JPH01278411A - Production of hexachlorodisilane and octachlorotrisilane - Google Patents

Production of hexachlorodisilane and octachlorotrisilane

Info

Publication number
JPH01278411A
JPH01278411A JP10766488A JP10766488A JPH01278411A JP H01278411 A JPH01278411 A JP H01278411A JP 10766488 A JP10766488 A JP 10766488A JP 10766488 A JP10766488 A JP 10766488A JP H01278411 A JPH01278411 A JP H01278411A
Authority
JP
Japan
Prior art keywords
copper
chloropolysilane
reaction
production
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10766488A
Other languages
Japanese (ja)
Other versions
JP2508798B2 (en
Inventor
Katsumi Ogi
勝実 小木
Tetsushige Kurashige
倉重 哲成
Etsuji Kimura
木村 悦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP10766488A priority Critical patent/JP2508798B2/en
Publication of JPH01278411A publication Critical patent/JPH01278411A/en
Application granted granted Critical
Publication of JP2508798B2 publication Critical patent/JP2508798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain Si2Cl6 and Si3Cl8 useful as a raw material for the production of semiconductor, etc., in high yield and efficiency, at a low cost by reacting a specific higher chloropolysilane with chlorine gas in the presence of copper (compound). CONSTITUTION:Higher chloropolysilanes expressed by SinCl2n+2 (n>=4) are recovered as by-products in the production of Si2Cl6 and Si3Cl8 by the chlorination of silicon granules, etc. The recovered higher chloropolysilane is made to react with chlorine gas in the presence of copper and/or a copper compound (e.g. cuprous chloride or cupric oxide) to obtain hexachlorodisilane (Si2Cl6) and octachlorotrisilane (Si3Cl8). The amount of the copper (compound) to be added to the higher chloropolysilane is preferably 0.01-0.5wt.% in terms of copper and the reaction temperature of the higher chloropolysilane with chlorine is preferably 100-200 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一般式5inC1□、2(n≧4)で表わされ
る高級クロルポリシランを原料として、ヘキサクロルジ
シランSi3Cl6およびオクタクロルトリシランSi
3Cl6を製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses a higher chloropolysilane represented by the general formula 5inC1□, 2 (n≧4) as a raw material to produce hexachlorodisilane Si3Cl6 and octachlorotrisilane Si
The present invention relates to a method for producing 3Cl6.

クロルポリシランは、半導体シリコンの製造原料として
最近その重要性を増している。
Chloropolysilane has recently gained importance as a raw material for the production of semiconductor silicon.

クロルポリシランはそのまま熱分解してエピタキシャル
シリコン等とする事も勿論8来るが、ゲルマニウムドー
プ率の高い光通信用シリカ源としても用いられる。また
クロルポリシランはさらに還元して5inH,n+1 
(n≧2)で表わされるシランとし、これを熱分解等し
て半導体用シリコンやアモルファスシリコンを製造する
原料となる。例えばジシラン、 Si、H,は、熱分解
、グロー放電分解によりアモルファスシリコン膜を形成
する場合、モノシラン、SiH,に比して、基板上へ形
成される膜の堆積速度がはるかに大きく、且つ、該膜は
電気特性に優れている等の利点があり、太陽電池用半導
体の原料として今後大幅な需要増加が期待されている。
Of course, chloropolysilane can be thermally decomposed as it is to produce epitaxial silicon, etc.8, but it is also used as a silica source for optical communications with a high germanium doping rate. In addition, chloropolysilane is further reduced to 5inH, n+1
The silane represented by (n≧2) is thermally decomposed and becomes a raw material for manufacturing silicon for semiconductors and amorphous silicon. For example, when disilane, Si, H, is used to form an amorphous silicon film by thermal decomposition or glow discharge decomposition, the deposition rate of the film formed on the substrate is much higher than that of monosilane, SiH, and This film has advantages such as excellent electrical properties, and demand is expected to increase significantly in the future as a raw material for semiconductors for solar cells.

(従来技術と問題点) 従来、クロルポリシランは、カルシウムシリコン、マグ
ネシウムシリコン、あるいはフェロシリコン等の珪化物
粒子や金属シリコンの粒子を加熱して塩素ガスを送り込
み、これらを塩素化することによって製造されている。
(Prior Art and Problems) Conventionally, chlorpolysilane has been produced by heating silicide particles such as calcium silicon, magnesium silicon, or ferrosilicon, or metal silicon particles and supplying chlorine gas to chlorinate them. ing.

ところが、上記珪化物粒子を塩素化する方法によってク
ロルポリシランを製造する場合、塩化カルシウム、塩化
マグネシウム等の固体の副生物が生成する問題があり、
商用製造方法として固体の副生物の発生しない方法が望
まれている。
However, when producing chloropolysilane by the method of chlorinating silicide particles, there is a problem that solid by-products such as calcium chloride and magnesium chloride are produced.
A commercial production method that does not generate solid by-products is desired.

また、シリコン粒子と塩素との反応では固体の副生物の
発生は認められないが、上記珪化物合金を用いた方法に
比ベクロルポリシラン生成率がシリコン原子基準で1%
未満と著しく低い間圧がある。
Furthermore, although no solid by-products are observed in the reaction between silicon particles and chlorine, the production rate of bechlorpolysilane is 1% based on silicon atoms in the method using the silicide alloy described above.
There is a significantly lower interpressure.

因に該従来方法において生成するクロルシランは主に5
iC1,であり、クロルポリシラン5i2CIいSi、
CI、は5iC1,の生成に伴って副生成するものを利
用しているに過ぎない。
Incidentally, the chlorosilane produced in the conventional method is mainly 5
iC1, and chloropolysilane 5i2CISi,
CI simply uses what is by-produced with the generation of 5iC1.

またへキサクロルジシラン(Si2C1g)の製造を目
的とする方法(特開昭59−195,119号)では、
5i2C1゜及びSi、CI、の製造時に副生ずる高級
クロルポリシラン(SiylClz net、n≧4)
を再度塩素と反応させ。
In addition, in a method for the purpose of producing hexachlorodisilane (Si2C1g) (Japanese Patent Application Laid-open No. 1959-119),
Higher chloropolysilane (SiylClz net, n≧4) produced as a by-product during the production of 5i2C1° and Si, CI
React with chlorine again.

これを分解してSi3Cl6の収率を向上させている。This is decomposed to improve the yield of Si3Cl6.

この方法は反応を高温(300〜500℃)で行なうが
、この温度では5iC14が安定であるためSi、 C
1いSi、 C1,の収率が低く、これを補うため5i
C14を分離循環して反応系間の5iC1,の濃度を高
くしなければならない、このような工夫を要するのは反
応温度が高いことによると考えられる。
In this method, the reaction is carried out at a high temperature (300-500°C), but since 5iC14 is stable at this temperature, Si, C
The yield of 1Si, C1, is low, and to compensate for this, 5i
It is believed that the reason why such measures are required is that the concentration of 5iC1 between the reaction systems must be increased by separating and circulating C14, and the reaction temperature is high.

(問題解決についての知見) 本発明者らは5以上述べた諸問題を克服した効率のよい
Si、 C1,およびSi、 C1,の製造方法を追求
した結果、高級クロルポリシランを銅系触媒の存在下に
塩素と反応させる場合、低い温度で反応が進行しかつ目
的化合物の収率もよいことを見出した。
(Knowledge regarding problem solving) The present inventors have pursued an efficient method for producing Si, C1, and Si, C1, which overcomes the problems described above. It has been found that when reacting with chlorine, the reaction proceeds at a low temperature and the yield of the target compound is also good.

(発明の構成) 本発明は、銅、銅化合物あるいはこれらの混合物の存在
下で一般式SinCl2n+2(n≧4)で表わされる
高級クロルポリシランと塩素ガスとを反応させることか
らなるヘキサクロルジシラン、Si、C1゜およびオク
タクロルトリシラン、Si、C1゜の製造方法を提供す
る。
(Structure of the Invention) The present invention provides hexachlorodisilane, Si , C1° and octachlorotrisilane, Si, C1°.

本発明の方法において用いら、れる銅化合物は銅を含む
化合物であって、生成する5i2C1,およびSi、 
C1,を汚染しないものであればよく、特に制限されな
いが、塩素化反応における触媒として用いることから塩
化第一銅CuC1,塩化第二銅CuC1□が好適に用い
られ、また酸化第一@Cu、O1酸化第二銅CuOを用
いてもよい。
The copper compound used in the method of the present invention is a compound containing copper, which produces 5i2C1 and Si,
Although there are no particular limitations as long as they do not contaminate C1, cuprous chloride CuC1, cupric chloride CuC1□ are preferably used because they are used as catalysts in chlorination reactions, and cuprous chloride @Cu, O1 cupric oxide CuO may also be used.

上記銅乃至銅化合物の添加量は、銅換算で高級クロルポ
リシランに対して0.01〜0.5重量%が好ましい、
該添加量が0.01重量%より少ないと反応の進行が著
しく遅くなって有意の効果を示さず、他方該添加量が0
.5重量%を越えても触媒効果において該添加量が0.
5重量%以下と差がない。
The amount of the copper or copper compound added is preferably 0.01 to 0.5% by weight relative to the higher chloropolysilane in terms of copper.
If the amount added is less than 0.01% by weight, the progress of the reaction will be extremely slow and no significant effect will be shown;
.. Even if it exceeds 5% by weight, the amount added will be 0.0% in terms of catalytic effect.
There is no difference at 5% by weight or less.

本発明の方法において、高級クロルポリシランと塩素ガ
スとの反応温度は100〜200”Cが好適である。該
反応温度と銅系触媒の作用効果については次のように推
察される。
In the method of the present invention, the reaction temperature between the higher chloropolysilane and the chlorine gas is preferably 100 to 200''C.The reaction temperature and the effect of the copper catalyst are estimated as follows.

高級クロルポリシランであるデカクロルテトラシラン5
i4C1□。の反応過程は以下の反応式で表ねされる。
Decachlortetrasilane 5, a high-grade chloropolysilane
i4C1□. The reaction process is expressed by the following reaction formula.

■ 3Si4C1工。+C12+ 4Si、C1s    
 (A)(z) ■ 5L4C1□。+C1□ □2Sx2C1,(B)(盃
) ■ 5i4C1□。+ 3 C1z  、4 S iCl−
(C)(Φ 本発明の方法において、100〜200℃という低い温
度では上記(A) 、 (B)および(C)の並行反応
となる。
■ 3Si4C1 construction. +C12+ 4Si, C1s
(A) (z) ■ 5L4C1□. +C1□ □2Sx2C1, (B) (cup) ■ 5i4C1□. + 3 C1z, 4 SiCl-
(C) (Φ) In the method of the present invention, the above-mentioned (A), (B) and (C) occur in parallel at a low temperature of 100 to 200°C.

銅系触媒の存在下で5L4C11゜の中に塩素ガスを吹
き込むとまず(A)の■の反応が優先しSi、 C1,
がSi3Cl6や5iC14より多くできる。ある程度
Si、 C1゜が生成すると■の逆反応である■の反応
が起り5i3CI、の生成速度は遅くなると共に(B)
の■の反応が次第に優先しはじめSi3Cl6ができる
。Si、C1゜がある程度蓄積すると■の逆反応である
■の反応が無視できなくなりSi、 C1,の生成速度
が遅くなると共に(C)の■の反応が次第に多くなり5
iC14が生成する。5iC1,は安定な物質であるた
め・[有]の反応は進行し難い。5iC14は当該反応
系においては温度の高い方が低温条件より安定であるた
め300〜500℃の条件では■の反応が■や■の反応
より優先し5iC14が主として生成しSi、 C1,
およびSi、 C1゜の収率が低下する。
When chlorine gas is blown into 5L4C11° in the presence of a copper-based catalyst, the reaction (■) in (A) takes precedence, and Si, C1,
can be produced more than Si3Cl6 or 5iC14. When a certain amount of Si and C1° is produced, the reaction (■), which is the reverse reaction of (■), occurs, and the rate of formation of 5i3CI slows down, and (B)
The reaction (2) gradually begins to take priority and Si3Cl6 is formed. When Si, C1° accumulates to a certain extent, the reaction (■), which is the reverse reaction of (2), cannot be ignored, and the production rate of Si, C1, slows down, and the reaction (C) (■) gradually increases.5
Generated by iC14. Since 5iC1 is a stable substance, the reaction with [Yes] is difficult to proceed. In the reaction system, 5iC14 is more stable at higher temperatures than at lower temperatures. Therefore, under conditions of 300 to 500°C, the reaction (■) takes precedence over the reactions (2) and (2), and 5iC14 is mainly produced, resulting in Si, C1,
And the yield of Si and C1° decreases.

銅系触媒は100〜200℃の低温の条件で塩素化反応
を促進し先づ■の反応が進み1次いで■の反応が優先し
てSL、 C1,および5L2C1,の収率が向上する
The copper-based catalyst promotes the chlorination reaction at a low temperature of 100 to 200°C, and the first reaction (1) progresses, followed by the second reaction (2), which improves the yield of SL, C1, and 5L2C1.

この場合塩素ガスの吹き込みは目的とするSi、 C1
゜およびSL、C1゜の量が最大となったところで停止
される。塩素ガスをそれ以上に吹き込むときは■の反応
が次第に優先して5iC1,が多く生成することになり
Si、 C1,およびSi、CI、の収率が低下する。
In this case, chlorine gas is blown into the target Si, C1
The process is stopped when the amounts of °, SL, and C1° become maximum. When more chlorine gas is blown into the reactor, the reaction (2) gradually takes priority and a large amount of 5iC1 is produced, resulting in a decrease in the yield of Si, C1, and Si, CI.

なお本発明において使用する塩素ガスは市販のものでよ
いが十分乾燥して使用に供することが望ましい。
Note that the chlorine gas used in the present invention may be a commercially available one, but it is desirable to dry it thoroughly before use.

(発明の効果) 本発明によれば、シリコン粒等を塩素化してSi3Cl
6およびSi、CI、を製造する方法において副生する
高級クロルポリシランから効率よく両目的化合物を製造
できる。さらに本発明の方法は低い温度で反応を行わせ
るため5iC14を反応系に添加する必要がなく、操作
上も、エネルギーコスト面においても有利であり、かっ
高収率でs1□C1,およびSi、 C1,を製造でき
る。
(Effects of the Invention) According to the present invention, silicon grains etc. are chlorinated to form Si3Cl
Both objective compounds can be efficiently produced from the higher chloropolysilane produced as a by-product in the method for producing 6, Si, and CI. Furthermore, since the method of the present invention performs the reaction at a low temperature, there is no need to add 5iC14 to the reaction system, and it is advantageous in terms of operation and energy cost, and it can produce s1□C1 and Si in a high yield. C1, can be manufactured.

(実施例) 次に本発明を実施例によってより具体的に説明するが、
以下の実施例は本発明の範囲を限定するものではない。
(Example) Next, the present invention will be explained in more detail with reference to Examples.
The following examples are not intended to limit the scope of the invention.

実施例1 塩素ガスの供給口、温度計装着口および凝縮器の装着口
を具えた30フラスコを用い、高級クロルポリシラン6
96g (含有物の重量%は5inC1□□0(n≧4
)78.5%、Si3Cl615,8,5i2CI、 
3..6.51C142,1)に塩化第一銅0.4重量
%を添加してよく混合して上記フラスコに入れ、150
℃で塩素ガスを250cc/minの流量で90分間吹
き込んだ結果生成液として753gを得た。生成液とは
、フラスコ内残留液とコールドトラップに凝縮した液を
一つにまとめた液である。生成液の組成は5iC144
,0、SL3Cl650,1,Si3Cl632,2,
5irlcx2r+z (n≧4)13.7(重量%)
であった。
Example 1 Using a 30 flask equipped with a chlorine gas supply port, a thermometer mounting port, and a condenser mounting port, high-grade chloropolysilane 6 was used.
96g (The weight% of the content is 5inC1□□0 (n≧4
)78.5%, Si3Cl615,8,5i2CI,
3. .. Add 0.4% by weight of cuprous chloride to 6.51C142,1), mix well and place in the above flask.
As a result of blowing chlorine gas at a flow rate of 250 cc/min for 90 minutes at ℃, 753 g of product liquid was obtained. The product liquid is a mixture of the residual liquid in the flask and the liquid condensed in the cold trap. The composition of the produced liquid is 5iC144
,0,SL3Cl650,1,Si3Cl632,2,
5irlcx2r+z (n≧4) 13.7 (weight%)
Met.

実施例2〜8 実施例1と同様にして、温度、触媒の種類、添加率を変
えて反応を行なった結果を表1に示す。
Examples 2 to 8 Table 1 shows the results of reactions conducted in the same manner as in Example 1 while changing the temperature, type of catalyst, and addition rate.

比較例 反応温度を300℃および70℃とした以外は実施例1
と同様に反応を行なった結果を表2に示す(比較例1〜
3)。
Comparative Example Same as Example 1 except that the reaction temperature was 300°C and 70°C.
Table 2 shows the results of the reaction conducted in the same manner as (Comparative Examples 1 to
3).

触媒を添加せずに150℃と300℃で反応を行なった
結果を表2に示す(比較例4〜5)。
Table 2 shows the results of reactions carried out at 150°C and 300°C without adding a catalyst (Comparative Examples 4 to 5).

表2から明らかなように実施例に対して、比較例におい
ては、SiよC1いSi3Cl6の収率が大福に低い。
As is clear from Table 2, compared to the Examples, the yield of Si3Cl6, which is less than Si and C1, is lower than that of Daifuku in the Comparative Examples.

Claims (1)

【特許請求の範囲】 1、銅、銅化合物あるいはこれらの混合物の存在下で一
般式Si_nCl_2_n_+_2(n≧4)で表わさ
れる高級クロルポリシランと塩素ガスとを反応させるこ
とからなるヘキサクロルジシラン、Si_2Cl_6お
よびオクタクロルトリシラン、Si_3Cl_6の製造
方法。 2、銅、銅化合物あるいはこれらの混合物の高級クロル
ポリシランに対する添加量が、銅換算で0.01〜0.
5重量%であり、高級クロルポリシランと塩素との反応
温度が100℃以上200℃以下である第1請求項の方
法。
[Claims] 1. Hexachlorodisilane, Si_2Cl_6 and A method for producing octachlorotrisilane, Si_3Cl_6. 2. The amount of copper, a copper compound, or a mixture thereof added to the higher chloropolysilane is 0.01 to 0.0 in terms of copper.
5% by weight, and the reaction temperature of the higher chloropolysilane and chlorine is 100°C or more and 200°C or less.
JP10766488A 1988-05-02 1988-05-02 Method for producing hexachlorodisilane and octachlorotrisilane Expired - Lifetime JP2508798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10766488A JP2508798B2 (en) 1988-05-02 1988-05-02 Method for producing hexachlorodisilane and octachlorotrisilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10766488A JP2508798B2 (en) 1988-05-02 1988-05-02 Method for producing hexachlorodisilane and octachlorotrisilane

Publications (2)

Publication Number Publication Date
JPH01278411A true JPH01278411A (en) 1989-11-08
JP2508798B2 JP2508798B2 (en) 1996-06-19

Family

ID=14464885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10766488A Expired - Lifetime JP2508798B2 (en) 1988-05-02 1988-05-02 Method for producing hexachlorodisilane and octachlorotrisilane

Country Status (1)

Country Link
JP (1) JP2508798B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691357B2 (en) * 2007-09-05 2010-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing polycrystalline silicon
US7691356B2 (en) * 2007-09-05 2010-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing trichlorosilane
WO2011078225A1 (en) * 2009-12-22 2011-06-30 Jnc株式会社 Method for manufacturing polysilicon and method for manufacturing silicon tetrachloride
EP2792640A4 (en) * 2011-12-16 2015-08-26 Toagosei Co Ltd Method for producing high-purity chloropolysilane
DE102014007685B4 (en) 2014-05-21 2022-04-07 Sven Holl Process for preparing hexachlorodisilane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691357B2 (en) * 2007-09-05 2010-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing polycrystalline silicon
US7691356B2 (en) * 2007-09-05 2010-04-06 Shin-Etsu Chemical Co., Ltd. Method for producing trichlorosilane
WO2011078225A1 (en) * 2009-12-22 2011-06-30 Jnc株式会社 Method for manufacturing polysilicon and method for manufacturing silicon tetrachloride
JP5755150B2 (en) * 2009-12-22 2015-07-29 東邦チタニウム株式会社 Method for producing polysilicon and method for producing silicon tetrachloride
EP2792640A4 (en) * 2011-12-16 2015-08-26 Toagosei Co Ltd Method for producing high-purity chloropolysilane
DE102014007685B4 (en) 2014-05-21 2022-04-07 Sven Holl Process for preparing hexachlorodisilane

Also Published As

Publication number Publication date
JP2508798B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP4855462B2 (en) System and method for producing SI2H6 and higher order silanes
JP5397580B2 (en) Method and apparatus for producing trichlorosilane and method for producing polycrystalline silicon
US4610859A (en) Process for producing silicon hydrides
JP5032580B2 (en) Method for producing trichlorosilane
WO2003040036A1 (en) Method for producing silicon
KR101462634B1 (en) Method for preparing trichlorosilane
US20050074387A1 (en) Method for producing chlorosilanes
US4861574A (en) Process for preparing chloropolysilanes
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
CN114715850A (en) Method for synthesizing chlorine trifluoride with high yield
JP5392488B2 (en) Production method and use of trichlorosilane
JPS6389414A (en) Production of chloropolysilane
US5051248A (en) Silane products from reaction of silicon monoxide with hydrogen halides
JPS60141613A (en) Preparation of silicon hydride
JPS5969416A (en) Manufacture of dichlorosilane
JPH0352408B2 (en)
KR101672796B1 (en) Method for producing high purity trichlorosilane for poly-silicon using chlorine gas or hydrogen chloride
JP4946774B2 (en) Method for producing silicon
KR20160144541A (en) Method for producing trichlorosilane
JPS63107808A (en) Preparation of octachlorotrisilane
JP3620909B2 (en) Process for producing silanes
JPS62256715A (en) Production of chlorosilane
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane
JPS63129011A (en) Production of high-purity silicon
FR2989074A1 (en) Preparing mixture of silane and germane compounds, involves reacting mixture of alloy containing silicon alloy in the form of powder and germanium alloy in the form of powder with hydrochloric acid that is pre-dissolved in aqueous solution