JPS586983A - Electrolytic cell - Google Patents
Electrolytic cellInfo
- Publication number
- JPS586983A JPS586983A JP56105009A JP10500981A JPS586983A JP S586983 A JPS586983 A JP S586983A JP 56105009 A JP56105009 A JP 56105009A JP 10500981 A JP10500981 A JP 10500981A JP S586983 A JPS586983 A JP S586983A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- cathode
- chamber
- nickel
- nickel plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 92
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052742 iron Inorganic materials 0.000 claims abstract description 46
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 19
- 239000003513 alkali Substances 0.000 claims abstract description 17
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000003518 caustics Substances 0.000 claims abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 abstract description 24
- 238000010828 elution Methods 0.000 abstract description 6
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 abstract description 3
- 239000002585 base Substances 0.000 abstract description 3
- 238000007772 electroless plating Methods 0.000 abstract description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 150000002815 nickel Chemical class 0.000 description 7
- 238000005341 cation exchange Methods 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000003014 ion exchange membrane Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- -1 ammonium ions Chemical class 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NJYFRQQXXXRJHK-UHFFFAOYSA-N (4-aminophenyl) thiocyanate Chemical compound NC1=CC=C(SC#N)C=C1 NJYFRQQXXXRJHK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- DAPUDVOJPZKTSI-UHFFFAOYSA-L ammonium nickel sulfate Chemical compound [NH4+].[NH4+].[Ni+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DAPUDVOJPZKTSI-UHFFFAOYSA-L 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
電解におーて鉄の溶出が全くなく、長期IMJ安定して
、かつ少なi消費電力にて苛性アルカリを製造するに適
し良新規な電解槽に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel electrolytic cell suitable for producing caustic alkali with no iron elution during electrolysis, stable IMJ over a long period of time, and low power consumption.
陽イオン交換膜を隔膜として食塩水溶液の電解を行なり
、塩素および苛性ソーダを製造すゐ方法は公知である.
ζO陽イオ/交換膜を用いる電解方法は、陰極で生成す
る苛性ソーダ中に混入する食塩の量が極めて少なく、又
、水銀法やアスベスト法などに比較して公害問題もなく
、近年罠なって特に注目されてきた。A method for producing chlorine and caustic soda by electrolyzing a saline solution using a cation exchange membrane as a diaphragm is known.
The electrolysis method using a ζO cation/exchange membrane has an extremely small amount of salt mixed into the caustic soda produced at the cathode, and there is no pollution problem compared to the mercury method or asbestos method, and it has become particularly popular in recent years. It has been attracting attention.
陰極室で得られる苛性ソーダの濃度及び電流効率を高く
するべく、陽イオン交換膜の開発、改良がなされ、最近
では2 0 wt%の苛性ソーダが90一以上の高ht
a効率で得ることができるパー70口カーボン重合体を
基材とした陽イオン交換膜が開発され、一部では商業化
なされようとしている。一方、近年エネルギー節約の重
要性が世界的KWl*されつりあシ、この見地からこの
分野におiては電解電力を極力少なくすること、即ち、
電槽電圧を極力低下させることが強く望まれてiる。In order to increase the concentration and current efficiency of caustic soda obtained in the cathode chamber, cation exchange membranes have been developed and improved.
Cation exchange membranes based on par-70 carbon polymers that can be obtained with a high efficiency have been developed, and some are about to be commercialized. On the other hand, in recent years, the importance of energy conservation has become a global concern, and from this perspective, it is important to reduce electrolytic power as much as possible in this field.
It is strongly desired to reduce the battery voltage as much as possible.
これまで電槽電圧を低下させる目的で、発生するガスを
電極背後に抜は易くするために、エキスバンドメタル、
パンチメタル、金網状などの多孔性電極の使用、これら
の電極自体の組成や極間距離をコントロールしたシ、あ
るいは陽イオン交換膜の組成、交換基の種類を特定化す
る等の手段が提案されている。この内特に隔膜を用iた
水素発生反応を陰極主反応とする塩化アルカリ水溶液0
電解においては、主に前述の形状の鉄陰極がコスト的に
安価であり、かつ、かなり低い水素過電圧を示すという
理由で使用されている。しかし前述したよう罠特に陽イ
オン交換膜性食塩電解技術の発展と共K、省エネルギー
の面から電力消費の一層の低下が望まれ、%開昭55−
92295号。Up until now, for the purpose of lowering the battery cell voltage, expanded metal,
Measures have been proposed, such as using porous electrodes such as punch metal or wire mesh, controlling the composition of these electrodes themselves and the distance between them, or specifying the composition of the cation exchange membrane and the type of exchange group. ing. Of these, an aqueous alkali chloride solution in which the main reaction is a hydrogen generation reaction using a diaphragm at the cathode.
In electrolysis, iron cathodes of the above-mentioned shape are used mainly because they are inexpensive and exhibit a fairly low hydrogen overvoltage. However, as mentioned above, with the development of cation-exchange membrane salt electrolysis technology, further reductions in power consumption are desired from the perspective of energy conservation.
No. 92295.
゛ 特開昭56−62148号等に見られるように鉄
よシも低い水素過電圧を有する陰極の開発が穐々なされ
ている。これらの低水素過電圧を有する金属被覆を施し
てなる陰極自体、それなシに当初の目的は達成し得るも
のの、新たに下記の重大な問題点を含んでいることが明
らかKなっ友。゛ As seen in Japanese Unexamined Patent Publication No. 56-62148, efforts are being made to develop cathodes that have a hydrogen overvoltage that is lower than that of iron. Although these metal-coated cathodes with a low hydrogen overvoltage can achieve their original purpose, it is clear that they include the following serious problems.
即ち、これまでの鉄陰極に代えて鉄または鉄系金属から
なる基材表面に低水素過電圧を有する金属被覆を施して
なる一極を用いた場合は、鉄の溶出量が短期間に′極端
に#′加する現象嬢認められるのである。この現象社史
に高温、高アルカリ濃度指向という厳しい電解条件下に
おいては、一層顕著になるという傾向を示す。In other words, when a single electrode made of iron or an iron-based metal with a metal coating having a low hydrogen overvoltage applied to the surface of the base material is used instead of the conventional iron cathode, the amount of iron leached becomes extremely large in a short period of time. A phenomenon that adds to #' is recognized. This phenomenon tends to become more pronounced under severe electrolytic conditions such as high temperature and high alkali concentration.
この鉄の溶出は、取得苛性アルカリの品質悪化。This leaching of iron deteriorates the quality of the obtained caustic.
陽イオン交換膜等の隔膜の性能劣化を来たすばかシでな
く、鉄または鉄系金属で構成されfCC他極室内面腐食
へと発展し、ひいては電解槽自体のライフの短縮という
深刻な問題を引き起こす。この鉄の溶出を防止する手段
として、対アルカリ耐食性を有するニッケル等の金属に
て陰極室を構成することか考えられる。しかしながら、
陰極室の構成金属の全てに対アルカリ土類金属を用いる
ことは高価となり、実用的ではないので、列置採用する
ことは不可能である。更に、この場合は陰極
1・1.1基材も対アルカリ耐食性の金属を用iなけ
ればならないのである。なぜならば、鉄または鉄系金属
の基体にニッケル等の低め水素過電圧を有する被覆をメ
ッキ法等により施こした一極を用い几場合は、該電極を
陰極室に溶接等の方法により取付ける際、−かに注意深
く行なっても被膜に損傷を来たして鉄の素地が露出し、
この露出部からの鉄の溶出が進行するからである。他の
手段としてプラスチック製の電″解槽を採用することが
考えられる。Not only does it cause performance deterioration of diaphragms such as cation exchange membranes, but it also causes corrosion of the inside of the fCC electrode, which is composed of iron or iron-based metals, and causes serious problems such as shortening the life of the electrolytic cell itself. . As a means to prevent this elution of iron, it is conceivable to construct the cathode chamber with a metal such as nickel that has corrosion resistance against alkali. however,
It is expensive and impractical to use anti-alkaline earth metals for all of the metals constituting the cathode chamber, so it is impossible to employ them in parallel. Furthermore, in this case the cathode
1.1.1 The base material must also be made of a metal that is resistant to alkali corrosion. This is because when using a single electrode made of iron or iron-based metal with a coating such as nickel that has a low hydrogen overvoltage applied by plating, etc., when attaching the electrode to the cathode chamber by a method such as welding, - Even if done carefully, the coating will be damaged and the iron substrate will be exposed.
This is because the elution of iron from this exposed portion progresses. Another possibility is to use a plastic electrolytic cell.
しかしこれは、加工及び強度の点で問題があると共に5
仮に採用できたとしても鉄の溶出防止の抜本的な手段と
はなシ得ないのである。However, this has problems in terms of processing and strength, and
Even if it could be adopted, it would not be a fundamental means of preventing iron elution.
本発明者らは、これらの問題点を一挙に解決すべく種々
検討の結果、これまで使用していた鉄または鉄系金属で
構成された鉄陰極、陰極室枠がそのまま使用可能で、い
かなる複雑な電解槽構造であっても鉄の溶出を防ぎ、し
かも長期間安定してかつ少ない消費電力にて苛性アルカ
リを製造しうる電解槽を完成したのである。As a result of various studies to solve these problems all at once, the inventors of the present invention have found that the iron cathode and cathode chamber frame made of iron or iron-based metals that have been used up to now can be used as they are, and that any complicated They have completed an electrolytic cell that can prevent iron from leaching out even with a simple electrolytic cell structure, and can produce caustic alkali stably over a long period of time with low power consumption.
即ち、本発明は、隔膜を用い、陽極室と陰極室とを区割
し、陽極室に塩化アルカリ水溶液を供給して、陽極室よ
り塩素、陽極室より水素並びに苛性アルカリを取得する
に用いる電解槽において、鉄または鉄系金属からなる基
体表面に低水素過電圧を有する金属被覆を施してなる電
極を、鉄または鉄系金属製の一極室枠よ)構成され九陰
極室に取付けた後、該電極、該陰極室粋の陰極室内面及
びその他の陰極室内部材表面の全てをニッケルメッキも
しく嬬無電解ニッケルメッキしてなる電解槽にある。That is, the present invention uses a diaphragm to separate an anode chamber and a cathode chamber, supplies an aqueous alkali chloride solution to the anode chamber, and performs electrolysis to obtain chlorine from the anode chamber and hydrogen and caustic alkali from the anode chamber. In the tank, an electrode made of a metal coating having a low hydrogen overvoltage on the surface of a substrate made of iron or iron-based metal is attached to a nine-cathode chamber made of iron or iron-based metal (one-electrode chamber frame), and then The electrode, the inner surface of the cathode chamber, and the surfaces of other cathode chamber members are all plated with nickel or electroless nickel in an electrolytic cell.
本発明におiて、鉄または鹸系金属基体表面に低水素過
電圧を有する被覆を施す方法としては公知の方法を適宜
採用すればよく、特に限定されるものではない。含硫黄
化合物、例えばロダンニッケルを溶解した活性ニッケル
メッキ浴を用いて活性ニッケルメッキを行なう方法、ニ
ッケル、コバルト、白金等の金属粉末を溶射する方法、
あるいはこれらの金属粉末を含有する液を塗布後、加熱
焼結して被覆する方法を挙げることができる。In the present invention, a known method may be suitably employed as a method for coating the surface of an iron or sapon-based metal substrate with a low hydrogen overvoltage, and is not particularly limited. A method of performing active nickel plating using an active nickel plating bath in which a sulfur-containing compound such as rhodan nickel is dissolved, a method of thermal spraying metal powder such as nickel, cobalt, platinum, etc.
Alternatively, a method may be used in which a liquid containing these metal powders is applied and then heated and sintered to cover the surface.
そして特に効果的な方法は、ニッケル塩α05〜(19
モル濃度のチオシアン基及びチオシアン基濃度の少なく
ともt1倍モル濃度のアンモニウムイオン含む活性ニッ
ケルメッキ浴を用iて活性ニッケルメッキを施す方法、
及びニッケル塩、化合物中の硫黄量でα01モル〜tO
モル濃to範囲のチオ尿素及び/又ね硫黄の酸化数が5
以下のオキソ酸塩の少なくとも一極、上記硫黄化合物中
の硫黄濃度に対し少なくとも(15倍モル濃度以上のア
ンモニウムイーオンを含む活性ニッケルメッキ浴を用i
、活性ニッケルメッキを行ない、次いで50〜500℃
で熱処理を施す方法である。A particularly effective method is nickel salt α05~(19
A method of performing active nickel plating using an active nickel plating bath containing a molar concentration of thiocyanate groups and ammonium ions at a molar concentration at least t1 times the thiocyanate group concentration;
and nickel salt, the amount of sulfur in the compound is α01 mol ~ tO
The oxidation number of thiourea and/or sulfur in the molar concentration range is 5.
At least one of the following oxoacid salts is used in an active nickel plating bath containing ammonium ions at a molar concentration of at least 15 times the sulfur concentration in the sulfur compound.
, activated nickel plating, then 50-500℃
This method involves heat treatment.
そして本発明において特異的なことは、このような方法
によって低水素過電圧を有する金−被覆を施し九陰極に
1更にニッケルメッキもしくは無電解ニッケルメッキを
施しても水素過電圧の上昇がほとんど起こらないとiう
こと、更に加えて被膜の耐久性が飛躍的に向上するとい
う驚くべき事実である。What is unique about the present invention is that even if a gold coating with a low hydrogen overvoltage is applied by such a method and further nickel plating or electroless nickel plating is applied to the nine cathodes, the hydrogen overvoltage hardly increases. Another surprising fact is that the durability of the film is dramatically improved.
低水素過電圧を有する金属被覆を施した陰極を陰極室に
取付けた後、該一極、鉄または鉄系金属製の陰極室枠よ
シ構成された陽極室内面及びその他の陰極室内部材表面
の全てにニッケルメッキもしくは無電解ニッケルメッキ
いずれを施してもよiが、全面に均一にメッキし得る点
で無電解ニッケルメッキ法が好ましい。そしてメッキの
厚さは任意に選択し得るが、薄すぎると鉄の溶出を防止
する効果が小さくなシ、また厚すぎるとコストが高くな
ると共に、活性被覆陰極の水素過電圧の度合いが大きく
なるので、5〜35Pが適当である。After installing a metal-coated cathode with a low hydrogen overvoltage in the cathode chamber, the inside surface of the anode chamber composed of the cathode chamber frame made of iron or iron-based metal, and all other surfaces of the cathode chamber members are removed. Either nickel plating or electroless nickel plating may be applied to the surface, but electroless nickel plating is preferable because it allows uniform plating over the entire surface. The thickness of the plating can be selected arbitrarily, but if it is too thin, the effect of preventing iron elution will be small, and if it is too thick, the cost will increase and the degree of hydrogen overvoltage of the active coated cathode will increase. , 5-35P is suitable.
ここでいうその他の陰極室内部材とは、導電棒8集電体
、溶接部など陰極室内に存在する部材を意味する。そし
て鉄系金属でなくニッケル等の対アルカリ土類金属を用
いた部材は、可能であればニッケルメッキもしくは無電
解ニッケルメッキをする必要性はないことは勿論である
。The other cathode chamber members herein refer to members present in the cathode chamber, such as the conductive rod 8 current collector and the welded portion. It goes without saying that members using anti-alkaline earth metals such as nickel instead of iron-based metals do not need to be plated with nickel or electroless nickel if possible.
ニッケルメッキ浴の組成は、以下のようなものである。The composition of the nickel plating bath is as follows.
ニッケル塩は可溶性の塩であればよく、通常、硫酸ニッ
ケル、塩化ニッケル、硫酸ニッケルアンモニクム、スル
ファミノ酸ニッケル等任意の水S性ニッケル塩の一種以
上が用いられる。The nickel salt may be any soluble salt, and usually one or more of any aqueous nickel salts such as nickel sulfate, nickel chloride, nickel ammonium sulfate, and nickel sulfaminate are used.
ニッケル塩の濃度は特に制限を受けな−が、通常(11
モル濃度から2−0モル濃度の範囲で用いられる。The concentration of nickel salt is not particularly limited, but is usually (11
It is used in a range of molar to 2-0 molar.
本発明は極めて簡便な方法により、これまで採用して−
る鉄系金属製の電解槽を何んち変更なくして、高温、高
アルカリ濃度とφう厳しい条件下にお−て本水素過電圧
の上昇なく、シかも苛性アルカリ中への鉄の溶出を来た
すことなくして長期間安定した極めて少ない消費電力で
苛性アルカリを製造する有効な電解槽である。殊に活性
被覆陰極を採用する場合は、極めて実用的かつ有効な電
解槽となる。The present invention uses an extremely simple method that has not been adopted until now.
Without making any changes to the electrolytic cell made of iron-based metal, it is possible to elute iron into caustic alkali without increasing the hydrogen overvoltage under severe conditions of high temperature and high alkali concentration. This is an effective electrolytic cell that can produce caustic alkali with extremely low power consumption and is stable for a long period of time. In particular, when an active coated cathode is employed, the electrolytic cell becomes extremely practical and effective.
以下、実施例を示すが氷見F!j4Viこれらに限定適
れるものではない。Examples are shown below, but Himi F! j4Vi is not limited to these.
実施例1及び比較例1〜2
軟鋼製エキスバンドメタルの表面に、塩化ニッケルα5
七ル/l、塩゛化アンモニウムtOモル/j。Example 1 and Comparative Examples 1 and 2 Nickel chloride α5 was applied to the surface of expanded metal made of mild steel.
7 mol/l, ammonium chloride tO mol/j.
チオ尿素α5 ek/lを溶解した浴を用い、攪拌しな
がら50℃でa 5 A/lk?の電流密度で4時間活
性ニッケルメッキを行なった。これを−極として導電棒
を有する龜極室O#c導電棒に溶接によって取付けた。Using a bath in which thiourea α5 ek/l was dissolved, a 5 A/lk? was heated at 50°C with stirring. Activated nickel plating was carried out for 4 hours at a current density of . This was attached by welding to a conductive rod O#c in the head electrode chamber having a conductive rod as a negative pole.
しかる後に、陰極室の該陰極を含む金属からなる部分K
)bニゼンブルーシェーマー無電解ニッケルメッキ液を
用いてニッケルの無電解メッキを施した。無電解ニッケ
ルメッキの厚さは20声であった。こO陰極室をバーフ
owスルホン酸イオン交換膜を介して、チタンラス上K
fII化ルテニウムをコーティングした陽極を有する陽
極室と組合せて電解槽を構成し、食塩水の電解を行なっ
友。電解条件を第1表に示す。また電槽電圧の経時変化
および苛性ソーダ中の鉄の濃度を第2表に示す、 −
比較例1として、実施例1と同様にして表面を活性化し
た一極を同様にして陰極室の導電棒に溶接によりて取付
叶、パー70ロスルホン酸イオン交換膜を介して、チタ
ンラス上に酸化ルテニウムをコーティングした陽極を有
する陽極室と組合せて電解槽を構成し、食塩水の電解を
行なった結果を示す。After that, a portion K of the cathode chamber made of metal containing the cathode is removed.
)b Electroless plating of nickel was performed using Nisenbruschemer electroless nickel plating solution. The thickness of the electroless nickel plating was 20 tones. The cathode chamber is barfed through a sulfonic acid ion exchange membrane onto a titanium glass.
In combination with an anode chamber having an anode coated with ruthenium fII, an electrolytic cell is constructed, and a saline solution can be electrolyzed. The electrolysis conditions are shown in Table 1. Table 2 shows the change in cell voltage over time and the concentration of iron in caustic soda. - As Comparative Example 1, one electrode whose surface was activated in the same manner as in Example 1 was used as a conductive rod in the cathode chamber. The electrolysis cell was constructed by combining the anode chamber with an anode made of titanium lath coated with ruthenium oxide through a par 70 rosulfonic acid ion exchange membrane, which was attached by welding to the membrane. .
また比較ガ2として軟鋼製エキスバンドメタル−曽、−
を表面に活性被覆を施さず、そのままkmとして上記2
的と同様に電解を行なった結果を示す。In addition, as a comparative example 2, a mild steel expanded metal without active coating was applied to the surface, and the above 2.
The results of electrolysis performed in the same manner as above are shown.
第1表
陽極室Na0Hll[32s
温度 80℃
電流密度 50A/lh!
第2表
実施例1
電槽電圧、CV′) 五55 A50 五
49鉄濃度−) (Ll (Ll
(11比較例1
電槽電圧(V) A48 !L63 A7
171鉄濃) 8 19 21比較ガ2
電槽電圧(V) 五71 五69 五70
鉄濃度(r19m) 5 6 b
実施例2及び比較例5
軟鋼製エキスバンドメタルにニッケル粉末をプラズマ溶
射して表面を活性化した電極を、導電棒を有する陽極室
の#導電棒に溶接によって取付けた。溶射被膜の厚さは
1(10声であった。しかる後、陽極室の該陽極を含む
金属からなる部分にカニゼンブルーシェーマ−無電解ニ
ッケルメッキ液を用いて無電解ニッケルメッキを施した
。ニッケルメッキの厚さは10声であった。次いで紋成
極室ヲパー70pスルホン酸イオン交換膜を介してチタ
ンラス上に酸化ルテニウムをコーティングした陽極を有
する陽−室と組合せて電解槽を構成し、食塩水の電解を
行なりた。電槽電圧の経時変化および苛性ソーダ中の鉄
の濃度の経時変化を第3表に示す。1st table anode chamber Na0Hll [32s Temperature 80℃ Current density 50A/lh! Table 2 Example 1 Battery voltage, CV') 555 A50 549 Iron concentration -) (Ll (Ll
(11 Comparative Example 1 Battery voltage (V) A48 !L63 A7
171 Iron concentration) 8 19 21 Comparison Ga 2 Battery voltage (V) 571 569 570
Iron concentration (r19m) 5 6 b
Example 2 and Comparative Example 5 An electrode whose surface was activated by plasma spraying nickel powder onto a mild steel expanded metal was attached by welding to a # conductive rod in an anode chamber having a conductive rod. The thickness of the sprayed coating was 1 (10 tones). Thereafter, electroless nickel plating was applied to the metal part of the anode chamber containing the anode using Kanisenbruschemer electroless nickel plating solution. The thickness of the plating was 10 mm.Next, the plate forming chamber was combined with an anode chamber having an anode made of titanium lath coated with ruthenium oxide through a 70p sulfonic acid ion exchange membrane to form an electrolytic cell. Water was electrolyzed. Table 3 shows changes in cell voltage over time and changes in iron concentration in caustic soda over time.
比較例3として、実施例2と同様圧して表面を活性化し
た陽極を導電棒を有する陰極室の該導電棒に111接に
よって取付け、パー70ロスルホン酸(゛へ”イオン交
換膜を介してチタンラス上に酸化ルテニウムをコーテン
グした陽極を有する陽極室と組合せて電解槽を構成し、
食塩水の電解を行なりた。As Comparative Example 3, an anode whose surface was activated by applying pressure in the same manner as in Example 2 was attached to a conductive rod in a cathode chamber having a conductive rod using a 111 contact, and a titanium lath was applied to the anode through an ion exchange membrane. An electrolytic cell is configured in combination with an anode chamber having an anode coated with ruthenium oxide on top,
Electrolysis of salt water was performed.
その結果を第3表に示す。The results are shown in Table 3.
実施例2
電槽電圧cf′)45B A51 151鉄濃度
(2)吟 (Ll α1 α1比較例5
電槽電圧(至) 五53 五69 五70鉄
濃度$) 10 15 15特許出願人
東洋曹達工業株式会社Example 2 Cell voltage cf') 45B A51 151 Iron concentration (2) Gin (Ll α1 α1 Comparative example 5 Cell voltage (To) 553 569 570 Iron concentration $) 10 15 15 Patent applicant Toyo Soda Kogyo Co., Ltd.
Claims (1)
塩化アルカリ水溶液を供給して陽極室より塩素、陰極室
iり水素並びに苛性アルカリを製造するに用いる電解槽
に於て、鉄または鉄系金属基体表面に低水素過電圧を有
する金属被覆を施した成極を鉄または鉄系金属製の成極
室枠より構成された陰極室に取付けた後、該論極、該陰
極室枠の成極室内面お゛よびその他の陰極室内部材表面
の全てをニッケルメッキもしくは無電解ニッケルメッキ
してなる電解槽。1) A diaphragm is used to separate the anode chamber and the anode chamber, and an alkali chloride aqueous solution is supplied to the anode chamber to produce chlorine from the anode chamber, hydrogen and caustic alkali from the cathode chamber. After attaching a polarization made of a metal coating with low hydrogen overvoltage on the surface of an iron or iron-based metal substrate to a cathode chamber composed of a polarization chamber frame made of iron or iron-based metal, An electrolytic cell in which the inner surface of the cathode chamber frame and the surfaces of other interior members of the cathode chamber are all nickel plated or electroless nickel plated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56105009A JPS586983A (en) | 1981-07-07 | 1981-07-07 | Electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56105009A JPS586983A (en) | 1981-07-07 | 1981-07-07 | Electrolytic cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS586983A true JPS586983A (en) | 1983-01-14 |
Family
ID=14396070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56105009A Pending JPS586983A (en) | 1981-07-07 | 1981-07-07 | Electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS586983A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036684A (en) * | 1983-08-08 | 1985-02-25 | Toyo Soda Mfg Co Ltd | Electrolytic cell |
DE4318533B4 (en) * | 1992-06-03 | 2005-03-10 | Tosoh Corp | Bipolar electrolysis cell and its use |
-
1981
- 1981-07-07 JP JP56105009A patent/JPS586983A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036684A (en) * | 1983-08-08 | 1985-02-25 | Toyo Soda Mfg Co Ltd | Electrolytic cell |
DE4318533B4 (en) * | 1992-06-03 | 2005-03-10 | Tosoh Corp | Bipolar electrolysis cell and its use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950011405B1 (en) | Cathode for electrolysis and process for producing the same | |
JPS5948872B2 (en) | Electrolytic cathode and its manufacturing method | |
JPS6356316B2 (en) | ||
JPH0581677B2 (en) | ||
US4162204A (en) | Plated metallic cathode | |
WO2010061766A1 (en) | Method for producing active cathode for electrolysis | |
US3350294A (en) | Electrodes | |
US4250004A (en) | Process for the preparation of low overvoltage electrodes | |
US5494560A (en) | Low-hydrogen overvoltage cathode having activated carbon particles supporting platinum, rhodium, indium, or platinum in a nickel layer formed on a substrate | |
US4221643A (en) | Process for the preparation of low hydrogen overvoltage cathodes | |
US3945907A (en) | Electrolytic cell having rhenium coated cathodes | |
CA1260427A (en) | Low hydrogen overvoltage cathode and method for producing the same | |
US4190514A (en) | Electrolytic cell | |
CN114622238B (en) | Preparation and application of transition metal-based hydrogen and oxygen evolution dual-functional electrode | |
JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
JPH06212471A (en) | Method for activating cathode with catalyst | |
JPS586983A (en) | Electrolytic cell | |
US4507183A (en) | Ruthenium coated electrodes | |
JPS6045710B2 (en) | electrolytic cell | |
JP2839153B2 (en) | Process for producing alkali dichromates and chromic acid | |
JPS6340874B2 (en) | ||
JPS6017096A (en) | Production of electrode | |
EP0770709B1 (en) | Low hydrogen over voltage cathode and process for production thereof | |
US4177129A (en) | Plated metallic cathode | |
JPH0417689A (en) | Electrode for electrolyzing water and production thereof |