JPH0260759B2 - - Google Patents

Info

Publication number
JPH0260759B2
JPH0260759B2 JP57027510A JP2751082A JPH0260759B2 JP H0260759 B2 JPH0260759 B2 JP H0260759B2 JP 57027510 A JP57027510 A JP 57027510A JP 2751082 A JP2751082 A JP 2751082A JP H0260759 B2 JPH0260759 B2 JP H0260759B2
Authority
JP
Japan
Prior art keywords
nickel plating
nickel
plating
cathode
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027510A
Other languages
Japanese (ja)
Other versions
JPS58147577A (en
Inventor
Takashi Mori
Kazutaka Sakyama
Masatoshi Sugimori
Setsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP57027510A priority Critical patent/JPS58147577A/en
Publication of JPS58147577A publication Critical patent/JPS58147577A/en
Publication of JPH0260759B2 publication Critical patent/JPH0260759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水素過電圧が低く、また充分な耐久
性、耐食性を有する陰極の製造法に関するもので
ある。 従来、水素発生反応を陰極の主反応とする水電
解あるいは塩化アルカリ水溶液の電解において
は、主に鉄陰極が使用されてきた。鉄は、陰極材
料としてコスト的にも安価であり、またかなり低
い水素過電圧を示すものであるが、近年更にこれ
を改良する必要性が生じている。 特に、陽イオン交換膜法食塩電解技術の発展と
共に、省エネルギーの面から水素過電圧の一層の
低下が望まれ、また高温、高アルカリ濃度という
電解条件のため、鉄の耐食性等が問題視されてい
る。このため、鉄陰極に比べて低い水素過電圧を
示し、経済的でしかも充分な耐久性、耐食性を有
する新しい陰極の出現が望まれ、各所で種々の検
討がなされており、いくつかの方法が提案されて
いる。 この中で、従来の水電解技術の発展の過程で提
案されてきた低水素過電圧を与えるニツケルメツ
キ、例えば、硫黄を含むニツケルメツキ、(例え
ば、特公昭25−2305、あるいは吉沢四朗・渡辺信
淳共著「電気化学」共立全書出版の水電解の
章、p69)が古くより知られており、白金族等を
被覆した電極に比べコスト的にも安価であり、注
目されている。 本発明者らは、上記手法により得られるメツキ
被膜につき詳細な検討を行つた結果、これらのメ
ツキ被膜のもついくつかの欠点、即ち、基材との
密着性が不良であること、表面被覆がもろく弱い
こと、更には水素過電圧の低下が未だ不充分であ
ること、等の欠点を克服した電極の製法を見出し
先に特許出願を行つた(特願昭55−092295号、同
56−000305号) 本発明者らは、上記方法による電極につき、更
に検討を進めた結果、より一層優れた耐久性、耐
食性を示し、水素過電圧の低い陰極を見いだし
た。 一般に、硫黄を含むニツケルメツキは、内部に
空隙が存在し、基材との密着性も、充分とはいい
難い。特に基材として鉄を用いる場合には、この
問題は、深刻である。 即ち、硫黄を含むニツケルメツキ中に存在する
空隙のために、基材の一部は、高温高濃度のアル
カリ溶液と接触しており、このため電解時あるい
は切電時に基材中の鉄の溶解がおこる。さらに、
これらの低水素過電圧を示すニツケルを主成分と
するメツキ被覆は、アルカリ溶液中で基材に比べ
より貴な電極電位を有する場合が多く、従つて、
基材の溶解を促進する傾向を持つ。このように、
基材と被膜界面が侵食されてくると、電解により
発生したガスにより被膜のふくれ、更には被膜の
剥離がおこる場合があり、また、基材より溶出し
た鉄イオンが電極に付着する等々の理由により電
極性能が劣化してくる。更に、この電極を陽イオ
ン交換膜食塩電解の陰極として用いた場合は、基
材より溶出した鉄イオンがイオン交換膜の膜性能
を劣化させたり、更には得られる苛性ソーダの製
品品質を低下させるおそれがある。 基材と硫黄を含むニツケルメツキ(例えば、ロ
ダンニツケルメツキ層)との密着性を改良するた
めに、例えば特公昭47−7444号公報には、ロダン
ニツケル層の下地メツキとして銅メツキを施すこ
とが提案されている。しかしながら、銅は、アル
カリ中での耐食性に若干問題があり、硫黄を含む
ニツケルメツキの密着性も乏しく又、特公昭47−
7444号公報に提案されている様な、銅メツキ後、
不活性雰囲気中に於て熱処理を行い、さらに、ロ
ダンニツケルメツキを行う方法は、必ずしも経済
的とはいい難い。 本発明者らは、以上のような欠点を克服するた
めに硫黄を含むニツケルメツキの下地メツキにつ
いて詳細な検討を行つた結果、アンモニウムイオ
ンを含むニツケルメツキ浴(ただし、炭素質から
なる粒子を含まない)を用いたニツケルメツキ層
は、硫黄を含むニツケルメツキ層と優れた密着性
を示し、しかも高温、高濃度のアルカリ水溶液中
で充分な耐食性を示すことにより、上記欠点を克
服した陰極を得ることに成功した。 従つて本発明は、金属よりなる基体表面に、下
地メツキとしてアンモニウムイオンを含むニツケ
ルメツキ浴、(ただし、炭素質からなる粒子を含
まない)を用いてニツケルメツキを行い、その上
に、低水素過電圧を示す。硫黄を含むニツケルメ
ツキを施すことにより、優れた耐食性、耐久性を
有し、かつ、長期間にわたり、低い水素過電圧を
維持する陰極をあたえることを特徴とするもので
ある。 本発明の基材は、鉄、ニツケル、銅又はこれら
の合金が用いられるが、前記した様に、鉄又は、
鉄を主体として含む合金を用いた場合、本発明の
効果は顕著である。このことは、本発明が経済性
に優れたものであることを意味する。更に、基体
形状については、平板、メツシユ状、多孔状等、
いかなる形状のものでも良いが、高電流密度での
水素発生電極として用いる場合は、特にエキスパ
ンドメタル、パンチンクメタル、金網状等の基体
形状を用いることが好ましい。 本発明の電極を与えるためには、上記基材上
に、アンモニウムイオンを含むニツケルメツキ浴
(ただし、炭素質からなる粒子を含まない)を用
いて下地メツキを施すことが必要である。下地メ
ツキとして、一般に用いられるニツケルメツキ浴
例えば、Watt浴(硫酸ニツケル、塩化ニツケル、
ホウ酸より成る浴)の様なアンモニウムイオンを
含まないニツケルメツキ浴を用いてニツケルメツ
キを施した被膜は、硫黄を含むニツケルメツキ被
膜と充分な密着性を示さない。しかし、このメツ
キ浴に少量のアンモニウムイオンを加えると、得
られるニツケルメツキ被膜は、硫黄を含むニツケ
ルメツキ被膜と充分な密着性を示す様になる。本
発明の下地メツキ層をあたえるニツケルメツキ浴
は、ニツケル塩とアンモニウムイオンが必須成分
である。 アンモニウムイオンは、塩化物、硫酸酸塩等の
可溶性アンモニウム塩或いは、水酸化アンモニウ
ム、その他のアンモニウム塩によつてメツキ浴中
に加えられる。アンモニウムイオンを加えること
により得られる下地メツキ被膜と硫黄を含むニツ
ケルメツキ被膜の密着性は著しく向上し、又、下
地メツキ被膜は緻密で強固なニツケルメツキ被膜
となり、その結果、良好な耐久性、耐食性を示す
陰極を与えることができる。 メツキ浴中に加えられるアンモニウムイオン濃
度は、0.05モル濃度以上、上限は特に制限されず
飽和濃度迄許される。アンモニウムイオン濃度が
上記濃度以下の場合は、得られるニツケルメツキ
被膜と硫黄を含むニツケルメツキ被膜との密着性
は不充分となる。下地メツキ層にあたえるニツケ
ルメツキ浴に用いられるニツケル塩は、可溶性の
塩であれば良く、塩化ニツケル、硫酸ニツケル、
酢酸ニツケル、スルフアミン酸ニツケル等が用い
られ、その濃度は特に制限を受けないが、通常
0.05モル濃度から、2.0モル濃度の範囲で用いる
ことが望ましい。 なお、下地メツキ層を形成する際に用いられる
メツキ浴中には、上記の成分の他に、得られる表
面被膜を不都合ならしめない限り、他の可溶性塩
を加えることも許される。例えば、ニツケルメツ
キ浴によく用いられるホウ酸等の緩衝剤の使用
は、本発明で用いるニツケルメツキ被膜の特性を
一層良好ならしめる場合もあり、好適成分として
本発明で用いるメツキ浴に加えられる場合もあ
る。 さらに、下地メツキ層を形成するためにメツキ
の操作条件は、特に厳密な制限を受けないが、好
ましくは室温より70℃程度の温度範囲、0.1〜
10A/dm2程度の電流密度範囲で、撹拌下のもと
でメツキを行うことが望ましい。 さらに、本発明の陰極の耐食性、耐久性を一層
良好とならしめるために、例えば、鉄、基材等の
上に、あらかじめ銅メツキ、又は無電解ニツケル
メツキを行いさらにその上に上記下地メツキを行
うことも有効な手段となる場合がある。特に例え
ば複雑な形状の電極や電極を陰極室にとりつけた
後に陰極室電極全面にニツケルメツキを行う場合
は、下地メツキのつきまわりが不充分な場合もあ
り、あらかじめつきまわりの良好な無電解ニツケ
ルメツキを施すことは、好ましい結果をもたら
す。この無電解ニツケルメツキの上に、本発明で
用いるアンモニウムイオンを含むニツケルメツキ
浴(ただし、炭素質からなる粒子を含まない)
が、密着性の良い被膜をあたえることは、本発明
の付随的な特徴の一つである。良く知られている
様に無電解ニツケルメツキの上には一般に密着性
の良いニツケルメツキを行うことはむつかしく、
ストライクニツケル(塩化ニツケルと塩酸より成
る浴)と呼ばれる塩酸酸性ニツケルメツキ浴を用
いて、ニツケルメツキを行つた後に例えば前記し
たWatt浴等のニツケルメツキを行う。しかし、
この様なストライクニツケルメツキの上には、本
発明の低水素過電圧を示す、硫黄を含むニツケル
メツキは、充分な密着性を持たない。一方、本発
明で用いるアンモニウムイオンを含むニツケルメ
ツキ浴(ただし、炭素質からなる粒子を含まな
い)より得られる被膜は、無電解ニツケルメツキ
表面との密着性も良好であり、かつ、硫黄を含む
ニツケルメツキとも優れた密着性を示すものであ
る。 本発明の電解用陰極をあたえるためには、上記
下地ニツケルメツキ層の上に、硫黄を含むニツケ
ルメツキを行い低水素過電圧を示す被覆層を形成
することが必要である。 硫黄を含むニツケルメツキは、可浴性ニツケル
塩と適量の可浴性含硫黄化合物を含むニツケルメ
ツキ浴により与えられる、更に好ましくは、ニツ
ケルメツキ浴に適量のアンモニウムイオンを加え
ることが望ましい。 ニツケル塩は可浴性の塩であれば良く、通常、
0.1モル濃度から2.0モル濃度の範囲で用いること
が望ましい。 メツキ浴中に用いられる可浴性含硫黄化合物
は、チオシアン酸塩、チオ尿素、硫黄の酸化数が
5以下のオキソ酸塩を意味し、低水素過電圧を示
すメツキ被膜を与えるという効果をもつ。 硫黄の酸化数が5以下のオキソ酸塩とは、例え
ば、亜硫酸、重亜硫酸、チオ硫酸、亜ジチオン酸
等の塩を意味する。 メツキ浴中に加えられるチオシアン酸塩、チオ
尿素、硫黄の酸化数が5以下のオキソ酸塩の濃度
は、化合物中の硫黄の量で0.01モル濃度以上1.0
モル濃度以下、好ましくは0.05モル濃度以上1モ
ル濃度以下の範囲で用いることが望ましい。硫黄
化合物の濃度が0.01モル濃度未満の場合は得られ
るニツケルメツキ表面の水素過電圧の低下が不充
分であり、また1.0モル濃度をこえると、下地メ
ツキとメツキ被膜との密着性が不良となる。さら
に硫黄を含むニツケルメツキをあたえるニツケル
メツキ浴中に適量のアンモニウムイオンを加える
ことにより、得られるメツキ被膜の密着性は良好
となり、またメツキの被覆力も増大し、更に強固
な特性をもつ被膜表面を得ることができる。 メツキ浴中に加えられるアンモニウムイオンの
濃度は、チオシアン酸塩、チオ尿素、硫黄の酸化
数が5以下のオキソ酸塩等の硫黄化合物中の硫黄
の量に対し少なくとも0.5倍モル濃度以上用いる
ことが好ましく、上限は特に制限されず、飽和濃
度まで許される。 メツキ浴のPHは6以下が好ましく、PHが6をこ
えると、得られるメツキ表面は、もろい電析にな
りやすく、剥離しやすい傾向を持つ。 なお、硫黄を含むニツケルメツキ層を形成する
際に用いられるメツキ浴中には、上記の成分の他
に、得られる表面被膜を不都合ならしめない限
り、他の可溶性塩を加えることも許される。例え
ば、ニツケルメツキ浴によく用いられるホウ酸等
の緩衝剤の使用は、本発明で用いるニツケルメツ
キ被膜の特性を一層良好ならしめる場合もあり、
好適成分として本発明で用いるメツキ浴に加えら
れる場合もある。 また、硫黄を含むニツケルメツキ層を形成する
ためのメツキの操作条件は、特に厳密な制限を受
けないが、好ましく室温より70℃程度の温度範
囲、0.1〜10A/dm2程度の電流密度範囲で、撹
拌下のもとでメツキを行うことが望ましい。 更に、硫黄を含むニツケルメツキ層を形成した
後に、必要に応じて適度な熱処理を行うことによ
り最終的に得られる陰極が一段と優れた耐久性を
示す場合もある。 適度な熱処理とは、非酸化性雰囲気、例えば、
アルゴン、窒素、ヘリウム等の不活性ガス雰囲気
あるいは水素等の還元ガス雰囲気、更には真空中
等の条件のもとで50℃〜500℃の温度範囲で行う
ことを意味する。この熱処理の時間は、特に厳密
な制限はないが、通常30分以上、24時間以内に行
うことが望ましい。 以上の様に、金属からなる基材上に、硫黄を含
むニツケルメツキの下地メツキとして、アンモニ
ウムイオンを含むニツケルメツキ浴(ただし、炭
素質からなる粒子を含まない)を用いて緻密なニ
ツケルメツキを行い、さらにその上に低水素過電
圧を示す硫黄を含むニツケルメツキを施すことに
より、優れた耐食性、耐久性を有し、かつ長期間
にわたり、低い水素過電圧を維持し、エネルギー
効率の極めて高い陰極を与えることができる。 以下、実施例を述べるが、本発明はこれに限定
されるものではない。 実施例1、比較例1 基材として軟鋼製の5cm×10cm×0.3cmの大き
さの半インチサイズのエキスパンドメタル(短径
7.0mm、長径12.7mm)を用い、以下のような試料
を作成した。 即ち、実施例1においては、基材を脱脂、酸洗
した後に、表1に示したニツケルメツキ浴を用い
て表2に示した条件で下地ニツケルメツキを行つ
た。 表 1 ニツケルメツキ溶組成 塩化ニツケル 0.5M/ 塩化アンモニウム 1.0M/ 表 2 ニツケルメツキ条件 浴 温 60℃ 電流密度 1A/dm2(基材外周面積) メツキ時間 1時間 その後、表3に示したニツケルメツキ浴を用い
て表4に示した条件で、低水素過電圧を示すニツ
ケルメツキを行つた。 表 3 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ チオ尿素 0.3M/ 塩化アンモニウム 1.0M/ 表 4 ニツケルメツキ条件 温 度 60℃ 電流密度 1A/dm2 メツキ時間 2時間 一方、比較例1においては、基材を脱脂、酸洗
した後に下地メツキを行わずに直接表3に示した
ニツケルメツキ浴を用いて表4に示した条件で低
水素過電圧を示すニツケルメツキを行つた。 これら二つの試料を30wt%NaON溶液中で白
金の陽極として、温度80℃、試料の外周面積に対
し、30A/dm2の電解条件で100日間陰極として
使用し、陰極電位の変化を測定した。 陰極電位の測定は、酸化水銀電極に照合してル
ギン毛管法で測定した。結果を第1図に示す。 第1図より明らかなように、実施例1は極めて
低い水素過電圧を長期間維持している。一方、比
較例1においては電極電位が卑方向に変化し、電
極性能が劣化していることがわかる。 100日間経過後、この比較例1の電極はかなり
の部分に剥離が生じていたが、本発明の実施例1
の電極は剥離の問題もなく、優れた密着性を示し
た。 実施例2、比較例2 3 実施例2として、実施例1で用いた基材を脱
脂、酸洗等の前処理の後に、表5に示すニツケル
メツキ浴を用いて、実施例1と同様表2に示した
条件で下地ニツケルメツキを行つた。 表 5 ニツケルメツキ浴組成 硫酸ニツケル 0.91M/ 塩化ニツケル 0.19M/ ホウ酸 0.49M/ 塩化アンモニウム 1.0M/ その後、表6に示したニツケルメツキ浴を用い
て、実施例1と同様表4に示した条件で、低水素
過電圧を示すニツケルメツキを行つた。 表 6 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ チオシアン酸ナトリウム 0.2M/ 塩化アンモニウム 0.5M/ ホウ酸 0.3M/ 一方、比較例2においては、基材を脱脂、酸洗
した後に下地メツキを行わず直接、表6に示した
ニツケルメツキ浴を用いて同様の条件で低水素過
電圧を示すニツケルメツキを行つた。 又、比較例3においては、基材を脱脂、酸洗し
た後に、下地メツキ浴として表5のニツケルメツ
キ浴組成から、塩化アンモニウムのみを除き他の
成分は全く同様のニツケルメツキ溶を用い、同様
の条件で下地ニツケルメツキを行つた。(なお、
表5のニツケルメツキ浴組成から、塩化アンモニ
ウムを取り除いたメツキ浴は、一般的なニツケル
メツキ浴で、Watt浴と呼ばれる。) その後、実施例2と同様に、低水素過電圧を示
すニツケルメツキを行つた。 この三つの試料、即ち、実施例2と比較例2、
3を陰極とし、30wt%NaOH溶液中で白金を陽
極とし温度80℃、試料の外周面積に対し50A/d
m2の電流密度で200日間陰極として使用した。 第2図に各試料の陰極電位(Vvs.Hg/HgO)
の値を示す。 以上の様に本発明の実施例2は、極めて低い水
素過電圧を200日間維持しており、メツキ層の剥
離の問題もなく、良好な密着性を示し、優れた耐
食性、耐久性を有すことがわかる。 一方、比較例2に於ては、電極電位が卑方向に
変化し、電極性能が劣化していることがわかる。 200日間経過後この比較例2の電極はかなりの
部分に剥離が生じており、表面に鉄の堆積も見ら
れた。 又、比較例3に於いても、下地メツキと低水素
過電圧を示すメツキ被膜との密着性が不充分であ
り、低水素過電圧を示すメツキ被膜が、かなり剥
離しており、電極性能もかなり劣化していること
がわかる。 実施例 3 実施例1で用いた基材を脱脂、酸洗等の前処理
の後に、表7に示した下地ニツケルメツキの浴組
成と表8に示した条件で、下地ニツケルメツキを
行つた。その後、表9に示したニツケルメツキ浴
を用いて、表10に示した条件で、低水素過電圧を
示すニツケルメツキを行つた。 表 7 ニツケルメツキ浴組成 塩化ニツケル 0.3M/ 塩化アンモニウム 0.3M/ 表 8 ニツケルメツキ条件 浴 温 40℃ 電流密度 0.5A/dm2 メツキ時間 1時間 表 9 ニツケルメツキ浴組成 硫酸ニツケル 0.9M/ 塩化ニツケル 0.1M/ チオ尿素 0.2M/ ホウ酸 0.3M/ 表 10 ニツケルメツキ条件 浴 温 40℃ 電流密度 0.5A/dm2 メツキ時間 4時間 この試料を実施例2と同一条件で100日間陰極
として使用した。その結果、陰極電位は−1.10〜
−1.12Vvs.Hg/HgOでほぼ一定の値を示し、剥
離の問題もなく、密着性も良好であつた。 以上のように、本発明の実施例3は、極めて低
い水素過電圧を長期間維持し、優れた耐久性、耐
食性を示すことがわかる。 実施例 4 基材として、ニツケル製で14cm×14cm×0.3cm
の大きさの半インチサイズのエキスパンドメタル
を用い以下のような試料を作成した。 まず、基材を脱脂、酸洗した後に、表11に示し
たニツケルメツキ浴を用いて、表12に示した条件
で下地ニツケルメツキを行つた。 表 11 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ 塩化アンモニウム 0.3M/ ホウ酸 0.3M/ 表 12 ニツケルメツキ条件 浴 温 50℃ 電流密度 2A/dm2 メツキ時間 15分 その後、表13に示したニツケルメツキ浴を用い
て、表14に示した条件で低水素過電圧を示すニツ
ケルメツキを行つた。 表 13 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ チオシアン酸ナトリウム 0.3M/ 塩化アンモニウム 1.0M/ ホウ酸 0.3M/ 表 14 ニツケルメツキ条件 浴 温 50℃ 電流密度 0.5A/dm2 メツキ時間 5時間 この試料を陰極として陽イオン交換膜を使用
し、陽極としてTi上にRuO2被膜を有するDSAタ
イプのエキスパンドメタルを用いて、下記の条件
で食塩水を電解した。なお、比較のため、陰極と
して軟鋼製エキスパンドメタルを用いて同一の条
件で電解を行つた。 電解条件;温度90℃ 電流密度 30A/dm2 陰極室NaOH濃度 32〜33wt% 表15に基材として用いたニツケル陰極の場合
と、本発明の陰極について通電初期の陰極電位値
と1年間経過後の陰極電位値、更には浴電圧の値
を同表に示す。
The present invention relates to a method for producing a cathode having a low hydrogen overvoltage and sufficient durability and corrosion resistance. Conventionally, iron cathodes have been mainly used in water electrolysis or electrolysis of aqueous alkali chloride solutions in which hydrogen generation reaction is the main reaction at the cathode. Iron is inexpensive as a cathode material and exhibits a fairly low hydrogen overvoltage, but in recent years there has been a need to further improve this. In particular, with the development of cation exchange membrane salt electrolysis technology, a further reduction in hydrogen overvoltage is desired from the perspective of energy conservation, and due to the electrolytic conditions of high temperature and high alkali concentration, the corrosion resistance of iron is becoming a problem. . For this reason, there is a desire for a new cathode that exhibits lower hydrogen overvoltage than iron cathodes, is economical, and has sufficient durability and corrosion resistance. Various studies have been conducted in various places, and several methods have been proposed. has been done. Among them, nickel metals that provide a low hydrogen overvoltage that have been proposed in the course of the development of conventional water electrolysis technology, such as nickel metals containing sulfur, (for example, nickel metals containing sulfur, It has been known for a long time, and is attracting attention because it is cheaper than electrodes coated with platinum group metals, etc. The present inventors conducted a detailed study on the plating films obtained by the above method, and found that there are several drawbacks of these plating films, namely, poor adhesion to the base material and poor surface coating. He discovered a method for manufacturing an electrode that overcomes the disadvantages of being brittle and weak, and furthermore, that the reduction in hydrogen overvoltage was still insufficient, and filed a patent application (Japanese Patent Application No. 55-092295, same).
No. 56-000305) As a result of further studies on the electrode made by the above method, the present inventors have discovered a cathode that exhibits even better durability and corrosion resistance, and has a low hydrogen overvoltage. Generally, nickel plating containing sulfur has voids inside, and its adhesion to the base material cannot be said to be sufficient. This problem is particularly serious when iron is used as the base material. In other words, due to the voids that exist in the nickel plating containing sulfur, a part of the base material is in contact with a high-temperature, highly concentrated alkaline solution, which prevents the iron in the base material from dissolving during electrolysis or cutting. It happens. moreover,
These nickel-based plating coatings exhibiting low hydrogen overpotentials often have a more noble electrode potential than the base material in alkaline solutions, and therefore,
It has a tendency to promote dissolution of the base material. in this way,
When the interface between the base material and the coating begins to erode, the gas generated by electrolysis may cause the coating to swell or even peel off.Also, iron ions eluted from the base material may adhere to the electrode, etc. As a result, electrode performance deteriorates. Furthermore, when this electrode is used as a cathode for cation-exchange membrane salt electrolysis, iron ions eluted from the base material may deteriorate the membrane performance of the ion-exchange membrane, and furthermore, there is a risk that the product quality of the resulting caustic soda may deteriorate. There is. In order to improve the adhesion between the base material and the sulfur-containing nickel plating (for example, the Rodan nickel plating layer), for example, Japanese Patent Publication No. 7444/1983 proposes applying copper plating as the base plating for the Rodan nickel layer. ing. However, copper has some problems in corrosion resistance in alkali, and has poor adhesion to nickel plating containing sulfur.
After copper plating as proposed in Publication No. 7444,
The method of performing heat treatment in an inert atmosphere and then performing Rodan nickel plating is not necessarily economical. In order to overcome the above-mentioned drawbacks, the present inventors conducted a detailed study on the base plating of nickel plating containing sulfur, and as a result, the present inventors developed a nickel plating bath containing ammonium ions (but not containing carbonaceous particles). The nickel-plated layer using the sulfur-containing nickel-plated layer exhibits excellent adhesion to the sulfur-containing nickel-metallic layer, and also exhibits sufficient corrosion resistance in high-temperature, high-concentration alkaline aqueous solutions, thereby successfully obtaining a cathode that overcomes the above drawbacks. . Therefore, the present invention performs nickel plating on the surface of a metal substrate using a nickel plating bath containing ammonium ions (but not containing carbonaceous particles) as a base plating, and then applying a low hydrogen overvoltage thereon. show. By applying nickel plating containing sulfur, the cathode is characterized by having excellent corrosion resistance and durability, and which maintains a low hydrogen overvoltage for a long period of time. The base material of the present invention is made of iron, nickel, copper, or an alloy thereof, and as described above, iron or
When an alloy containing iron as a main component is used, the effects of the present invention are remarkable. This means that the present invention is highly economical. Furthermore, regarding the base shape, flat plate, mesh shape, porous shape, etc.
Although any shape may be used, when used as a hydrogen generating electrode at high current density, it is particularly preferable to use a base shape such as expanded metal, punched metal, or wire mesh shape. In order to provide the electrode of the present invention, it is necessary to perform base plating on the above substrate using a nickel plating bath containing ammonium ions (but not containing carbonaceous particles). Nickel plating baths commonly used as base plating include Watt baths (nickel sulfate, nickel chloride,
Coatings that are nickel-plated using a nickel-plating bath that does not contain ammonium ions, such as a bath containing boric acid, do not exhibit sufficient adhesion to nickel-plated coatings that contain sulfur. However, if a small amount of ammonium ions are added to the plating bath, the resulting nickel plating film will exhibit sufficient adhesion to the sulfur-containing nickel plating film. The nickel plating bath that provides the base plating layer of the present invention contains nickel salt and ammonium ions as essential components. Ammonium ions are added to the plating bath by soluble ammonium salts such as chloride, sulfate, or ammonium hydroxide or other ammonium salts. The adhesion between the base plating film obtained by adding ammonium ions and the sulfur-containing nickel plating film is significantly improved, and the base plating film becomes a dense and strong nickel plating film, resulting in good durability and corrosion resistance. Can provide a cathode. The ammonium ion concentration added to the plating bath is 0.05 molar or more, and the upper limit is not particularly limited, and a saturation concentration is allowed. If the ammonium ion concentration is below the above concentration, the adhesion between the resulting nickel plating film and the sulfur-containing nickel plating film will be insufficient. The nickel salt used in the nickel plating bath applied to the base plating layer may be any soluble salt, such as nickel chloride, nickel sulfate,
Nickel acetate, nickel sulfamate, etc. are used, and the concentration is not particularly limited, but usually
It is desirable to use the concentration in the range of 0.05 molar to 2.0 molar. In addition to the above-mentioned components, other soluble salts may be added to the plating bath used for forming the base plating layer, as long as they do not cause any inconvenience to the resulting surface coating. For example, the use of a buffer such as boric acid, which is often used in nickel plating baths, may improve the properties of the nickel plating film used in the present invention, and may be added as a suitable component to the nickel plating bath used in the present invention. . Furthermore, the operating conditions for plating to form the base plating layer are not subject to any particular strict limitations, but are preferably in the temperature range of about 70°C from room temperature, and in the range of 0.1 to 70°C.
It is desirable to perform plating under stirring at a current density range of about 10 A/dm 2 . Furthermore, in order to further improve the corrosion resistance and durability of the cathode of the present invention, for example, copper plating or electroless nickel plating is performed on the iron, base material, etc. in advance, and then the above-mentioned base plating is applied thereon. This can also be an effective means. In particular, when applying nickel plating to the entire surface of the cathode chamber electrode after attaching an electrode with a complicated shape to the cathode chamber, the coverage of the base plating may be insufficient, so use electroless nickel plating with good coverage in advance. application yields favorable results. On top of this electroless nickel plating, a nickel plating bath containing ammonium ions used in the present invention (but not containing carbonaceous particles)
However, providing a coating with good adhesion is one of the additional features of the present invention. As is well known, it is generally difficult to apply nickel plating with good adhesion on top of electroless nickel plating.
Nickel plating is performed using a hydrochloric acid acidic nickel plating bath called strike nickel (a bath consisting of nickel chloride and hydrochloric acid), and then nickel plating, such as the above-mentioned Watt bath, is performed. but,
On such a strike nickel plating, the sulfur-containing nickel plating of the present invention, which exhibits a low hydrogen overvoltage, does not have sufficient adhesion. On the other hand, the coating obtained from the nickel plating bath containing ammonium ions (but not containing carbonaceous particles) used in the present invention has good adhesion to the electroless nickel plating surface, and is also compatible with the nickel plating bath containing sulfur. It shows excellent adhesion. In order to provide the cathode for electrolysis of the present invention, it is necessary to perform nickel plating containing sulfur on the base nickel plating layer to form a coating layer exhibiting a low hydrogen overvoltage. The nickel plating containing sulfur is provided by a nickel plating bath containing a bathable nickel salt and an appropriate amount of a bathable sulfur-containing compound, and more preferably, it is desirable to add an appropriate amount of ammonium ions to the nickel plating bath. Nickel salt can be any bathable salt, usually
It is desirable to use the concentration in the range of 0.1 molar to 2.0 molar. The bathable sulfur-containing compound used in the plating bath means a thiocyanate, a thiourea, or an oxo acid salt having a sulfur oxidation number of 5 or less, and has the effect of providing a plating film exhibiting a low hydrogen overvoltage. The oxoacid salt having a sulfur oxidation number of 5 or less means, for example, salts of sulfite, bisulfite, thiosulfite, dithionite, and the like. The concentration of thiocyanates, thioureas, and oxoacid salts with a sulfur oxidation number of 5 or less added to the bath is 0.01 molar concentration or more than 1.0 in terms of the amount of sulfur in the compound.
It is desirable to use it in a molar concentration or less, preferably in a range of 0.05 molar or more and 1 molar or less. If the concentration of the sulfur compound is less than 0.01 molar concentration, the reduction in hydrogen overvoltage on the resulting nickel plating surface will be insufficient, and if it exceeds 1.0 molar concentration, the adhesion between the base plating and the plating film will be poor. Furthermore, by adding an appropriate amount of ammonium ions to the nickel plating bath that provides the nickel plating containing sulfur, the adhesion of the resulting plating film is improved, the covering power of the plating is also increased, and a film surface with even stronger properties can be obtained. Can be done. The concentration of ammonium ions added to the plating bath should be at least 0.5 times the molar concentration relative to the amount of sulfur in sulfur compounds such as thiocyanates, thioureas, and oxoacids with a sulfur oxidation number of 5 or less. Preferably, the upper limit is not particularly limited and is allowed up to saturation concentration. The pH of the plating bath is preferably 6 or less; if the pH exceeds 6, the resulting plating surface tends to become brittle and prone to electrodeposition, and tends to peel off easily. In addition to the above-mentioned components, other soluble salts may be added to the plating bath used for forming the sulfur-containing nickel plating layer, as long as they do not make the resulting surface coating undesirable. For example, the use of a buffer such as boric acid, which is often used in nickel plating baths, may improve the properties of the nickel plating film used in the present invention.
It may be added as a suitable component to the plating bath used in the present invention. In addition, the plating operating conditions for forming the sulfur-containing nickel plating layer are not subject to any particular strict limitations, but preferably include a temperature range of about 70°C from room temperature, and a current density range of about 0.1 to 10 A/dm2. It is desirable to perform plating under stirring. Furthermore, after forming the sulfur-containing nickel plating layer, by performing appropriate heat treatment as necessary, the final cathode may exhibit even better durability. Appropriate heat treatment means a non-oxidizing atmosphere, e.g.
This means carrying out in an inert gas atmosphere such as argon, nitrogen, or helium, or a reducing gas atmosphere such as hydrogen, or in a temperature range of 50°C to 500°C under conditions such as vacuum. There is no particular strict limit to the time for this heat treatment, but it is usually desirable to perform it for 30 minutes or more and within 24 hours. As described above, dense nickel plating is performed on a metal substrate using a nickel plating bath containing ammonium ions (but not containing carbonaceous particles) as a base plating for nickel plating containing sulfur, and then By applying sulfur-containing nickel plating that exhibits low hydrogen overvoltage on top of this, it is possible to provide a cathode that has excellent corrosion resistance and durability, maintains low hydrogen overvoltage over a long period of time, and has extremely high energy efficiency. . Examples will be described below, but the present invention is not limited thereto. Example 1, Comparative Example 1 Half-inch expanded metal (breadth diameter) made of mild steel and measuring 5 cm x 10 cm x 0.3 cm as a base material
7.0 mm, major axis 12.7 mm), the following samples were created. That is, in Example 1, after degreasing and pickling the base material, base nickel plating was performed using the nickel plating bath shown in Table 1 under the conditions shown in Table 2. Table 1 Nickel plating solution composition Nickel chloride 0.5M / Ammonium chloride 1.0M / Table 2 Nickel plating conditions Bath temperature 60℃ Current density 1A/dm 2 (Substrate peripheral area) Plating time 1 hour Then, using the nickel plating bath shown in Table 3 Nickel plating showing low hydrogen overvoltage was performed under the conditions shown in Table 4. Table 3 Nickel plating bath composition Nickel chloride 0.5M / Thiourea 0.3M / Ammonium chloride 1.0M / Table 4 Nickel plating conditions Temperature 60℃ Current density 1A/dm 2Plating time 2 hours On the other hand, in Comparative Example 1, the base material was degreased. After pickling, nickel plating with low hydrogen overvoltage was performed directly using the nickel plating bath shown in Table 3 and under the conditions shown in Table 4 without performing base plating. These two samples were used as platinum anodes in a 30 wt% NaON solution for 100 days under electrolytic conditions of 30 A/dm 2 at a temperature of 80° C. and the change in cathode potential was measured. The cathode potential was measured by the Luggin capillary method using a mercury oxide electrode. The results are shown in Figure 1. As is clear from FIG. 1, Example 1 maintains an extremely low hydrogen overvoltage for a long period of time. On the other hand, it can be seen that in Comparative Example 1, the electrode potential changed in the base direction, and the electrode performance deteriorated. After 100 days, the electrode of Comparative Example 1 had peeled off in a considerable part, but the electrode of Example 1 of the present invention
The electrode showed excellent adhesion without any problem of peeling. Example 2, Comparative Example 2 3 As Example 2, the base material used in Example 1 was subjected to pretreatment such as degreasing and pickling, and then the nickel plating bath shown in Table 5 was used to prepare the base material shown in Table 2 as in Example 1. The base nickel plating was performed under the conditions shown in . Table 5 Nickel plating bath composition Nickel sulfate 0.91M / Nickel chloride 0.19M / Boric acid 0.49M / Ammonium chloride 1.0M / Thereafter, using the nickel plating bath shown in Table 6, under the conditions shown in Table 4 as in Example 1. , a nickel-metal test showing a low hydrogen overpotential was performed. Table 6 Nickel plating bath composition Nickel chloride 0.5M / Sodium thiocyanate 0.2M / Ammonium chloride 0.5M / Boric acid 0.3M / On the other hand, in Comparative Example 2, after the base material was degreased and pickled, it was directly coated without undercoat plating. Using the nickel plating bath shown in Table 6, nickel plating showing low hydrogen overvoltage was performed under similar conditions. In Comparative Example 3, after the base material was degreased and pickled, a nickel plating solution with the same nickel plating bath composition as shown in Table 5 except for ammonium chloride was used as the base plating bath, and the other components were the same under the same conditions. I did the base nitskelmettsuki. (In addition,
The plating bath in which ammonium chloride is removed from the nickel plating bath composition in Table 5 is a general nickel plating bath and is called a Watt bath. ) Thereafter, in the same manner as in Example 2, nickel plating showing low hydrogen overvoltage was performed. These three samples, namely Example 2 and Comparative Example 2,
3 as a cathode and platinum as an anode in a 30wt% NaOH solution at a temperature of 80℃ and 50A/d for the outer circumferential area of the sample.
It was used as a cathode for 200 days at a current density of m 2 . Figure 2 shows the cathode potential (V vs. Hg/HgO) of each sample.
indicates the value of As described above, Example 2 of the present invention maintains an extremely low hydrogen overvoltage for 200 days, exhibits good adhesion without the problem of peeling of the plating layer, and has excellent corrosion resistance and durability. I understand. On the other hand, in Comparative Example 2, it can be seen that the electrode potential changes in the base direction and the electrode performance deteriorates. After 200 days had passed, the electrode of Comparative Example 2 had peeled off in a considerable portion, and iron deposits were also observed on the surface. Also, in Comparative Example 3, the adhesion between the base plating and the plating film exhibiting low hydrogen overvoltage was insufficient, and the plating film exhibiting low hydrogen overvoltage was considerably peeled off, resulting in a considerable deterioration in electrode performance. I know what you're doing. Example 3 After pretreatment such as degreasing and pickling, the base material used in Example 1 was subjected to base nickel plating using the base nickel plating bath composition shown in Table 7 and the conditions shown in Table 8. Thereafter, using the nickel plating bath shown in Table 9, nickel plating was performed under the conditions shown in Table 10, showing a low hydrogen overvoltage. Table 7 Nickel plating bath composition Nickel chloride 0.3M / Ammonium chloride 0.3M / Table 8 Nickel plating conditions Bath temperature 40℃ Current density 0.5A/dm 2 Plating time 1 hour Table 9 Nickel plating bath composition Nickel sulfate 0.9M / Nickel chloride 0.1M / Thio Urea 0.2M/Boric acid 0.3M/Table 10 Nickel plating conditions Bath temperature 40°C Current density 0.5A/dm 2 Plating time 4 hours This sample was used as a cathode for 100 days under the same conditions as in Example 2. As a result, the cathode potential is −1.10~
-1.12V vs. Hg/HgO showed a nearly constant value, there was no peeling problem, and the adhesion was good. As described above, it can be seen that Example 3 of the present invention maintains an extremely low hydrogen overvoltage for a long period of time and exhibits excellent durability and corrosion resistance. Example 4 The base material was made of nickel and was 14 cm x 14 cm x 0.3 cm.
The following samples were made using half-inch expanded metal. First, after degreasing and pickling the base material, base nickel plating was performed using the nickel plating bath shown in Table 11 under the conditions shown in Table 12. Table 11 Nickel plating bath composition Nickel chloride 0.5M / Ammonium chloride 0.3M / Boric acid 0.3M / Table 12 Nickel plating conditions Bath temperature 50℃ Current density 2A/dm 2 plating time 15 minutes Then, using the nickel plating bath shown in Table 13, , Nickel plating showing low hydrogen overvoltage was performed under the conditions shown in Table 14. Table 13 Nickel plating bath composition Nickel chloride 0.5M / Sodium thiocyanate 0.3M / Ammonium chloride 1.0M / Boric acid 0.3M / Table 14 Nickel plating conditions Bath temperature 50℃ Current density 0.5A/dm 2 Plating time 5 hours This sample was used as a cathode A saline solution was electrolyzed under the following conditions using a cation exchange membrane and a DSA type expanded metal having a RuO 2 film on Ti as an anode. For comparison, electrolysis was performed under the same conditions using expanded metal made of mild steel as a cathode. Electrolysis conditions: Temperature 90℃ Current density 30A/dm 2 cathode chamber NaOH concentration 32-33wt% Table 15 shows the cathode potential value at the initial stage of energization and after one year for the case of the nickel cathode used as the base material and the cathode of the present invention. The cathode potential value and the bath voltage value are shown in the same table.

【表】 以上のように、本発明の実施例4は優れた耐久
性、耐食性を示し、極めて低い水素過電圧を長期
間維持し、比較のニツケル製陰極に比べて250m
V〜300mV程低い水素過電圧、更には浴電圧を
示し、エネルギー効率の高い、優れた電解用陰極
であることがわかる。 実施例 5 電極基材として14cm×14cm×0.1mの大きさの
1/4インチサイズ(長径6mm、短径3mm)の軟鋼
製のエキスパンドメタルを用い、これを軟鋼製の
陰極室に取りつけた。次いで、脱脂、酸洗等の前
処理の後にカニゼン社ブルーシユーマー無電解ニ
ツケルメツキ液を用い、90℃で30分間無電解メツ
キを行つた。その後、実施例1で示した方法によ
り、陰極、陰極室全面に下地ニツケルメツキと低
水素過電圧を示す、ニツケルメツキを行つた。 この試料を陰極として実施例4と同様の条件
で、食塩水を電解した。 表16に鉄陰極の場合と、本発明の陰極について
通電初期の陰極電位値と1年間経過後の陰極電位
値、更には浴電圧の値を次表に示す。
[Table] As described above, Example 4 of the present invention exhibited excellent durability and corrosion resistance, maintained an extremely low hydrogen overvoltage for a long period of time, and was able to maintain a 250 m
It shows a hydrogen overvoltage as low as 300 mV, and also a bath voltage, indicating that it is an excellent electrolytic cathode with high energy efficiency. Example 5 An expanded metal made of mild steel with a size of 14 cm x 14 cm x 0.1 m and 1/4 inch (length: 6 mm, breadth: 3 mm) was used as an electrode base material, and this was attached to a mild steel cathode chamber. Next, after pretreatment such as degreasing and pickling, electroless plating was performed at 90° C. for 30 minutes using Kanigen's Blue Schumer electroless nickel plating solution. Thereafter, by the method shown in Example 1, the entire surface of the cathode and cathode chamber was nickel plated to provide a base nickel plating and a low hydrogen overvoltage. Using this sample as a cathode, saline solution was electrolyzed under the same conditions as in Example 4. Table 16 shows the cathode potential value at the initial stage of energization, the cathode potential value after one year, and the bath voltage value for the cathode of the present invention in the case of an iron cathode.

【表】 以上のように、本発明の実施例5は優れた耐久
性、耐食性を示し、極めて低い水素過電圧を長期
間維持し、従来の鉄製陰極に比べて250mV程低
い水素過電圧、更には浴電圧を示し、エネルギー
効率の高い、優れた電解用陰極であることがわか
る。
[Table] As described above, Example 5 of the present invention exhibits excellent durability and corrosion resistance, maintains an extremely low hydrogen overvoltage for a long period of time, and has a hydrogen overvoltage approximately 250 mV lower than that of conventional iron cathodes. It can be seen that it is an excellent electrolytic cathode with high energy efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の実施例及び比較
例の陰極電位の経時変化を示すものである。
FIGS. 1 and 2 show changes in cathode potential over time in Examples of the present invention and Comparative Examples.

Claims (1)

【特許請求の範囲】 1 金属基体表面に、アンモニウムイオンを含
み、炭素質からなる粒子を含まないニツケルメツ
キ浴を用いて下地ニツケルメツキを行ない、さら
にその上に、含硫黄化合物を溶解して含むニツケ
ルメツキ浴を用いてニツケルメツキを行なうこと
を特徴とする陰極の製造法。 2 下地ニツケルメツキ用のニツケルメツキ浴中
のアンモニウムイオン濃度が、0.05モル濃度以上
であるニツケルメツキ浴を用いる特許請求の範囲
第1項記載の陰極の製造法。 3 含硫黄化合物がチオ尿素、チオシアン酸塩、
硫黄の酸化数が5以下のオキソ酸塩の少なくとも
一種以上である特許請求の範囲第1項または2項
記載の陰極の製造法。 4 金属基体があらかじめ銅メツキ又は無電解ニ
ツケルメツキを施したものである特許請求の範囲
第1項から第3項のいずれかの項に記載の陰極の
製造法。
[Scope of Claims] 1. Underlayer nickel plating is performed on the surface of a metal substrate using a nickel plating bath that contains ammonium ions and does not contain carbonaceous particles, and further, a nickel plating bath that contains a dissolved sulfur-containing compound thereon. A method for producing a cathode, characterized by performing nickel plating using. 2. The method for producing a cathode according to claim 1, which uses a nickel plating bath for the base nickel plating, in which the ammonium ion concentration is 0.05 molar or more. 3 The sulfur-containing compound is thiourea, thiocyanate,
3. The method for producing a cathode according to claim 1, wherein the cathode is at least one kind of oxoacid salt having a sulfur oxidation number of 5 or less. 4. The method for producing a cathode according to any one of claims 1 to 3, wherein the metal substrate is previously plated with copper or electroless nickel.
JP57027510A 1982-02-24 1982-02-24 Production of electrode Granted JPS58147577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027510A JPS58147577A (en) 1982-02-24 1982-02-24 Production of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027510A JPS58147577A (en) 1982-02-24 1982-02-24 Production of electrode

Publications (2)

Publication Number Publication Date
JPS58147577A JPS58147577A (en) 1983-09-02
JPH0260759B2 true JPH0260759B2 (en) 1990-12-18

Family

ID=12223125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027510A Granted JPS58147577A (en) 1982-02-24 1982-02-24 Production of electrode

Country Status (1)

Country Link
JP (1) JPS58147577A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242715A (en) * 2006-03-06 2007-09-20 Tdk Corp Method of manufacturing ceramic electronic component
JP4904853B2 (en) * 2006-03-06 2012-03-28 Tdk株式会社 Manufacturing method of ceramic electronic component
JP5108342B2 (en) * 2007-03-15 2012-12-26 Fdkエナジー株式会社 Metal parts for batteries and batteries
CN109023440A (en) * 2018-09-04 2018-12-18 中国科学院兰州化学物理研究所 Utilize the carbon-free method taken sulphur agent and prepare sulfur-bearing nickel material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120683A (en) * 1977-03-30 1978-10-21 Norsk Hydro As Manufacture of active anode
JPS5867883A (en) * 1981-10-15 1983-04-22 Toagosei Chem Ind Co Ltd Manufacture of low hydrogen overvoltage cathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120683A (en) * 1977-03-30 1978-10-21 Norsk Hydro As Manufacture of active anode
JPS5867883A (en) * 1981-10-15 1983-04-22 Toagosei Chem Ind Co Ltd Manufacture of low hydrogen overvoltage cathode

Also Published As

Publication number Publication date
JPS58147577A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US4105531A (en) Plated metallic cathode
US4801368A (en) Ni/Sn cathode having reduced hydrogen overvoltage
JP6877650B2 (en) Method of manufacturing electrode catalyst
US4162204A (en) Plated metallic cathode
JPS6344834B2 (en)
US4414064A (en) Method for preparing low voltage hydrogen cathodes
US4422920A (en) Hydrogen cathode
JPH0260759B2 (en)
US3639219A (en) Iridium plating
US4190514A (en) Electrolytic cell
JPS6045710B2 (en) electrolytic cell
JP2522101B2 (en) Nickel-molybdenum alloy plating bath and plating method
US4421626A (en) Binding layer for low overvoltage hydrogen cathodes
JPH0341559B2 (en)
US4177129A (en) Plated metallic cathode
JPS6211075B2 (en)
JPS5830956B2 (en) Cathode manufacturing method
JPS5929678B2 (en) Cathode for electrolysis
JPS5822550B2 (en) Manufacturing method of cathode for electrolysis
JP2624079B2 (en) Method and apparatus for zinc-based electroplating on aluminum strip
US3373092A (en) Electrodeposition of platinum group metals on titanium
JPS63162892A (en) Production of cathode having low hydrogen overvoltage
JPS6213588A (en) Production of highly durable activated electrode
JPS621895A (en) Production of electrode
JPS6261675B2 (en)