度センサ
を装填したので、流体の流れが乱れたり圧力反射を起こ
すことがない。
As described above, the differential pressure flow meter according to the present invention is a differential pressure flow meter for measuring a flow rate from a differential pressure upstream and downstream of a venturi pipe having a throat or a flow nozzle. Since the temperature sensor is embedded in the section, there is no need to lengthen the pipe, provide a sensor mounting seat, or lengthen the wiring, and can be manufactured at low cost. Further, since the throat or the portion close to the throat has a small throat diameter, the flow velocity distribution is nearly uniform, and therefore the temperature characteristics are less affected by the pipe wall, so that accurate temperature measurement can be performed. Further, the present invention is such that the end surface of the temperature sensor on the temperature measuring portion side is substantially flush with the inner wall surface of the throat or the portion near the throat, or the outer wall surface of the throat or the portion near the throat reaches the inner wall surface in the vicinity of the inner wall surface. Since the temperature sensor is mounted in this non-penetrating hole, the fluid flow is not disturbed and pressure reflection is not caused.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明をベンチュリー管を用いた差圧流量計
に適用した実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to a differential pressure flowmeter using a Venturi tube.

【図2】 本発明の他の実施の形態を示す断面図であ
る。
FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】 本発明の更に他の実施の形態を示す断面図で
ある。
FIG. 3 is a sectional view showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…差圧流量計、2…配管、3…ベンチュリー管、4…
スロート、5a,5b…円錐管、6,7…直管、11,
12…圧力取出口、16…センサ装填部、18…温度セ
ンサ、28…センサ装填部。
1 ... Differential pressure flow meter, 2 ... Piping, 3 ... Venturi tube, 4 ...
Throat, 5a, 5b ... Conical tube, 6,7 ... Straight tube, 11,
12 ... Pressure outlet, 16 ... Sensor loading part, 18 ... Temperature sensor, 28 ... Sensor loading part.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スロートを有するベンチュリー管または
フローノズルの上下流の差圧から流量を測定する差圧流
量計において、前記スロートまたはスロート近傍部内に
温度センサを埋設したことを特徴とする差圧流量計。
1. A differential pressure flowmeter for measuring a flow rate from a differential pressure between an upstream and a downstream of a venturi tube or a flow nozzle having a throat, wherein a temperature sensor is embedded in the throat or a portion near the throat. Total.
【請求項2】 請求項1記載の差圧流量計において、ス
ロートまたはスロート近傍部に管路内に連通するセンサ
装填部を設け、このセンサ装填部内に温度センサをその
測温部側端面がスロートまたはスロート近傍部の内壁面
と略同一面を形成するように装填したことを特徴とする
差圧流量計。
2. The differential pressure flowmeter according to claim 1, wherein a sensor loading part communicating with the inside of the pipe is provided at or near the throat, and the temperature sensor has an end face on the temperature measuring part side in the sensor loading part. Alternatively, the differential pressure flowmeter is characterized in that the differential pressure flowmeter is mounted so as to form a surface that is substantially flush with the inner wall surface in the vicinity of the throat.
【請求項3】 請求項1記載の差圧流量計において、ス
ロートまたはスロート近傍部の外壁面に内壁面近傍にま
で達する不貫通孔を形成し、この不貫通孔内に温度セン
サを装填したことを特徴とする差圧流量計。
3. The differential pressure flowmeter according to claim 1, wherein a non-penetrating hole reaching an inner wall surface is formed on an outer wall surface of the throat or a portion near the throat, and a temperature sensor is loaded in the non-penetrating hole. A differential pressure flow meter.
JP8096592A 1996-04-18 1996-04-18 Differential pressure flowmeter Pending JPH09280913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096592A JPH09280913A (en) 1996-04-18 1996-04-18 Differential pressure flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096592A JPH09280913A (en) 1996-04-18 1996-04-18 Differential pressure flowmeter

Publications (1)

Publication Number Publication Date
JPH09280913A true JPH09280913A (en) 1997-10-31

Family

ID=14169182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096592A Pending JPH09280913A (en) 1996-04-18 1996-04-18 Differential pressure flowmeter

Country Status (1)

Country Link
JP (1) JPH09280913A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015002275A1 (en) * 2013-07-05 2017-02-23 株式会社Ihi Turbo compressor flow measuring device and turbo compressor
US20170199529A1 (en) 2012-01-20 2017-07-13 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
JP2018010696A (en) * 2012-01-20 2018-01-18 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Mass flow rate controller
JP2020020736A (en) * 2018-08-03 2020-02-06 アズビル株式会社 Laminar airflow differential pressure flowmeter
GB2627802A (en) * 2023-03-02 2024-09-04 Taylor Hobson Ltd Subsea flow meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170199529A1 (en) 2012-01-20 2017-07-13 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
JP2018010696A (en) * 2012-01-20 2018-01-18 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Mass flow rate controller
US10606285B2 (en) 2012-01-20 2020-03-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
JPWO2015002275A1 (en) * 2013-07-05 2017-02-23 株式会社Ihi Turbo compressor flow measuring device and turbo compressor
US10087943B2 (en) 2013-07-05 2018-10-02 Ihi Rotating Machinery Engineering Co., Ltd. Flow volume measurement device for turbo compressor, and turbo compressor
JP2020020736A (en) * 2018-08-03 2020-02-06 アズビル株式会社 Laminar airflow differential pressure flowmeter
GB2627802A (en) * 2023-03-02 2024-09-04 Taylor Hobson Ltd Subsea flow meter

Similar Documents

Publication Publication Date Title
JP3246851B2 (en) Ultrasonic flowmeter detector
US7313954B2 (en) Apparatus for measuring flow characteristics
US6463810B1 (en) Method and device for bi-directional low-velocity flow measurement
JP2005522686A (en) Averaging orifice primary flow element
JP2009524058A (en) A reduced-bore vortex flowmeter with a stepped inlet.
US3279251A (en) Controlled precess device
US6644132B1 (en) Flow profile conditioner for pipe flow systems
WO2010002432A1 (en) Insertable ultrasonic meter and method
US2942465A (en) Fluid flow meter
GB2161941A (en) Mass flow meter
JPH09280913A (en) Differential pressure flowmeter
US6904810B2 (en) Purge type vortex flowmeter
JPH09101186A (en) Pitot-tube type mass flowmeter
JP4015751B2 (en) Differential pressure type flow meter
JPH0634405A (en) Vortex flowmeter
JP3537060B2 (en) Liquid flow meter
JP3182718B2 (en) Temperature detector for differential pressure flow meter and its protection tube
JPS5928326Y2 (en) differential pressure flowmeter
Peters et al. A pressure probe for the detection of the flow direction close to walls. Case study: flow through a bend
JPH08304134A (en) Flow-rate measuring device
JP3070642B2 (en) Flowmeter
JPS6134422A (en) Hot wire type air flowmeter
CN115752608A (en) Gas ultrasonic flowmeter and gas metering system
KR960005638B1 (en) Venturi tube for flow meter
JP3142015B2 (en) Vortex flow meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees