JPH01275793A - Method for protecting anode for chromium plating - Google Patents

Method for protecting anode for chromium plating

Info

Publication number
JPH01275793A
JPH01275793A JP10418188A JP10418188A JPH01275793A JP H01275793 A JPH01275793 A JP H01275793A JP 10418188 A JP10418188 A JP 10418188A JP 10418188 A JP10418188 A JP 10418188A JP H01275793 A JPH01275793 A JP H01275793A
Authority
JP
Japan
Prior art keywords
anode
plating
lead
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10418188A
Other languages
Japanese (ja)
Other versions
JPH0329873B2 (en
Inventor
Kaoru Hirakata
平形 薫
Shinichi Shimoda
慎一 下田
Akihiko Fujii
昭彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP10418188A priority Critical patent/JPH01275793A/en
Publication of JPH01275793A publication Critical patent/JPH01275793A/en
Publication of JPH0329873B2 publication Critical patent/JPH0329873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium

Abstract

PURPOSE:To prevent the shortening of the service life of an insoluble anode due to corrosion when Cr plating is carried out with the anode, by using an electrode having a PbO2 layer on the surface of the substrate made of a valve metal as the anode and by adding a specified very small amt. of Pb ions to a Cr plating soln. CONSTITUTION:When Cr plating is carried out with an insoluble anode, this anode is produced by spot-welding an expanded plate of Ti as a valve metal to a plate of Ti, forming an intermediate layer of Pt-Ir oxide on the resulting anode substrate and electrodepositing a PbO2 layer on the intermediate layer. Basic lead carbonate is added to a Cr plating soln. contg. CrO3 by a very small amt. of 1-50ppm (expressed in terms of Pb ions). Fine PbO2 crystals are deposited on the surface of the anode during plating and fill the pinholes in the surface of the anode, so the corrosion of the anode by the plating soln. penetrating into the Ti substrate through the PbO2 layer is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は陽極の保護方法に関し、特にクロムメッキ用陽
極としての二酸化鉛電極の保護方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for protecting an anode, and more particularly to a method for protecting a lead dioxide electrode used as an anode for chromium plating.

(従来の技術) 従来、クロムメッキ用陽極としては、鉛および鉛合金電
極が主として用いられているが、これらの電極は3〜6
ケ月で消耗してしまうため短期間で交換が必要となり、
メツキ浴中に消耗した鉛がスラッジとして沈積して被メ
ツキ物に悪影響を及ぼし、更に堆積したスラッジ処理に
もかなりの費用がかかってしまう。
(Prior art) Conventionally, lead and lead alloy electrodes have been mainly used as anodes for chromium plating, but these electrodes have a
It wears out over a period of months, so it needs to be replaced in a short period of time.
The lead consumed in the plating bath is deposited as sludge, which has an adverse effect on the objects to be plated, and furthermore, the treatment of the deposited sludge requires considerable expense.

これに対してスラッジの発生しない不溶性陽極を用いる
ことが検討されている。不溶性陽極としてはチタン等の
バルブ金属基体上に白金族金属またはそれらの酸化物を
被覆した金属電極、またチタン等のバルブ金属基体上に
白金族金属またはそれらの酸化物の中間層を介して二酸
化鉛を被覆した二酸化鉛電極が知られている。
For this purpose, the use of insoluble anodes that do not generate sludge is being considered. Insoluble anodes include metal electrodes in which platinum group metals or their oxides are coated on a valve metal substrate such as titanium, or carbon dioxide formed on a valve metal substrate such as titanium through an intermediate layer of platinum group metals or their oxides. Lead-coated lead dioxide electrodes are known.

クロムメッキ用陽極として金属電極を使用した場合、初
期は十分にメツキ可能であるが、徐々にメツキネ良とな
る。その原因はめっき浴中のクロムイオンが陰極(被め
っき物)上で6価から3価に還元されるためである。金
属電極はクロムイオンの3価から6価への酸化能が弱く
、クロムメッキ浴中の3価のクロムイオンの量が増える
ため、メツキ浴の再生が必要となり、安定したメツキ操
業が出来なくなる。
When a metal electrode is used as an anode for chromium plating, it can be plated satisfactorily at the beginning, but the plating quality gradually deteriorates. The reason for this is that chromium ions in the plating bath are reduced from hexavalent to trivalent on the cathode (object to be plated). Metal electrodes have a weak ability to oxidize chromium ions from trivalent to hexavalent, and the amount of trivalent chromium ions in the chromium plating bath increases, making it necessary to regenerate the plating bath and making stable plating operations impossible.

これに対して、二酸化鉛電極は前記酸化能も十分あり、
不溶性であるが、二酸化鉛層は機械的強度が弱く、また
電解操業中に発生する内部応力により剥離、脱落を起こ
すなど問題があった。
On the other hand, the lead dioxide electrode has sufficient oxidation ability,
Although it is insoluble, the lead dioxide layer has low mechanical strength and has problems such as peeling and falling off due to internal stress generated during electrolytic operation.

(発明が解決しようとする問題点) これらを解決するために特公昭60−58312のよう
に、チタン板の上にチタンのエキスノ(ンドメタルをス
ポット熔接して基体を形成し、この基体上に白金族金属
またはそれらの酸化物からなる中間層を介して二酸化鉛
層を被覆した電極が開発された。最近のクロムメッキ浴
はメツキ効率を上げるため、フン化物あるいはケイフン
化物を添加しており、特に電極の消耗が激しくなって(
するが、二酸化鉛はこれらについて比較的耐食性があり
、クロムメッキ用陽極としては最適である。しかし、こ
の電極は機械的強度等は大幅に改善されたものの、二酸
化鉛上のピンホールを通して電解液が侵入し基体のチタ
ン金属を腐食してしまうため、被覆が残っているにもか
かわらず電解不能と成ってしまう問題が残されていた。
(Problems to be Solved by the Invention) In order to solve these problems, as in Japanese Patent Publication No. 60-58312, a titanium compound metal is spot welded onto a titanium plate to form a base body, and platinum is applied on this base body. Electrodes have been developed in which a layer of lead dioxide is coated with an intermediate layer of group metals or their oxides.Modern chromium plating baths have been doped with fluorides or silicate to increase the plating efficiency. The electrode wears out rapidly (
However, lead dioxide is relatively resistant to corrosion, making it ideal as an anode for chrome plating. However, although the mechanical strength of this electrode has been greatly improved, the electrolyte enters through the pinholes on the lead dioxide and corrodes the titanium metal of the base, so even though the coating remains, electrolyte still remains. There remained a problem that made it impossible.

(問題点を解決するための手段) 本発明者らは、二酸化鉛電極をクロムメッキ用陽極とし
て使用するために、電極表面の保護という観点から鋭意
検討した。その結果、クロムメ・ツキ浴中に微量の鉛イ
オンを添加することで、二酸化鉛電極を陽極として用い
るクロムメッキ操作において、陽極上に二酸化鉛の塊状
結晶が発生してピンホールを埋めて電解液の侵入を阻止
し、チタン基体の腐食を抑制することが可能なことを見
い出した。
(Means for Solving the Problems) In order to use a lead dioxide electrode as an anode for chromium plating, the present inventors have conducted intensive studies from the viewpoint of protecting the electrode surface. As a result, by adding a small amount of lead ions to the chrome plating bath, in a chrome plating operation that uses a lead dioxide electrode as an anode, lead dioxide lump crystals are generated on the anode, filling the pinholes and causing the electrolyte to dissolve. It has been found that it is possible to prevent the invasion of titanium and suppress the corrosion of titanium substrates.

鉛イオンを添加する方法としては、炭酸鉛、硫酸鉛等の
鉛塩として添加されるのが好ましいが、硝酸塩、塩化物
はその陰イオンがメツキ物の色調に影響を与えるために
好ましくなり・。
As for the method of adding lead ions, it is preferable to add them as lead salts such as lead carbonate and lead sulfate, but nitrates and chlorides are preferred because their anions affect the color tone of the plating material.

添加量は鉛イオンとして1 ppm以上あれば二酸化鉛
の塊状結晶が析出しはじめ、濃度が高し・方がより効果
的であるが、SOppm程で浴中の鉛イオンが飽和する
ため過剰に添加してもクロム酸鉛の沈澱物を形成するの
みである。従って、約1〜約50ppmの範囲で添加さ
れるのが好ましい。
If the amount added is 1 ppm or more as lead ions, bulk crystals of lead dioxide will begin to precipitate, and higher concentrations are more effective, but lead ions in the bath will be saturated at SOppm, so do not add excessively. However, only lead chromate precipitates are formed. Therefore, it is preferably added in a range of about 1 to about 50 ppm.

二酸化鉛電極を用いて本発明の様に鉛イオンを添加した
メツキ浴からクロムメッキを行なうと、速やかに陽極表
面に微細な二酸化鉛の塊状結晶が析出する。塊状結晶は
その粒子径が数十μmであり、陽極表面に層状にほぼ均
一に分布する。元来の二酸化鉛層tこ比較して該塊状結
晶層はがなり脆弱であるが、通電に際して支障を来たす
ことはない。又、この塊状結晶層は電解停止時の逆電流
などにより元の電極の二酸化鉛層が還元されるのを塊状
結晶層自身が還元されること1こよl)防止する効果も
あり、電極寿命を延長することもできる。
When chromium plating is performed using a lead dioxide electrode from a plating bath containing lead ions as in the present invention, fine bulk crystals of lead dioxide are quickly deposited on the anode surface. The bulk crystals have a particle size of several tens of micrometers and are distributed almost uniformly in a layered manner on the surface of the anode. Although the bulk crystal layer is loose and brittle compared to the original lead dioxide layer, it does not pose a problem when electricity is applied. In addition, this blocky crystal layer has the effect of preventing the lead dioxide layer of the original electrode from being reduced by the reverse current when electrolysis is stopped, and the blocky crystal layer itself being reduced (1), thereby shortening the life of the electrode. It can also be extended.

鉛イオンの補給は、他の金属イオンの添加と同様に行な
うが、頻繁である必要はなく、−月に一回程度で十分で
ある。
Replenishment of lead ions is carried out in the same manner as the addition of other metal ions, but it does not need to be done frequently, and once a month is sufficient.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

(実施例1) 長さ200mm、幅15mm、厚さ1m+oのチタン板
に[50mm、 横32n+mのチタン製エキスバンド
板(目開きの対角線の長さが2.0mmおよび1.0m
m、板厚Q、12m+a、ストランド幅0.18mm)
を密着、重ねてスポット熔接し電極基体とした。この基
体を常法により脱脂、エツチングし、塩化白金と塩化イ
リジウムのイソプロピルアルコール溶液を塗布し、乾燥
後、500°Cで焼成して白金とイリジウムの酸化物の
中間層を形成させた。その後この電極を陽極として硝酸
鉛と硝酸銅の溶液から二酸化鉛層を電着し、約0.5m
+n厚の二酸化鉛被覆を有する二酸化鉛電極を作製した
(Example 1) A titanium plate with a length of 200 mm, a width of 15 mm, and a thickness of 1 m + o was coated with a titanium expanded band plate of 50 mm and a width of 32 n + m (the diagonal length of the opening is 2.0 mm and 1.0 m).
m, plate thickness Q, 12m+a, strand width 0.18mm)
were closely adhered, overlapped, and spot welded to form an electrode base. This substrate was degreased and etched in a conventional manner, coated with an isopropyl alcohol solution of platinum chloride and iridium chloride, dried, and fired at 500°C to form an intermediate layer of platinum and iridium oxides. Then, using this electrode as an anode, a lead dioxide layer was electrodeposited from a solution of lead nitrate and copper nitrate to a length of about 0.5 m.
A lead dioxide electrode having a +n thick lead dioxide coating was prepared.

この二酸化鉛電極(活性面:50 X 1 ’6n+m
)を陽極として、電流密度50A/d+n2の条件でク
ロムメッキを行なった。メツキ浴の組成は次の通1)で
あっrこ。
This lead dioxide electrode (active surface: 50 x 1'6n+m
) was used as an anode, and chromium plating was performed at a current density of 50 A/d+n2. The composition of the plating bath is as follows 1).

無水クロム酸    250g/12 ケイフフ化ナトリウム 10g/f! 硫酸          1g/l 塩基性炭酸鉛    0 、’ 05 g/14ケ月使
用後ら十分にメツキ可能で、チタン基体の腐食も殆ど見
られなかった。
Chromic anhydride 250g/12 Sodium fluoride 10g/f! Sulfuric acid 1 g/l Basic lead carbonate 0, '05 g/After 14 months of use, plating was possible and almost no corrosion of the titanium base was observed.

(比較例1) 実施例1で作製した二酸化鉛電極を陽極としてクロムメ
ッキを行なった。メツ′キ浴の組成は塩基性炭酸鉛を加
えていない以外は全く同じであった。
(Comparative Example 1) Chrome plating was performed using the lead dioxide electrode produced in Example 1 as an anode. The composition of the plating bath was exactly the same except that basic lead carbonate was not added.

電流密度50A/dm2で電解したところ、61日で電
圧上昇を生じ、メツキが出来な(なった。このとき電極
を電解槽より引き上げたところ、チタン基体の一部が腐
食され、二酸化鉛層の剥離が見られた。
When electrolysis was carried out at a current density of 50 A/dm2, a voltage increase occurred in 61 days, and plating was no longer possible. When the electrode was lifted from the electrolytic bath, a part of the titanium substrate was corroded and the lead dioxide layer was removed. Peeling was observed.

(発明の効果) 本発明の保護方法によって、クロムメッキ用二酸化鉛電
極表面に析出する塊状二酸化鉛層がピンホールを埋め、
更に電解停止時の逆電流による二酸化鉛層の還元が塊状
二酸化鉛層自身が還元されることにより、電極の使用寿
命を延長することが可能となった。
(Effects of the Invention) By the protection method of the present invention, the blocky lead dioxide layer deposited on the surface of the lead dioxide electrode for chrome plating fills the pinholes,
Furthermore, when the lead dioxide layer is reduced by the reverse current when electrolysis is stopped, the bulk lead dioxide layer itself is reduced, making it possible to extend the service life of the electrode.

特許出願人 日本カーリット株式会社Patent applicant Nippon Carlit Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] バルブ金属板上に同バルブ金属のエキスパンドメタルを
スポット熔接して電極基体を形成し、該基体上に白金族
金属およびそれらの酸化物からなる中間層を介して二酸
化鉛を電着被覆した電極を陽極として行なうクロムメッ
キ操作において、クロムメッキ浴中に1〜50ppmの
鉛イオンが存在するよう鉛塩を添加することを特徴とす
るクロムメッキ用陽極の保護方法。
An expanded metal of the same valve metal is spot-welded onto a valve metal plate to form an electrode base, and an electrode is electrodeposited with lead dioxide on the base via an intermediate layer made of platinum group metals and their oxides. A method for protecting an anode for chrome plating, which comprises adding a lead salt so that 1 to 50 ppm of lead ions are present in the chrome plating bath in a chromium plating operation performed as an anode.
JP10418188A 1988-04-28 1988-04-28 Method for protecting anode for chromium plating Granted JPH01275793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10418188A JPH01275793A (en) 1988-04-28 1988-04-28 Method for protecting anode for chromium plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10418188A JPH01275793A (en) 1988-04-28 1988-04-28 Method for protecting anode for chromium plating

Publications (2)

Publication Number Publication Date
JPH01275793A true JPH01275793A (en) 1989-11-06
JPH0329873B2 JPH0329873B2 (en) 1991-04-25

Family

ID=14373832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10418188A Granted JPH01275793A (en) 1988-04-28 1988-04-28 Method for protecting anode for chromium plating

Country Status (1)

Country Link
JP (1) JPH01275793A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898265B1 (en) * 2003-11-20 2005-05-24 Ge Medical Systems Global Technology Company, Llc Scintillator arrays for radiation detectors and methods of manufacture

Also Published As

Publication number Publication date
JPH0329873B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
US11339492B2 (en) Method for electrodepositing zinc and zinc alloy coatings from an alkaline coating bath with reduced depletion of organic bath additives
GB2047744A (en) Electrolytic alloy plating
JPH01275793A (en) Method for protecting anode for chromium plating
JP3043336B1 (en) Electro-galvanized steel sheet excellent in white rust resistance and method for producing the same
JP3654204B2 (en) Oxygen generating anode
JP3513657B2 (en) Insoluble anode
JP3977877B2 (en) Electrochemical conversion solution for metal surface treatment and electrolytic conversion treatment method
JPH0559999B2 (en)
JPS6017096A (en) Production of electrode
JPS5928598A (en) Insoluble anode made of pb alloy for electroplating
JP4299253B2 (en) Hexavalent chromium plating method
JPH01100291A (en) Chromium plating method
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JP2529557B2 (en) Lead alloy insoluble anode
JPS63243300A (en) Insoluble anode for electroplating
JPH01177399A (en) Pb-base insoluble anode for electroplating
JP3537255B2 (en) Electrode for electrolysis
JPH02194190A (en) Chromium plating method
JPH0477078B2 (en)
JP2908540B2 (en) Chrome plating method
JP2000282296A (en) Steel sheet for coating excellent in hydrogen brittleness resistance and corrosion resistance and its production
JPS616290A (en) Surface-treated steel sheet having high corrosion resistance and its production
JPH0995795A (en) Zinc-nickel alloy electroplated steel sheet excellent in plating adhesion and chemical convertibility
CS195246B1 (en) Alloy based on lead for manufacturing anodes for hard chrome plating especially cavities