JP2529557B2 - Lead alloy insoluble anode - Google Patents

Lead alloy insoluble anode

Info

Publication number
JP2529557B2
JP2529557B2 JP61241418A JP24141886A JP2529557B2 JP 2529557 B2 JP2529557 B2 JP 2529557B2 JP 61241418 A JP61241418 A JP 61241418A JP 24141886 A JP24141886 A JP 24141886A JP 2529557 B2 JP2529557 B2 JP 2529557B2
Authority
JP
Japan
Prior art keywords
insoluble anode
plating
lead
lead alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61241418A
Other languages
Japanese (ja)
Other versions
JPS6396298A (en
Inventor
宏景 松沢
郁夫 鈴木
輝久 敦賀
隆 折橋
克司 今西
正 竹村
Original Assignee
芳沢機工東部株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳沢機工東部株式会社 filed Critical 芳沢機工東部株式会社
Priority to JP61241418A priority Critical patent/JP2529557B2/en
Publication of JPS6396298A publication Critical patent/JPS6396298A/en
Application granted granted Critical
Publication of JP2529557B2 publication Critical patent/JP2529557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

産業上の利用分野 本発明は、鉛合金製不溶性陽極に関するものであり、
特には硫酸系浴にて優れた耐食性を有するPb−Tl−In系
不溶性陽極に関する。本発明陽極は高電流密度下でさえ
も優れた耐食性を示すので、近時採用される傾向にある
高電流密度に対応しうる機能型電極であり、特に金属電
気メツキ用途や電解金属箔製造用途、電解精錬用途等に
好適に用いられる。特定的には、電気亜鉛厚メツキや電
解銅箔製造に有用に用いられる。本発明電極の使用によ
り生産ライン速度の上昇、メツキ膜或いは金属箔形成の
スピードアツプ等の生産性の向上が図れると同時に、腐
食量の減少に伴う電極寿命の延長、浴管理及び保守の容
易化といつた多くのメリツトが得られる。 発明の背景 電気メツキ技術は、云うまでもなく、耐食性付与その
他様々の目的のために工業界に不可欠の重要な技術であ
り、鉄鋼材料ストリツプ、銅板等の被メツキ材にZn、S
n、Ni、Cu、Feその他並びにその合金を電気メツキする
ことが広く行われている。中でも、鉄鋼材料の電気亜鉛
メツキの普及は著しく、自動車、家電製品等の分野で需
要が増大している。 とりわけ、自動車の車体の電気亜鉛メツキにおいては
亜鉛付着量の多い厚亜鉛メツキが求められ、高電流密度
を使用しての電気メツキ操業が実施されつつある。従
来、可溶性陽極が用いられていたが、上記のような高電
流密度化に対応するべくまた可溶性陽極の使用に伴うメ
ツキ液管理の困難さ、極間ピツチの拡大による保守の面
倒さといつた難点を解消するため、現在では不溶性陽極
が脚光をあび、可溶性陽極から不溶性陽極への転換が進
行中である。 更に、電解金属箔、特に銅箔の製造においても不溶性
陽極が用いられる。電解銅箔の製造は、例えばチタン製
のドラムのほぼ3時〜6時及び6時〜9時の位置に一定
の間隔を置いて不溶性陽極を対置せしめ、ドラムと不溶
性陽極間の間隙に硫酸銅液を循回せしめ、陰極としての
ドラム周囲に銅を電着せしめ、連続的に電着した銅箔を
ドラムから剥ぎ取ることによつて為されている。銅箔は
エレクトロニクス産業において大量に用いられ、その生
産性を高めるために従来より高電流密度での操業が検討
されつつある。 このように、不溶性陽極はメツキ及び箔製造等におい
て重要な地位を占めている。 従来技術とその問題点 不溶性陽極としては、従来、鉛製のものが主として使
用されていた。その理由は、鉛はメツキ液や箔製造電解
液に対して耐食性があり、そしてメツキ通電によつてそ
の表面に二酸化鉛が生成され、この二酸化鉛が放電面と
して好適に作用するからである。 しかしながら、生成する二酸化鉛は内部歪を有するた
め鉛表面から剥離しやすく、不溶性陽極の耐久力が乏し
いという重大な欠点が認識されるようになつた。 主として電気メツキを例にとつて従来技術を検討して
みると、この剥離対策として、鉛中に種々の合金成分を
含有させた鉛合金の使用が提唱されている。そうした中
で、Pb−In及びPb−Tlの鉛合金は基本的に良好な挙動を
示す。例えば特開昭59−28598号はPb−0.5〜10%In或い
はPb−0.5〜10%In−0.5〜10%Agを開示する。特公昭60
−45718号は、Pb−0.8〜6%Tl或いはPb−0.8〜6%Tl
−0.3〜6%Agを開示する。両者ともPb−In或いはPb−T
lの耐食性を改善するためにAgの添加を記載している。 しかしながら、Agの添加は (イ) Agは高価な貴金属である (ロ) AgはPbに比較して融点が高い 点で不溶性陽極用添加元素として必ずしも好ましいもの
でなく、またその耐食性増大効果も充分とは云えない。
特に、高電流密度下ではPb−In−(Ag)及びPb−Tl−
(Ag)いずれも所期の耐食性を示さない。 最初に述べた通り、斯界では、電気メツキ、電解箔製
造等において高電流密度化操業採用の傾向にあり、従つ
て低電流密度下のみならず高電流密度下でも優れた耐食
性を示し、しかも製造加工等を容易ならしめる低融点型
の不溶性陽極の開発が要望されている。 発明の目的 こうした状況に鑑み、本発明は、金属メツキ、電解箔
製造等の各種電解操業において、高価な貴金属を含ま
ず、鉛より融点の高い成分を含まず、そして高電流密度
下でも優れた耐食性を示す鉛合金不溶性陽極の開発を目
的とする。 発明の概要 上記目的に向け鋭意研究の結果、TlとInとの併用が上
記目的に対してきわめて有益であるとの知見を得た。こ
れまてPb−In或いはPb−TlとTl或いはInの単独添加は為
されていたが、その組合せ添加の試みは為されたことは
なかつた。TlとInの併用が高電流密度下での耐食性に有
益に寄与することは先行技術からは全く示唆されず、新
たな意義ある知見である。実験の結果、重量%で、0.5
〜9%Tlと0.01〜6%Inとの組合せが効果的であること
が判明した。 斯くして、本発明は、重量%で表わして0.5〜9%Tl
及び0.01〜6%Inを含有し、残部が鉛と不可避的不純物
から成る鉛合金を放電部とする不溶性陽極を提供するも
のである。 本発明において、「高電流密度」とは、100A/dm2
上、通常は160A/dm2以上、最適には200A/dm2のオーダの
電流密度を云う。箔製造の場合は50A/dm2以上を一般に
指す。 発明の具体的説明 不溶性陽極は、 (イ) 機能面から見ると、 1. 高電流密度に対応しうるので、メツキや箔製造ライ
ン速度の上昇(製造ラインの短縮)及びメツキ膜及び箔
形成のスピードアツプを図ることが出来、肩メツキや電
解銅箔製造にきわめて適応性を示すこと、 2. 合金メツキの同時析出に適すること、 3. メツキ膜及び箔の均等、均一化を為しうること、 4. 浴中への溶出速度量を減少しうること (ロ) 操業面から見ると、 (1) 極間ピツチがほとんど変わらないので保守が容
易であること、 (2) 浴組成管理が簡易化すること (3) スラツジ沈降剤等の添加量を減少しうることと の点で電気メツキ用或いは箔製造用等の電解操業用陽極
として優れたものであり、これによりメツキ製品品質の
向上とコストダウンが可能となる。不溶性陽極の耐食性
が増大する程こうしたメリツトは増々増大する。 本発明に従えば、Pbに、Tlが0.5〜9重量%、好まし
くは3〜9重量%そしてInが0.01〜6重量%、好ましく
は0.5〜3重量%添加される。PbにTlを添加すると耐食
性が向上し、更に各Tl水準のPb−Tl合金にInを添加する
と或るIn添加量範囲で耐食性が格段に向上する。従つ
て、Tl添加水準に応じて最適のIn添加量が選定される。
後に実施例に示すように例えば次のような耐食性向上効
果が得られる(比較基準純Pbの重量減=8.5mg/A・h
r): Tl(%) In(%) 重量減(mg/A・hr) 0.5 3 0.92 1 1〜3 0.7〜0.91 3 0.5〜3 0.19〜0.53 5 0.5〜3 0.2〜0.46 9 0.25〜3 0.2〜0.93 Tlが効果を奏するには最小限0.5%必要である。他方I
nとの併添の下ではTlは9%を越えると効果が飽和す
る。。Inは最適Tlとの組合せにおいて0.01%で効果を奏
するが、6%を越えて添加すると逆効果となる。 本発明によるPb−Tl−In合金は、前述したように、次
の点で特徴づけられる: (イ) 高電流密度下でさえ優れた耐食性を示し、純Pb
に較べて1/40〜1/20の重量減に基く耐食性の向上を示し
うること、 (ロ) Tl及びInというPbより低融点の金属のみの添加
により構成される低融点材であること、(低融点材から
成る不溶性陽極は、合金の製造を容易ならしめ、母材被
覆型陽極の場合母材への溶接、肉盛り等による母材の変
形を防止し、回収後の再溶解における酸化損失を減少
し、圧延等の加工を容易とする等の点で非常に大きなメ
リツトを与える。) (ハ) 従来使用されたような高価な貴金属を含まない
こと。 本発明陽極は、所定の成分の鉛合金を溶解し、それを
鋳造・圧延等により電極に仕上げた陽極全体が当該鉛合
金から成るもの、表面をチタン、ニオブ、タンタル等の
高耐食性を持つ金属を被覆したグラツド材(芯体は鉄、
銅等で良い)又は耐食性材料単体から成る母材の片面或
いは両面に当該鉛合金を被覆したものを含み、被覆する
方法についてはTIG方式等で直接母材に溶着するか、母
材表面にハンダ付け、電気メツキ、等表面処理をした後
鉛を溶着肉盛りするその他を包括する。 要は電極の放電部が本発明合金で作製されれば良い。 実施例及び比較例 通常の溶解法にて表1に示される成分組成を有する鉛
合金溶湯を調製し、鋳造後圧延にて厚さ3mmの板材とし
た。この板材から厚さ3mm×巾10mm×長さ150mmの寸法を
持つ試験材を切出し、これを陽極とした。電解面積は1.
5cm2である。一方、陰極としては純鉛製の厚さ5mm×巾6
0mm×長さ150mmの板を使用し、陰極2板を陽極を挾むよ
う対峠させた。 耐食性試験は次のようにして行つた:陽極及び陰極
を、Na2SO4を71g/の割合で溶解し更に硫酸(1+1)
を加えることにより調製した硫酸酸性芒硝溶液(pH=1.
1)中に浸漬し、浴温=40〜60℃、印加電流=3A、電流
密度200A/dm2、通電時間=100時間の条件下で電解試験
を行つた。試験後陽極を乾燥炉に入れて乾燥し、試験片
の重量減を計測した。計測した試験片の重量減から単位
電気量当りの重量減を算出した。結果を表1に併せて示
す。第1図はそのグラフ表示である。
The present invention relates to a lead alloy insoluble anode,
In particular, it relates to a Pb-Tl-In insoluble anode having excellent corrosion resistance in a sulfuric acid bath. Since the anode of the present invention exhibits excellent corrosion resistance even under a high current density, it is a functional electrode capable of coping with the high current density that tends to be adopted in recent years, and particularly for metal electric plating applications and electrolytic metal foil manufacturing applications. It is preferably used for electrolytic refining. Specifically, it is usefully used in the production of electrolytic zinc thick plating and the production of electrolytic copper foil. By using the electrode of the present invention, it is possible to increase the production line speed, improve productivity such as the speed-up of plating film or metal foil formation, and at the same time prolong the life of the electrode due to the decrease in the amount of corrosion, facilitating bath management and maintenance. And a lot of merit is obtained. BACKGROUND OF THE INVENTION Electric plating technology is, of course, an important technology that is indispensable in the industrial world for the purpose of imparting corrosion resistance and various other purposes, and Zn, S, etc. can be applied to materials to be plated such as steel material strips and copper plates.
Electroplating of n, Ni, Cu, Fe and other alloys is widely practiced. Among them, electric zinc plating, which is a steel material, is remarkably spread, and demand is increasing in fields such as automobiles and home appliances. In particular, for electric zinc plating of automobile bodies, thick zinc plating with a large amount of deposited zinc is required, and electric plating operation using high current density is being implemented. Soluble anodes have been used in the past, but in order to respond to the higher current densities mentioned above and the use of soluble anodes, it is difficult to manage the plating solution, and maintenance is difficult and difficult due to the expansion of the interelectrode pitch. In order to solve the problem, the insoluble anode is now in the spotlight, and the conversion from the soluble anode to the insoluble anode is in progress. Furthermore, insoluble anodes are also used in the production of electrolytic metal foils, especially copper foils. The electrolytic copper foil is manufactured, for example, by placing an insoluble anode in a titanium drum at a position of approximately 3 to 6 o'clock and 6 o'clock to 9 o'clock at regular intervals, and placing copper sulfate in the gap between the drum and the insoluble anode. This is done by circulating the liquid, electrodepositing copper around the drum as the cathode, and continuously stripping the electrodeposited copper foil from the drum. Copper foil is used in large quantities in the electronics industry, and operation at higher current densities is being studied in order to improve its productivity. As described above, the insoluble anode occupies an important position in the production of plating and foil. Conventional Technology and Its Problems Conventionally, as the insoluble anode, one made of lead has been mainly used. The reason is that lead has corrosion resistance to the plating solution and the electrolytic solution for foil production, and lead dioxide is generated on the surface thereof by the flow of the plating current, and this lead dioxide suitably acts as a discharge surface. However, it has been recognized that the produced lead dioxide has an internal strain and thus is easily peeled off from the lead surface, and the durability of the insoluble anode is poor. When the conventional technique is mainly examined by taking an electrical plating as an example, use of a lead alloy containing various alloy components in lead has been proposed as a countermeasure against this peeling. Among them, Pb-In and Pb-Tl lead alloys basically show good behavior. For example, JP-A-59-28598 discloses Pb-0.5 to 10% In or Pb-0.5 to 10% In-0.5 to 10% Ag. Japanese Patent Sho 60
-45718 is Pb-0.8-6% Tl or Pb-0.8-6% Tl
-0.3-6% Ag is disclosed. Both are Pb-In or Pb-T
The addition of Ag to improve the corrosion resistance of 1 is described. However, the addition of Ag is (a) Ag is an expensive precious metal. (B) Ag is not always preferable as an additive element for insoluble anodes because it has a higher melting point than Pb, and its corrosion resistance increasing effect is also sufficient. I can't say that.
Especially under high current density, Pb-In- (Ag) and Pb-Tl-
(Ag) None of them show the desired corrosion resistance. As mentioned at the beginning, in this field, there is a tendency to adopt high current density operation in electrical plating, electrolytic foil manufacturing, etc., and therefore, it shows excellent corrosion resistance not only under low current density but also under high current density, and There is a demand for the development of a low melting point insoluble anode that facilitates processing and the like. In view of these circumstances, the present invention, in various electrolytic operations such as metal plating and electrolytic foil production, does not contain expensive precious metals, does not contain components having a higher melting point than lead, and is excellent even under high current density. The purpose is to develop a lead alloy insoluble anode that exhibits corrosion resistance. SUMMARY OF THE INVENTION As a result of earnest research toward the above object, it was found that the combined use of Tl and In is extremely useful for the above object. Up to this point, Pb-In or Pb-Tl and Tl or In had been added alone, but no attempt was made to add them in combination. The use of Tl and In in combination beneficially contributes to the corrosion resistance under high current density is not suggested by the prior art, and is a new and significant finding. As a result of the experiment, in% by weight, 0.5
The combination of ~ 9% Tl and 0.01-6% In proved to be effective. Thus, the present invention represents 0.5-9% Tl expressed in weight percent.
And 0.01 to 6% In, and the remainder is a lead alloy containing lead and unavoidable impurities as a discharge part. In the present invention, “high current density” means a current density on the order of 100 A / dm 2 or more, usually 160 A / dm 2 or more, and optimally 200 A / dm 2 . In the case of foil production, it generally indicates 50 A / dm 2 or more. Detailed Description of the Invention The insoluble anode is (a) viewed from the functional aspect: 1. As it can cope with high current density, it is possible to increase the plating speed of the plating line (shortening the manufacturing line) and the formation of the plating film and foil. Being able to achieve speed-up and being extremely adaptable to shoulder plating and electrolytic copper foil production, 2. Suitable for simultaneous deposition of alloy plating, and capable of making uniform and uniform plating film and foil. 4. It is possible to reduce the amount of elution into the bath. (B) From an operational perspective, (1) maintenance is easy because the pitch between poles is almost unchanged, (2) bath composition management is simple. (3) It is an excellent anode for electrolytic plating such as for electric plating or foil production in that the amount of sludge settling agent added can be reduced, which improves the quality of the plated product. Cost reduction is possible. As the corrosion resistance of the insoluble anode increases, such merits increase. According to the invention, Pb is added with 0.5 to 9% by weight of Tl, preferably 3 to 9% by weight and 0.01 to 6% by weight of In, preferably 0.5 to 3% by weight. When Tl is added to Pb, the corrosion resistance is improved, and when In is added to each Tl level Pb-Tl alloy, the corrosion resistance is remarkably improved in a certain In addition amount range. Therefore, the optimum In addition amount is selected according to the Tl addition level.
As will be described later in Examples, for example, the following corrosion resistance improving effect can be obtained (comparison standard pure Pb weight loss = 8.5 mg / A · h).
r): Tl (%) In (%) Weight loss (mg / A ・ hr) 0.5 3 0.92 1 1 to 3 0.7 to 0.91 3 0.5 to 3 0.19 to 0.53 5 0.5 to 3 0.2 to 0.46 9 0.25 to 3 0.2 to A minimum of 0.5% is required for 0.93 Tl to be effective. On the other hand I
The effect saturates when Tl exceeds 9% under the co-inclusion with n. . In is effective at 0.01% in combination with the optimum Tl, but if added in excess of 6%, it has the opposite effect. The Pb-Tl-In alloy according to the present invention is, as mentioned above, characterized by the following points: (a) It exhibits excellent corrosion resistance even under high current density, and pure Pb
Compared with, it can show an improvement in corrosion resistance based on a weight reduction of 1/40 to 1/20, (b) It is a low melting point material composed by adding only Tl and In, which are melting points lower than Pb, (The insoluble anode made of a low melting point material facilitates the production of alloys, and in the case of base material coated type anodes, it prevents welding to the base material, deformation of the base material due to buildup, etc., and oxidation during remelting after recovery. It gives a very large merit in terms of reducing loss and facilitating processing such as rolling.) (C) It does not contain the expensive noble metal used conventionally. The anode of the present invention is a metal having a high corrosion resistance such as titanium, niobium, tantalum, etc., whose surface is entirely made of the lead alloy obtained by melting a lead alloy having a predetermined component and casting and rolling it into an electrode. Gradient material (core is iron,
Copper or the like) or a base material consisting of a single corrosion resistant material coated with the lead alloy on one or both sides. Regarding the coating method, it can be directly welded to the base material by the TIG method or soldered on the surface of the base material. It includes soldering, electrical plating, and other surface treatments such as lead deposition and welding. In short, the discharge part of the electrode may be made of the alloy of the present invention. Examples and Comparative Examples A lead alloy melt having the composition shown in Table 1 was prepared by a usual melting method, and was rolled after casting into a plate material having a thickness of 3 mm. A test material having a thickness of 3 mm, a width of 10 mm and a length of 150 mm was cut out from this plate material and used as an anode. Electrolytic area is 1.
It is 5 cm 2 . On the other hand, the cathode is made of pure lead with a thickness of 5 mm and a width of 6
A plate of 0 mm × 150 mm in length was used, and two plates of the cathode were made to face each other so as to sandwich the anode. The corrosion resistance test was carried out as follows: The anode and cathode were dissolved in Na 2 SO 4 at a rate of 71 g / and sulfuric acid (1 + 1) was added.
Sulfate-acidified Glauber's salt solution (pH = 1.
1) It was dipped in and the electrolytic test was performed under the conditions of bath temperature = 40-60 ° C., applied current = 3 A, current density 200 A / dm 2 , and energization time = 100 hours. After the test, the anode was placed in a drying oven and dried, and the weight loss of the test piece was measured. The weight loss per unit quantity of electricity was calculated from the measured weight loss of the test piece. The results are shown in Table 1. FIG. 1 is a graph display.

【発明の効果】【The invention's effect】

高電流密度対応の高耐食性・低融点合金製不溶性陽極
の提供により、高い生産性の下でしかも浴の保守管理を
容易にして高品質のメツキ及び箔製品の製造を可能なら
しめる。これらは次のようにまとめることが出来る: 1. 腐食量の減少による電極寿命の延長(コストダウ
ン) 2. 腐食量の減少による極間調整日数の減少 3. 腐食量の減少による浴組成管理の簡易化 4. スラツジ沈降剤等の添加量の減少(コストダウン) 5. 製品品質の向上 6. 合金製造の容易化・コストダウン 7. 母材への溶接・肉盛りに際しての母材の変形防止 8. 回収再溶解において酸化による損失減少 9. 圧延、押出、切断、溶接等の加工の容易化 10. 腐食量の減少による薄肉軽量化の実現 これらメリツトの下で、均質な厚メツキや箔製造が可
能となる。
By providing an insoluble anode made of a low-corrosion-resistant alloy with high corrosion resistance for high current density, it is possible to manufacture high quality plating and foil products with high productivity and easy maintenance of the bath. These can be summarized as follows: 1. Extension of electrode life by reduction of corrosion amount (cost reduction) 2. Reduction of electrode adjustment days due to reduction of corrosion amount 3. Control of bath composition due to reduction of corrosion amount Simplification 4. Reduction of the amount of sludge settling agent added (cost reduction) 5. Improvement of product quality 6. Ease of alloy production and cost reduction 7. Prevention of deformation of the base metal during welding to the base metal and buildup 8. Reduction of loss due to oxidation in recovery and remelting 9. Ease of processing such as rolling, extrusion, cutting, welding, etc. 10. Realization of thin and light weight by reduction of corrosion amount, uniform thickness plating and foil production under these merits. Is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は、幾つかのTl含有量に対してIn含有量(重量
%)と重量減(mg/A・hr)との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the In content (% by weight) and the weight loss (mg / A · hr) with respect to some Tl contents.

フロントページの続き (72)発明者 折橋 隆 柏市新十余二17番地1 芳沢機工東部株 式会社内 (72)発明者 今西 克司 柏市新十余二17番地1 芳沢機工東部株 式会社内 (72)発明者 竹村 正 柏市新十余二17番地1 芳沢機工東部株 式会社内Front page continuation (72) Inventor Takashi Orihashi 17-21, Shinjyojiyo, Kashiwa-shi 1 Yoshizawa Kiko Tobu Co., Ltd. (72) Inventor Katsushi Imanishi 1-17, Shinjyojiyo Kashiwa-shi 1st, Yoshizawa Kiko Tobu Co., Ltd. (72) Invention Person Takemura Tadashi, Kashiwa City, Shinjyojiyo 1 1 1 Yoshizawa Kiko Tobu Co., Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で表わして、0.5〜9%Tl及び0.01
〜6%Inを含有し、残部が鉛と不可避的不純物から成る
鉛合金を放電部とする不溶性陽極。
1. 0.5 to 9% Tl and 0.01 expressed in% by weight.
An insoluble anode containing a lead alloy containing ~ 6% In and the balance being lead and unavoidable impurities.
【請求項2】陽極全体が前記鉛合金から成る特許請求の
範囲第1項記載の不溶性陽極。
2. The insoluble anode according to claim 1, wherein the entire anode is made of the lead alloy.
【請求項3】表面を耐食性材料で被覆したクラツド材を
母材とし、その少くとも片面に前記鉛合金を被覆した特
許請求の範囲第1項記載の不溶性陽極。
3. The insoluble anode according to claim 1, wherein a cladding material having a surface coated with a corrosion resistant material is used as a base material, and the lead alloy is coated on at least one surface of the cladding material.
【請求項4】耐食性材料製母材の少くとも片面に前記鉛
合金を被覆した特許請求の範囲第1項記載の不溶性陽
極。
4. The insoluble anode according to claim 1, wherein at least one surface of a base material made of a corrosion resistant material is coated with the lead alloy.
JP61241418A 1986-10-13 1986-10-13 Lead alloy insoluble anode Expired - Lifetime JP2529557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241418A JP2529557B2 (en) 1986-10-13 1986-10-13 Lead alloy insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241418A JP2529557B2 (en) 1986-10-13 1986-10-13 Lead alloy insoluble anode

Publications (2)

Publication Number Publication Date
JPS6396298A JPS6396298A (en) 1988-04-27
JP2529557B2 true JP2529557B2 (en) 1996-08-28

Family

ID=17073998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241418A Expired - Lifetime JP2529557B2 (en) 1986-10-13 1986-10-13 Lead alloy insoluble anode

Country Status (1)

Country Link
JP (1) JP2529557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028386A (en) * 1988-06-27 1990-01-11 Mitsui Toatsu Chem Inc Method for electrolytically reducing m-hydroxybenzoic acid
CN106191930B (en) * 2016-07-04 2018-06-15 北京有色金属研究总院 A kind of metallurgical alloy lead anode plate and preparation method thereof of electrification
JP6242954B1 (en) 2016-07-11 2017-12-06 浜松ホトニクス株式会社 Radiation detector

Also Published As

Publication number Publication date
JPS6396298A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
AU552965B2 (en) Process for electrowinning of metals
CN102433581B (en) Method for preparing novel anode material for electro-deposition of nonferrous metals
JP2529557B2 (en) Lead alloy insoluble anode
US2923671A (en) Copper electrodeposition process and anode for use in same
EP0335989B1 (en) Insoluble anode made of lead alloy
US4345987A (en) Coated electrode and a method of its production
JPH0610181A (en) Electrolytic copper foil
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
KR920002998B1 (en) Insoluble anode of a lead-alloy
US4814048A (en) Pb alloy insoluble anode and continuous electroplating of zinc using it
JP2577965B2 (en) Insoluble anode material
JP2639950B2 (en) Insoluble anode material
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
JPS63243300A (en) Insoluble anode for electroplating
JPS6026836B2 (en) Manufacturing method of zinc-nickel alloy plated steel sheet
JPH01177399A (en) Pb-base insoluble anode for electroplating
JPS6396297A (en) Insoluble anode made of lead alloy
SU954528A1 (en) Electrolyte for depositing coatings from tin-cobalt alloy
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPS5928599A (en) Insoluble anode made of pb alloy for electroplating
JPH01152294A (en) Production of material for insoluble anode
JPH09316679A (en) Production of high-purity electrolytic copper
JPS61133393A (en) Method for electroplating iron-zinc alloy
JPS6239239B2 (en)