JPS6017096A - Production of electrode - Google Patents

Production of electrode

Info

Publication number
JPS6017096A
JPS6017096A JP58121554A JP12155483A JPS6017096A JP S6017096 A JPS6017096 A JP S6017096A JP 58121554 A JP58121554 A JP 58121554A JP 12155483 A JP12155483 A JP 12155483A JP S6017096 A JPS6017096 A JP S6017096A
Authority
JP
Japan
Prior art keywords
nickel
plating
electrode
nickel plating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121554A
Other languages
Japanese (ja)
Other versions
JPH0341559B2 (en
Inventor
Takashi Mori
隆 毛利
Setsuo Yoshida
節夫 吉田
Toshiaki Fujiki
藤木 敏明
Masaaki Fujiki
藤木 正昭
Masaharu Doi
正治 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58121554A priority Critical patent/JPS6017096A/en
Publication of JPS6017096A publication Critical patent/JPS6017096A/en
Publication of JPH0341559B2 publication Critical patent/JPH0341559B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform smooth and uniform active nickel plating by subjecting an electrode base body made of a metal and an electrolytic cell to plating under specific conditions in a nickel plating bath contg. a soluble sulfurous compd. ammonium ion, etc. CONSTITUTION:A nickel plating bath contg. a soluble sulfurous compd. and/or a sacrificial metal exhibiting the potential baser than nickel and ammonium ion is adjusted to <=6pH and an electrode base body consisting of a metal is attached to an electrolytic cell consisting of a metal and is subjected to active nickel plating under the condition under which the cathodic reaction during plating does not involve generation of gas. Thiocyanate, etc. are used for the soluble sulfurous compd., and zinc, iron, etc. are used for the sacrificial metal. Nickel sulfate, etc. are used for the nickel salt and the concn. thereof is made about 0.3-2.0mol and the plating temp. about 40-80 deg.C. The electrode having substantial durability and high energy efficiency is thus obtd.

Description

【発明の詳細な説明】 本発明は、低過電圧を示し、また充分な耐久性、耐食性
を有し、かつ、経済的な電極の製造法に関するものであ
り、本発明により得られる電極は、水素発生用電極、酸
素発生用電極等、種々の電極としての用途に適している
が、特にアルカリ溶液中の水素発生反応を主反応とする
陰極としての用(2) 途に適する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrode that exhibits low overvoltage, has sufficient durability and corrosion resistance, and is economical. Although it is suitable for various uses as an electrode, such as a generation electrode and an oxygen generation electrode, it is particularly suitable for use (2) as a cathode whose main reaction is a hydrogen generation reaction in an alkaline solution.

従来、水素発生反応を陰極の主反応とする水電解あるい
は塩化アルカリ水溶液の電解においては、主に鉄陰極が
使用されてきた。鉄は陰極材料として、コスト的にも安
価であり、又かなり低い水素過電圧を示すものであるが
、近年更にこれを改良する必要性が生じている。
Conventionally, iron cathodes have been mainly used in water electrolysis or electrolysis of aqueous alkali chloride solutions in which hydrogen generation reaction is the main reaction at the cathode. As a cathode material, iron is inexpensive and exhibits a fairly low hydrogen overvoltage, but in recent years there has been a need to further improve this.

特に、陽イオン交換農法食塩電解技術の発展と共に、省
エネルギーの面から水素過電圧の一層の低下が望まれ、
又高温、高アルカリ濃度という電解条件のため、鉄の耐
食性等が問題視されている。
In particular, with the development of cation exchange farming and salt electrolysis technology, further reduction of hydrogen overvoltage is desired from the perspective of energy conservation.
Furthermore, due to the electrolytic conditions of high temperature and high alkali concentration, the corrosion resistance of iron is viewed as a problem.

このため、鉄陰極に比べて低い水素過電圧を示し、経済
的でしかも充分な耐久性、耐食性を有す新しい陰極の出
現が望まれ、各所で種々の検討がなされている。
Therefore, there is a desire for a new cathode that exhibits a lower hydrogen overvoltage than iron cathodes, is economical, and has sufficient durability and corrosion resistance, and various studies are being carried out in various places.

本発明等は、これまで幾つかの新規な低水素過電圧陰極
を提案してきた。(例えば、特開昭57−19388.
同57−47884 、同57−47885 、同57
−114678 、同57−177985等)本発明者
等は、その後、種々の(3) 低水素過電圧電極を、大型電解槽(少なくとも1d以上
)に組みこみ、かつ、極めて狭い陽陰極間距離(5順以
内)のもとに陽イオン交換膜をはさんだ電解槽を用いて
食塩水の電解を行ってきたが、しばしは次の様な不都合
があることがわかった。
The present inventors have so far proposed several novel low hydrogen overvoltage cathodes. (For example, JP-A-57-19388.
57-47884, 57-47885, 57
-114678, 57-177985, etc.) The present inventors subsequently incorporated various (3) low hydrogen overvoltage electrodes into a large electrolytic cell (at least 1 d or more), and created an extremely narrow anode-cathode distance (5 Electrolysis of saline water has been carried out using an electrolytic cell with a cation exchange membrane sandwiched between them (within order), but it has been found that the following disadvantages often occur.

一つは、得られた低水素過電圧陰極を溶接等の手段によ
り、大型の電解槽にとシつけた場合、予期した程の電解
性能(即ち、従来の電極を使用した場合に比較した電解
電圧の減少)を示さないことである。これは、例えば、
電極取シっけ時の溶接による熱影響のために、電極が劣
化すること、或いは、大型電解槽に於て生ずる電位電流
分布の不均一による電解電圧の上昇等が原因であると考
えられる。又、今一つの問題は、表面の平滑度の問題で
ある。例えば、目視でわかる様な表面の凹凸を有する様
な、低水素過電圧を示す電極は、電解槽の組み立て時に
、あまりに極間距離を小さくしていくと陽イオン交換膜
を傷っけ破損する可能性があるため、ゼロに近い陽/陰
極間距離での電解方法は不可能であり、陽/陰極間距離
は3朋以1N開昭GO−17096(2) −F必要となり、電解液の抵抗損は、0.1V以上とな
る。さらに、電極の開口が小さくなると、二股に目視で
わかる様な凹凸を有す低水素過電圧電極を、電極被覆法
で作成しようとすると電極の開口をつぶしてしまう場合
がある。
One is that when the obtained low hydrogen overvoltage cathode is attached to a large electrolytic cell by means such as welding, the electrolytic performance is as expected (i.e., the electrolytic voltage is lower than that when conventional electrodes are used). (decreased). This is, for example,
This is thought to be caused by deterioration of the electrodes due to the thermal effects of welding during electrode removal, or by an increase in electrolytic voltage due to uneven potential and current distribution that occurs in large electrolytic cells. Another problem is that of surface smoothness. For example, electrodes with a low hydrogen overvoltage that have visible surface irregularities may damage and damage the cation exchange membrane if the distance between the electrodes is made too small when assembling the electrolytic cell. Therefore, it is impossible to perform an electrolysis method with an anode/cathode distance close to zero, and the anode/cathode distance needs to be 3 or more, and the resistance of the electrolyte increases. The loss will be 0.1V or more. Furthermore, if the opening of the electrode becomes smaller, if a low hydrogen overvoltage electrode having two protrusions with visible unevenness is attempted to be produced by the electrode coating method, the opening of the electrode may be crushed.

本発明者らは、上記欠点を克服すべく種々検討を続けた
結果、以下の様な手法を用いることにょシ、上記欠点の
克服に成功した。
The present inventors continued various studies to overcome the above drawbacks, and as a result, succeeded in overcoming the above drawbacks by using the following method.

本発明者等の検討によると、金属よシ成る電極基材を金
属より成る電解室に取りつけ、その後、電極及び電解室
内を均一、かつ平滑な低水素過電圧を示す活性被覆を施
すことが必要であり、その手法としては耐食性を示す金
属のメッキ法が選ばれる。電極及び電解室内を活性なニ
ッケルメッキを施すことにより、大型電解槽での電位電
流分布の不均一による電解電圧の上昇を緩和することが
できる。
According to the studies of the present inventors, it is necessary to attach an electrode base material made of metal to an electrolytic chamber made of metal, and then apply an active coating that exhibits a low hydrogen overvoltage uniformly and smoothly inside the electrode and the electrolytic chamber. The method of choice is to plate a metal that exhibits corrosion resistance. By applying active nickel plating to the inside of the electrode and electrolytic chamber, it is possible to alleviate the increase in electrolytic voltage due to non-uniform potential and current distribution in a large electrolytic cell.

さらに、電極の電解槽への取シっけ、取りはずし等の煩
雑な作業を必要とせず、従って、これ等の作業に伴う電
極の劣化をさけることができる。
Further, there is no need for complicated operations such as loading and unloading the electrodes into the electrolytic cell, and therefore deterioration of the electrodes caused by these operations can be avoided.

(5) さらに、電極室基材の耐食性が危惧される場合、本方法
によると電極室内も耐食性の良い活性被覆が施こされる
ので、腐食の問題が抑制されることになる。
(5) Furthermore, if there is a concern about the corrosion resistance of the electrode chamber base material, according to the present method, an active coating with good corrosion resistance is applied to the electrode chamber as well, thereby suppressing the problem of corrosion.

この様な手法即ち、電極を電解室内に取シっけ、電極及
び電解室内を活性ニッケルメッキ被覆を施す方法は、既
に特開昭54−25275にニッケルー亜鉛の場合が記
されており、公知の手法である。しかし、特開昭54−
25275に記されている様な塩化ニッケル、塩化亜鉛
の混合浴は、本発明者等の検討によると、電極、電解室
内を、充分に均一に平滑なメッキを行うには、メッキの
被覆力が不足しており、又、基材との密着性にも乏しい
This method, in which the electrode is placed in the electrolytic chamber and the electrode and the electrolytic chamber are coated with active nickel plating, has already been described in the case of nickel-zinc in JP-A-54-25275, and is a known method. It is a method. However, JP-A-54-
According to the studies of the present inventors, the mixed bath of nickel chloride and zinc chloride as described in No. 25275 has a coating power that is insufficient to provide sufficiently uniform and smooth plating inside the electrode and electrolytic chamber. Moreover, the adhesion to the base material is also poor.

本発明者等は、種々の活性ニッケルメッキ法に関し広範
な検討を重ねた結果、可溶性含硫黄化合物又は、ニッケ
ルよシ卑な電位を示す金属塩又は、これらの両者、及び
アンモニウムイオンを含み、かつpHが6以下であるニ
ッケルメッキ浴を用い、さらに、メッキ時の陰極反応が
、ガス発生反応を(6) 供わない条件で活性ニッケルメッキ被覆することにより
、電極、電解室内を均一に、かつ平滑に活性被覆し得る
ことを見いだし、本発明を完成したものである。
As a result of extensive studies regarding various active nickel plating methods, the present inventors have discovered that a nickel plating method containing a soluble sulfur-containing compound, a metal salt exhibiting a more base potential than nickel, or both, and ammonium ions, and By using a nickel plating bath with a pH of 6 or less and applying active nickel plating under conditions where the cathode reaction during plating does not cause a gas-generating reaction (6), the inside of the electrode and electrolytic chamber can be uniformly and It was discovered that a smooth active coating could be applied, and the present invention was completed.

本発明を以下に更に詳述する。The invention will be described in further detail below.

本発明で活性なニッケルメッキが施される電極及び電解
室内の基体としては、鉄、ニッケル、クロム、銅又はこ
れらの合金がある。
The electrodes and substrates in the electrolytic chamber to which active nickel plating is applied in the present invention include iron, nickel, chromium, copper, or alloys thereof.

更に、電極基体形状については、平板、メツシュ状、多
孔状等、いかなる形状のものでも良いが高電流密度での
水素発生電極として用いる場合は、%にエキスバンドメ
タル、パンチングメタル、金網状等の基体形状を用いる
ことが好ましい。
Furthermore, the shape of the electrode substrate may be any shape such as a flat plate, mesh shape, porous shape, etc., but when used as a hydrogen generating electrode at high current density, expanded metal, punched metal, wire mesh, etc. Preferably, a base shape is used.

本発明の電極を与えるためには、電極基材を溶接等任意
の手段によシミ解室に取シつけ、電極及び電解室内を平
滑でかつ均一な活性ニッケルメッキを施すことが必要で
ある。
In order to provide the electrode of the present invention, it is necessary to attach the electrode base material to the stain removal chamber by any means such as welding, and to apply smooth and uniform active nickel plating inside the electrode and the electrolytic chamber.

本発明に用いるメッキ浴は、可溶性含硫黄化合物、及び
/又は、ニッケルよシ卑な電位を示す金属塩、及びアン
モニウムイオンを含み、かつpH(7) が6以下であり、さらに1メッキ時の陰極反応がガス発
生反応を伴なわない条件で活性ニッケルメッキを施すこ
とが必要である。
The plating bath used in the present invention contains a soluble sulfur-containing compound and/or a metal salt having a more base potential than nickel, and ammonium ions, has a pH (7) of 6 or less, and has a It is necessary to perform activated nickel plating under conditions where the cathode reaction does not involve gas-generating reactions.

上記、本発明を特徴づける種々の要件の中で、メッキ時
の陰極反応がガス発生反応を伴なわないということが本
発明の最大の%黴である。
Among the above-mentioned various requirements characterizing the present invention, the greatest strength of the present invention is that the cathode reaction during plating does not involve a gas-generating reaction.

メッキ時の陰極反応のガス発生反応は、主に水素ガス発
生反応であるが、水素ガス発生反応が生ずると、被メツ
キ基材上に水素ガスが付着し、そのガスを包む様に結晶
成長が生じ、得られる被膜表面は粗く、かつ、もろい粒
状結晶、粉状結晶の堆積層となシ、被膜強度、基材との
密着性に乏しく、さらに、基材と(−て小さな開口を有
す多孔状陰極を用いた場合には、メツシュの開口をつぶ
すことによシミ極特性を低下させたシ、或いは、粗い凸
凹によシ、狭い陽/陰極間距離の間にイオン交換膜を設
置しようとすると、膜の破損等の問題が生ずる。
The gas generation reaction of the cathode reaction during plating is mainly a hydrogen gas generation reaction, but when the hydrogen gas generation reaction occurs, hydrogen gas adheres to the substrate to be plated, and crystals grow to surround the gas. The surface of the resulting film is rough, has a deposited layer of brittle granular crystals and powdery crystals, and has poor film strength and adhesion to the substrate. If a porous cathode is used, an ion exchange membrane should be installed between the narrow anode/cathode distance to prevent the stain electrode properties from being degraded by crushing the openings in the mesh, or to avoid rough unevenness. If this happens, problems such as damage to the membrane will occur.

従って、本発明の電極の製造法に於ては、メッキ時の活
性ニッケルメッキのメッキ条件としては、ガス発生反応
を生じないことが第一に必要である。
Therefore, in the electrode manufacturing method of the present invention, the plating conditions for active nickel plating during plating must first be such that no gas generation reaction occurs.

ガス発生反応を生じさせないために必要な条件は、まず
第一にメッキ浴のpHを6以下、好ましくは3以上6以
下とするととである。pHが6を越えると、アルカリ領
域のメッキ反応となる。アルカリ領域でニッケルが沈澱
を形成しない様にするだめには、ニッケルが錯イオンと
なる様な公知の錯化剤を加えればよく、この様に錯イオ
ンとなったニッケルは、一般に析出に要する活性化過電
圧が高く、その意味では、均一なメッキが得られる可能
性があるが、残念なことに、水素ガス発生反応が主反応
となり、ざらつきのある、もろい密着性に乏しい被膜し
か得ることができない。
The conditions necessary to prevent the gas generation reaction are, first of all, that the pH of the plating bath be 6 or less, preferably 3 or more and 6 or less. When the pH exceeds 6, the plating reaction occurs in an alkaline region. In order to prevent nickel from forming a precipitate in an alkaline region, a known complexing agent that turns nickel into a complex ion can be added, and nickel that has turned into a complex ion in this way generally has the activity required for precipitation. The plating overvoltage is high, and in that sense, it is possible to obtain uniform plating, but unfortunately, hydrogen gas generation reaction is the main reaction, and only a rough, brittle coating with poor adhesion can be obtained. .

又、pHが3未満の場合は、酸性度の上昇により、やは
り水素ガス発生の可能性が高く、ガス発生反応を抑制し
ようとすれば、極めて微少な電流で活性メッキを行なわ
なければならず、活性化ニッケルメッキの作業効率が低
下し、費用の増大をまねく。
Furthermore, if the pH is less than 3, there is a high possibility that hydrogen gas will be generated due to the increase in acidity, and if the gas generation reaction is to be suppressed, active plating must be performed with an extremely small electric current. The work efficiency of activated nickel plating decreases, leading to increased costs.

以上の様な理由によシ、pHは6以下、好ましく9) くは3以−ヒ6以下とすることが望ましい。For the above reasons, the pH is preferably 6 or less, 9) It is desirable to set the value to 3 or more and 6 or less.

ガス発生反応を生じきせな−ために必要な第二の条件は
メッキ浴にアンモニウムイオンを添加することである。
The second condition necessary to prevent the gas-evolving reaction from occurring is the addition of ammonium ions to the plating bath.

アンモニウムイオンの添加により、ガス発生反応が抑制
されるが、そればかりではなく、デンドライト状の析出
も抑制されメッキの被覆力、均一電着性が著しく増大す
る。均一で平滑、か・り光沢を有した活性ニッケルメッ
キを与える電流密度範囲は、2オーダにも広がり、例え
ば電解槽の様な複雑な形状をもつ被メッキ物の場合に生
ずるメッキ電流密度の不均一な状況に於ても、低電流密
度領域から高電流密度領域まで、均一、平滑かつ光沢を
有す活性メッキ被覆を与えることができる。
Addition of ammonium ions not only suppresses gas generation reactions, but also suppresses dendrite-like precipitation, significantly increasing the covering power and uniform electrodeposition of the plating. The current density range that provides uniform, smooth, and glossy activated nickel plating extends to two orders of magnitude, making it possible to avoid variations in plating current density that occur when plating objects with complex shapes, such as electrolytic baths. Even under uniform conditions, it is possible to provide a uniform, smooth and glossy active plating coating from low current density regions to high current density regions.

さらに、アンモニウムイオンの添加によシ、メッキ被膜
の基材との密着性が著しく増大し、強固で耐久性のある
メッキ被膜を与え、かつ、得られる活性ニッケルメッキ
被覆電極の水素過電圧は極めて低いものとなる。メッキ
浴中に加えられるアンモニウムイオン濃度は、可溶性含
硫黄化合物中の(10) 硫黄量及び/又は、犠牲金属塩中の犠牲金属の量に対し
、0.5倍モル濃度以上であることが好ましい0 アンモニウムイオン濃度が、0.5倍モル濃度未満の場
合は、上記のアンモニウムイオンの添加効果が不充分と
なる。
Furthermore, the addition of ammonium ions significantly increases the adhesion of the plating film to the base material, providing a strong and durable plating film, and the hydrogen overvoltage of the resulting activated nickel plated electrode is extremely low. Become something. The ammonium ion concentration added to the plating bath is preferably at least 0.5 times the molar concentration relative to the amount of (10) sulfur in the soluble sulfur-containing compound and/or the amount of sacrificial metal in the sacrificial metal salt. 0 If the ammonium ion concentration is less than 0.5 times the molar concentration, the above effect of adding ammonium ions will be insufficient.

さらに、メッキ時に水素ガス発生反応を生ずる様なこと
はなく、かつ平滑で均一な活性ニッケルメッキを与える
ためのメッキ浴組成メッキ条件は以下の様なものである
Furthermore, the plating bath composition and plating conditions are as follows in order to provide smooth and uniform activated nickel plating without causing any hydrogen gas generation reaction during plating.

ニッケル塩は可溶性の塩であれば良く、通常、硫酸ニッ
ケル、塩化ニッケル、硫酸ニッケルアンモニウム、スル
ファミン酸ニッケル等、任意の水溶性ニッケル塩の一種
以上が用いられる。
The nickel salt may be any soluble salt, and usually one or more of any water-soluble nickel salts such as nickel sulfate, nickel chloride, nickel ammonium sulfate, nickel sulfamate, etc. are used.

ニッケル塩の濃度は0.3モル以上2.0モル以下の範
囲で用いることが望ましい。ニッケル塩の濃度が0.3
モル濃度未満の場合は、ガス発生反応が生じやすくなり
、この抑制のために、大量のアンモニウムイオンの添加
とメッキ電流密度を低下させることが必要となシ実用的
ではない。
The concentration of the nickel salt is preferably used in a range of 0.3 mol or more and 2.0 mol or less. The concentration of nickel salt is 0.3
When the concentration is less than molar, gas generation reactions tend to occur, and in order to suppress this reaction, it is necessary to add a large amount of ammonium ions and to lower the plating current density, which is not practical.

(11) 又、2.0モル濃度を越えた場合、溶解度の問題、操作
中の液ロスによるニッケルのロス等の問題が生じるため
好ましくない。
(11) Further, if the concentration exceeds 2.0 molar concentration, problems such as solubility and nickel loss due to liquid loss during operation will occur, which is not preferable.

本発明に用いるメッキ浴には、低水素過電圧を示す活性
ニッケルメッキを与えるために、可溶性含硫黄化合物及
び/又は、ニッケルより卑な電位を示す犠牲金属塩が加
えられる。メッキ浴中に用いられる可溶性含硫黄化合物
は、チオシアン酸塩。
A soluble sulfur-containing compound and/or a sacrificial metal salt having a potential less noble than nickel is added to the plating bath used in the present invention to provide an active nickel plating exhibiting a low hydrogen overpotential. The soluble sulfur-containing compound used in the plating bath is thiocyanate.

チオ尿素、硫黄の酸化数が5以下のオキソ酸塩を意味し
、硫黄の酸化数が5以下のオキソ酸塩とは、例えば、亜
硫酸9重亜硫酸、チオ硫酸、亜ジチオン酸等の塩を意味
する。
Thiourea means an oxoacid salt with a sulfur oxidation number of 5 or less, and the oxoacid salt with a sulfur oxidation number of 5 or less means, for example, salts of sulfite, 9-bisulfite, thiosulfate, dithionite, etc. do.

メッキ浴中に加えられるチオシアン酸塩、チオ尿素、硫
黄の酸化数が5以下のオキソ酸塩の濃度は、化合物中の
硫黄の量で0,01モル濃度以上、1モル濃度以下の範
囲で用いることが望ましい。
The concentration of thiocyanate, thiourea, and oxoacid salts with a sulfur oxidation number of 5 or less to be added to the plating bath is within the range of 0.01 molar concentration or more and 1 molar concentration or less based on the amount of sulfur in the compound. This is desirable.

硫黄化合物の濃度が0.01モル濃度未満の場合は得ら
れるニッケルメッキ表面の水素過電圧の低下が不充分で
あり、また1、0モル濃度をこえるとメッキ被膜との密
着性が不良となる。
If the concentration of the sulfur compound is less than 0.01 molar concentration, the hydrogen overvoltage of the resulting nickel plated surface will be insufficiently reduced, and if it exceeds 1.0 molar concentration, the adhesion to the plating film will be poor.

特開昭GO−17096(4) メッキ浴中に用いられるニッケルより卑な電位を示す犠
牲金属塩とは、例えば、亜鉛、鉄、クロム、マンガン等
の塩であシ、これらの犠牲金属は、ニッケルと共に陰極
表面に共析するが、アルカリ溶液中で使用されることに
より、少なくともその一部は選択的に除去される。用い
られる犠牲金属塩の濃度は犠牲金属イオン濃度として、
ニッケル環中のニッケルイオン濃度に比較して、0.0
1倍モル濃度以上、1.0倍モル濃度の範囲で用いるこ
とが望ましい。犠牲金属イオン濃度が0.01倍モル濃
度未満の場合は、得られるニッケルメッキ表面の水素過
電圧の低下が不充分であり、又1. O倍モル濃度をこ
えると基材とメッキ被膜との密着性が不良となる。
JP-A-17096(4) Sacrificial metal salts having a potential less base than nickel used in plating baths are, for example, salts of zinc, iron, chromium, manganese, etc. These sacrificial metals are Although it eutectoids with nickel on the cathode surface, at least a portion of it is selectively removed by using it in an alkaline solution. The concentration of the sacrificial metal salt used is expressed as the sacrificial metal ion concentration.
0.0 compared to the nickel ion concentration in the nickel ring
It is desirable to use it in a range of 1-fold molar concentration or more and 1.0-fold molar concentration. If the sacrificial metal ion concentration is less than 0.01 times the molar concentration, the hydrogen overvoltage of the resulting nickel plated surface will be insufficiently reduced; If the molar concentration exceeds O times, the adhesion between the base material and the plating film becomes poor.

本発明の電極を与えるためには、電流密度は5A/血2
以下の範囲を用いることが好ましい。メッキの電流密度
が5A/ebR2を越えると、ガス発生反応が生じる可
能性がおる。又、あまりに低電流密度でメッキを行うと
、活性ニッケルメッキに必要なメッキ時間が増大するた
め、一般に実用的なメ(13) ツキ電流密度範囲としては、0.3 A/m2以上、5
A/dX2以下が用いられる。
To provide the electrode of the invention, the current density is 5A/blood2
It is preferable to use the following ranges. If the plating current density exceeds 5 A/ebR2, there is a possibility that a gas generation reaction will occur. In addition, if plating is performed at too low a current density, the plating time required for active nickel plating will increase.
A/dX2 or less is used.

さらにメッキ温度に関しては、温度の増大と共に、ガス
発生反応が抑制される傾向にあり、一般に40℃以上、
80℃以下の温度条件が望ましい。
Furthermore, regarding the plating temperature, as the temperature increases, the gas generation reaction tends to be suppressed.
A temperature condition of 80° C. or lower is desirable.

さらにメッキ時に、適度な攪拌を行うことは、ニッケル
の濃度分極をさける意味からも望ましい措置の一つであ
る。
Furthermore, proper stirring during plating is one of the desirable measures to avoid concentration polarization of nickel.

又、本発明の電解用陰極を与えるためには、基材の前処
理として脱脂、酸洗、電解洗浄等の通常の前処理方法や
、エツチング処理、ゲラスト処理更には化学的、電気的
研摩等、任意の前処理方法を選ぶととができる。更に、
基材と本発明のニッケルメッキ被膜との間に、適当な中
間メッキ、例えば銅メッキ、ニッケルメッキ等の中間メ
・ツキを施すことは、メッキの密着性を一層良好ならし
め、その結果書られる電極の耐久性、耐食性を一層良好
ならしめる場合もあり、本発明のニッケルメッキ表面被
腺のもつ平滑、均一、かつ極めて低い水素過電圧を示す
という特質を失なわない範囲にお(14) いて、これらの中間メッキを施しても良い。
In addition, in order to provide the cathode for electrolysis of the present invention, the substrate may be pretreated by conventional pretreatment methods such as degreasing, pickling, electrolytic cleaning, etching treatment, gelatin treatment, chemical or electrical polishing, etc. , by selecting any pretreatment method. Furthermore,
Providing an appropriate intermediate plating, such as copper plating or nickel plating, between the base material and the nickel plating film of the present invention improves the adhesion of the plating, and as a result, In some cases, the durability and corrosion resistance of the electrode may be further improved, and within the range of not losing the smooth, uniform, and extremely low hydrogen overvoltage characteristics of the nickel-plated surface coating of the present invention (14), These intermediate platings may also be applied.

以上の様に、金属よシ成る電極基体を金属よシ成る電解
槽に取りつけ、電極及び電解室内を活性ニッケルメッキ
を施す方法に於て、ニッケルメッキ浴が、可溶性含硫黄
化合物及び/又は、ニッケルよシ卑な電位を示す犠牲金
属塩、及びアンモニウムイオンを含み、かつpHが6以
下であシ、さらにメッキ時の陰極反応が、ガス発生反応
を伴なわない条件で、活性ニッケルメッキを施すことに
より、充分な耐久性を有し、かつ極めてエネルギー効率
の高い電極を与えることができる。
As described above, in the method of attaching an electrode substrate made of metal to an electrolytic bath made of metal and applying active nickel plating inside the electrode and the electrolytic chamber, the nickel plating bath contains soluble sulfur-containing compounds and/or nickel. Activated nickel plating must be performed under conditions that include a sacrificial metal salt that exhibits a very base potential and ammonium ions, that has a pH of 6 or less, and that the cathode reaction during plating does not involve a gas-generating reaction. This makes it possible to provide an electrode with sufficient durability and extremely high energy efficiency.

以下、実施例を述べるが、本発明はこれに限定されるも
のではない。
Examples will be described below, but the present invention is not limited thereto.

実施例1. 比較例1〜3 実施例1として内面がニッケルよシなる陰極室ニ、ニッ
ケル製エキスバンドメタル(1mX1mのサイズ、口開
らきは短径3朋、長径s mrtt )を取りつけ、陰
極室内部、陰極表面を、脱脂、酸洗等の通常の前処理の
後に表1に示したニッケルメッキ浴を用いて表2に示し
た条件でニッケルメッキ(15) を行った。
Example 1. Comparative Examples 1 to 3 As in Example 1, a nickel expanded metal (1 m x 1 m size, opening width: 3 mm short axis, long axis s mrtt) was attached to the cathode chamber 2 whose inner surface was made of nickel, and the inside of the cathode chamber, the cathode After normal pretreatment such as degreasing and pickling, the surface was nickel plated (15) using the nickel plating bath shown in Table 1 under the conditions shown in Table 2.

表1. ニッケルメッキ浴組成 塩化ニッケル 1.Omob力 塩化アンモニウム 1.0 チオシアン酸ナトリウム 0.2 pH4 表2. ニッケルメッキ条件 浴 温 60°C 電流密度 1A/血2 メッキ時間 1時間 得られたニッケルメッキ被覆層は、均一で平滑かつ銀色
の光沢を有す表面であり、メッキ時の陰極反応は、ガス
発生反応を伴うことはなかった。
Table 1. Nickel plating bath composition Nickel chloride 1. Omob Power Ammonium Chloride 1.0 Sodium Thiocyanate 0.2 pH4 Table 2. Nickel plating condition bath Temperature: 60°C Current density: 1A/Blood 2 Plating time: 1 hour The resulting nickel plating layer has a uniform, smooth surface with a silvery luster, and the cathode reaction during plating causes gas generation. There were no reactions.

かくして得られた陰極及び、陰極室を陽イオン交換膜を
介して、チタンラス上に酸化ルプニウム被覆した陽極、
及び陽極室と組み合わせて、電解槽を構成し、表3に示
す電解条件にて食塩水の電解を行った。
The thus obtained cathode and the cathode chamber were separated into an anode coated with lupium oxide on a titanium lath through a cation exchange membrane,
In combination with an anode chamber and an anode chamber, an electrolytic cell was constructed, and saline solution was electrolyzed under the electrolytic conditions shown in Table 3.

表3.電解条件; 陽極室NaC4!濃度 210±5 g#陰極室NaO
H濃度 32〜33wt%電解温度 90℃ 電流密度 30A/血2 陽、陰極間距離 約41 (陽イオン交換膜は、陽極側に押しつけて位置を固定し
た。) 一方、比較例1として、活性ニッケルメッキを施さず実
施例1で示した電解槽をそのまま用いて同一の条件で電
解を行った。
Table 3. Electrolysis conditions; anode chamber NaC4! Concentration 210±5 g#Cathode chamber NaO
H concentration 32-33 wt% Electrolysis temperature 90°C Current density 30 A/blood 2 Distance between positive and negative electrodes Approx. 41 (The cation exchange membrane was pressed against the anode side and fixed in position.) On the other hand, as Comparative Example 1, activated nickel Electrolysis was performed under the same conditions using the electrolytic cell shown in Example 1 without plating.

又、比較例2として陰極のみを表19表2に示した条件
で活性ニッケルメッキを施し、その後、溶接により陰極
室に取り付け、実施例1と同様の使用で食塩水の電解を
行った。
Further, as Comparative Example 2, only the cathode was subjected to active nickel plating under the conditions shown in Table 19 and Table 2, and then attached to the cathode chamber by welding, and electrolysis of saline water was performed in the same manner as in Example 1.

さらに、比較例3として表1のニッケルメッキ浴に水酸
化アンモニウムを添加し、pHを7とした他は、実施例
1と同様の使用で、活性ニッケルメッキを施し、食塩水
の電解を行った。なお、この時、メッキ反応は、ガス発
生反応を伴い得られ(17) たメッキ表面はざらつきがあシ、かつ光沢のないくすん
だ状態であり、電着物により一部メツシュの開口部をつ
ぶしている所もあった。
Furthermore, as Comparative Example 3, ammonium hydroxide was added to the nickel plating bath in Table 1 to adjust the pH to 7, and the same method as in Example 1 was used to apply active nickel plating and electrolysis of saline solution. . At this time, the plating reaction was accompanied by a gas-generating reaction (17).The plating surface was rough, dull, and dull, and some of the openings of the mesh were crushed by the electrodeposit. There were some places.

以上、実施例1、比較例1〜3の食塩水の電解電圧の結
果を表4に示す。
Table 4 shows the results of the electrolytic voltage of the saline solutions of Example 1 and Comparative Examples 1 to 3.

以上より、本発明の実施例1は、比較例1〜3にくらべ
、かなシ低い電解電圧を与え、耐久性にもすぐれている
ことがわかる。
From the above, it can be seen that Example 1 of the present invention provides a significantly lower electrolytic voltage and has excellent durability compared to Comparative Examples 1 to 3.

実施例2゜ 表5に示したニッケルメッキ浴を用い、表6に示したメ
ッキ条件でニッケルメッキを行った他は、(18) 実施例1と同一の使用で、陰極及び陰極室を構成し、電
解槽を組み立てた。
Example 2 The cathode and cathode chamber were constructed in the same manner as in Example 1 (18), except that nickel plating was performed using the nickel plating bath shown in Table 5 and under the plating conditions shown in Table 6. , assembled an electrolytic cell.

表5. ニッケルメッキ浴組成 塩化ニッケル 1mol/、g 塩化亜鉛 0.03・ チオ尿素 0.1 ・ 塩化アンモニウム 1 〃 ホウ酸 0.5〃 pH5 表6. ニッケルメッキ条件 温度 60℃ 電流密度 0.5A/血2 メッキ時間 2時間 得られたニッケルメッキ被覆陰極は、均一で平滑かつ、
渋い光沢を有す表面であシ、メッキ時の陰極反応は、ガ
ス発生反応を伴うことはなかった。
Table 5. Nickel plating bath composition Nickel chloride 1 mol/g Zinc chloride 0.03 Thiourea 0.1 Ammonium chloride 1 Boric acid 0.5 pH 5 Table 6. Nickel plating conditions Temperature: 60°C Current density: 0.5 A/blood 2 Plating time: 2 hours The resulting nickel-plated cathode was uniform, smooth, and
The cathode reaction during plating was not accompanied by a gas-generating reaction since the surface had a dark luster.

この電解槽を用いて、陽、陰極間距離を2問とした他は
表3と同様の条件で食塩水の電解を行った所、電解電圧
3.08 Vで1ケ月間はぼ一定の値を(19) 維持していた。
When this electrolytic cell was used to electrolyze saline water under the same conditions as in Table 3, except that the distance between the positive and negative electrodes was changed to two, the value remained almost constant for one month at an electrolytic voltage of 3.08 V. (19) was maintained.

実施例3゜ 内面がSUS 304よりなる陰極室に、5US304
製のエキスバンドメタル(1,5m X 2.4 mの
サイズ、目開きは短径3間、長径6朋)を取りつけ、陰
極室内部、陰極表面を以下に示す方法で活性ニッケルメ
ッキを行った。
Example 3 5US304 was used in the cathode chamber whose inner surface was made of SUS304.
An expanded metal (size: 1.5 m x 2.4 m, openings are 3 in the short axis and 6 in the long axis) was attached, and the inside of the cathode chamber and the cathode surface were subjected to active nickel plating using the method shown below. .

まず、脱脂、酸洗等の通常の前処理を行う。次に表7に
示したニッケルメッキ浴を用いて、表8に示した条件で
第一の下地ニッケルメッキを行ない、更に表9に示した
ニッケルメッキ浴を用いて表10に示した条件で第二の
下地ニッケルメッキを行った。
First, usual pretreatments such as degreasing and pickling are performed. Next, the first base nickel plating was performed using the nickel plating bath shown in Table 7 under the conditions shown in Table 8, and then the first base nickel plating was performed using the nickel plating bath shown in Table 9 under the conditions shown in Table 10. The second base was plated with nickel.

表7. ニッケルメッキ浴組成 塩化ニッケル 1 molt/1 塩酸 80威/1 表8. ニッケルメッキ条件 温 度 室温 電流密度 3 A/&2 時 間 5 分 特開昭GO−17096(6) 表9、 ニッケルメッキ浴組成 塩化ニッケル l、Q moνl 塩化アンモニウム 2.0 moIv1表10. ニッ
ケルメッキ条件 温 度 60 ℃ 電流密度 2A/djn2 時 間 30分 このように下地ニッケルメッキを施した後に表11に示
したニッケルメッキ浴を用いて表12に示した条件で、
活性なニッケルメッキを行なった。
Table 7. Nickel plating bath composition Nickel chloride 1 mol/1 Hydrochloric acid 80 mol/1 Table 8. Nickel plating conditions Temperature Room temperature current density 3 A/&2 Time 5 minutes JP-A-17096 (6) Table 9 Nickel plating bath composition Nickel chloride l, Q movl Ammonium chloride 2.0 moIv1 Table 10. Nickel plating conditions Temperature: 60°C Current density: 2A/djn2 Time: 30 minutes After applying the base nickel plating in this way, using the nickel plating bath shown in Table 11, under the conditions shown in Table 12,
Active nickel plating was performed.

表11. ニッケルメッキ浴組成 塩化ニッケル1.0mol/l 塩化アンモニウム 2.0 ・ チオ尿素 0.5〃 pH4,5 (21) 表12. ニッケルメッキ条件 温 度 60 ℃ 電流密度 2A/djn2 時 間 1時間 得られたニッケルメッキ被覆陰極は、均一かつ平滑で、
黄金色の光沢を有す表面であり、メッキ時の陰極反応は
ガス発生反応を伴うことはなかった。
Table 11. Nickel plating bath composition Nickel chloride 1.0 mol/l Ammonium chloride 2.0 Thiourea 0.5 pH 4,5 (21) Table 12. Nickel plating conditions Temperature: 60°C Current density: 2A/djn2 Time: 1 hour The resulting nickel plating coated cathode was uniform and smooth.
The surface had a golden luster, and the cathodic reaction during plating was not accompanied by a gas-generating reaction.

かくして得られた陰極及び陰極室を陽イオン交換膜を介
して、チタンラス上に酸化ルチニウムを被覆した陽極、
及び陽極室と組み合わせて電解槽を構成し、実施例2と
同様の電解条件で食塩水の電解を行った。
The cathode and cathode chamber obtained in this way were passed through a cation exchange membrane to form an anode made of titanium lath coated with rutinium oxide,
In combination with the anode chamber and an anode chamber, an electrolytic cell was constructed, and saline solution was electrolyzed under the same electrolytic conditions as in Example 2.

その結果、電流効率95%以−ヒ、電解電圧は、3、0
5 Vで100日の・間、は埋一定の値を示しており、
本発明よりなる陰極がすぐれた電解特性並びに耐久性を
有すことがわかる。
As a result, the current efficiency was over 95%, and the electrolytic voltage was 3.0%.
5 V for 100 days indicates a constant value,
It can be seen that the cathode of the present invention has excellent electrolytic properties and durability.

特許出願人 東洋曹達工業株式会社Patent applicant: Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 金属より成る電極基体を金属より成る電解槽に取りつけ
、電極及び電解室内を活性ニッケルメッキを施す方法に
於て、ニッケルメッキ浴が、可溶性含硫黄化合物及び/
又はニッケルよシ卑な電位を示す犠牲金属塩、及びアン
モニウムイオンを含み、かつpHが6以下であり、さら
にメッキ時の陰極反応が、ガス発生反応を伴なわない条
件で、活性ニッケルメッキを施すことを特徴する電極の
製造法。
In this method, an electrode substrate made of metal is attached to an electrolytic bath made of metal, and active nickel plating is applied to the inside of the electrode and electrolytic chamber, in which the nickel plating bath contains soluble sulfur-containing compounds and/or
Or, activated nickel plating is performed under conditions that contain a sacrificial metal salt that exhibits a more base potential than nickel, and ammonium ions, and have a pH of 6 or less, and that the cathode reaction during plating does not involve a gas-generating reaction. A method for manufacturing an electrode characterized by:
JP58121554A 1983-07-06 1983-07-06 Production of electrode Granted JPS6017096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121554A JPS6017096A (en) 1983-07-06 1983-07-06 Production of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121554A JPS6017096A (en) 1983-07-06 1983-07-06 Production of electrode

Publications (2)

Publication Number Publication Date
JPS6017096A true JPS6017096A (en) 1985-01-28
JPH0341559B2 JPH0341559B2 (en) 1991-06-24

Family

ID=14814113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121554A Granted JPS6017096A (en) 1983-07-06 1983-07-06 Production of electrode

Country Status (1)

Country Link
JP (1) JPS6017096A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134524U (en) * 1989-04-15 1990-11-08
GB2405154A (en) * 2002-06-20 2005-02-23 Asahi Glass Co Ltd Lubricant solution and method of applying lubricant
JP2007242715A (en) * 2006-03-06 2007-09-20 Tdk Corp Method of manufacturing ceramic electronic component
JP2007242706A (en) * 2006-03-06 2007-09-20 Tdk Corp Method of manufacturing ceramic electronic component
CN100383285C (en) * 2005-10-27 2008-04-23 天津大学 Electrode for water electrolysis and its making process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134524U (en) * 1989-04-15 1990-11-08
GB2405154A (en) * 2002-06-20 2005-02-23 Asahi Glass Co Ltd Lubricant solution and method of applying lubricant
GB2405154B (en) * 2002-06-20 2005-10-26 Asahi Glass Co Ltd Lubricant solution and method of applying lubricant
CN100383285C (en) * 2005-10-27 2008-04-23 天津大学 Electrode for water electrolysis and its making process
JP2007242715A (en) * 2006-03-06 2007-09-20 Tdk Corp Method of manufacturing ceramic electronic component
JP2007242706A (en) * 2006-03-06 2007-09-20 Tdk Corp Method of manufacturing ceramic electronic component

Also Published As

Publication number Publication date
JPH0341559B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
US3480523A (en) Deposition of platinum-group metals
US4801368A (en) Ni/Sn cathode having reduced hydrogen overvoltage
CN111850625B (en) Electroplating liquid for direct electrodeposition of iron on magnesium alloy surface and electroplating process thereof
JPS6017096A (en) Production of electrode
US4190514A (en) Electrolytic cell
US3772167A (en) Electrodeposition of metals
JPS6045710B2 (en) electrolytic cell
US4230543A (en) Cathode for electrolysis of aqueous solution of alkali metal halide
EP0770709B1 (en) Low hydrogen over voltage cathode and process for production thereof
JP2522101B2 (en) Nickel-molybdenum alloy plating bath and plating method
US4177129A (en) Plated metallic cathode
JPH0260759B2 (en)
US5965002A (en) Elecrodeposition of manganese and other hard to deposit metals
WO2021132400A1 (en) Cathode for producing electrolytic manganese dioxide
JPS586983A (en) Electrolytic cell
JPS5830956B2 (en) Cathode manufacturing method
JPH036996B2 (en)
JPS5867883A (en) Manufacture of low hydrogen overvoltage cathode
JPS6211075B2 (en)
JPS5822550B2 (en) Manufacturing method of cathode for electrolysis
GB1603471A (en) Electrolytic process
JPH0633484B2 (en) Method for manufacturing cathode for hydrogen generation
JPS63162892A (en) Production of cathode having low hydrogen overvoltage
JPS6213588A (en) Production of highly durable activated electrode
JPH10204674A (en) Iron electroplating solution