JPS6239239B2 - - Google Patents

Info

Publication number
JPS6239239B2
JPS6239239B2 JP4835883A JP4835883A JPS6239239B2 JP S6239239 B2 JPS6239239 B2 JP S6239239B2 JP 4835883 A JP4835883 A JP 4835883A JP 4835883 A JP4835883 A JP 4835883A JP S6239239 B2 JPS6239239 B2 JP S6239239B2
Authority
JP
Japan
Prior art keywords
insoluble
anode
present
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4835883A
Other languages
Japanese (ja)
Other versions
JPS59173297A (en
Inventor
Nobukazu Suzuki
Mikio Kurimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4835883A priority Critical patent/JPS59173297A/en
Publication of JPS59173297A publication Critical patent/JPS59173297A/en
Publication of JPS6239239B2 publication Critical patent/JPS6239239B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、特に硫酸系電気メツキ浴で優れた耐
久性を有するPb合金製の不溶性陽極に関する。 従来技術 一般に、電気メツキ浴中で不溶性陽極を使用
し、陰極の被メツキ材の表面に、Zn、Sn、Ni、
Fe、Cu、およびこれらの合金などを電気メツキ
することが行なわれており、前記不溶性陽極とし
ては、例えばPb製のものが使用されている。こ
れはPbが電気メツキ浴に対して耐食性があり、
かつ、メツキ通電によつて、その表面に酸化鉛
(以下PbO2で示す)を形成し、このPbO2が不溶
性陽極としての機能を発揮するからである。 しかしながら、上記Pb製不溶性陽極において
は、表面に形成したPbO2のPb基体に対する付着
力が弱いため、必ずしも満足する耐久力(使用寿
命)を示さないものである。 そこで、近年、TiやNbなどの耐食性に優れた
基体の表面にPbO2を被覆したPbO2被覆不溶性陽
極や、Pb基体に対するPbO2の付着力を高める目
的で、種々の合金成分を含有させた各種成分組成
のPb合金製不溶性陽極が提案されたが、前者の
不溶性陽極においては、主に内部歪が原因で
PbO2被覆が剥離しやすいという問題があり、ま
た後者の不溶性陽極においては、いずれも特に硫
酸系電気メツキ浴を使用した場合、必ずしも優れ
た耐久性を示さないのが現状である。 発明の目的 本発明は、従来の不溶性陽極の問題点を改善す
るもので、特に硫酸系電気メツキ浴中で優れた耐
久性を有する三元系Pb合金電極を提供するもの
である。 発明の構成 本発明の要旨は、下記の(1)および(2)に記載する
とおりの不溶性陽極にある。(以下、%はすべて
重量%を示す)。 (1) Ag0.5〜5%、Sr0.1〜3%、残部Pbと不可
避不純物からなる不溶性陽極。 (2) Sn0.5〜5%、Sr0.1〜3%、残部Pbと不可
避不純物からなる不溶性陽極。 本発明は、従来のAgやSnを単独に添加した二
元系Pb電極を改善して、Pb―Ag―SrおよびPb―
Sn―Srの三元系とすることによつて、従来電極
に比べて数段すぐれた耐食性を有するPb合金電
極を得たものである。 第1図および第2図は、本発明不溶性陽極の成
分組成と耐食性の関係を示すグラフである。第1
図は、Ag含有量が0.5%、2.5%、5%で、Sr含
有量が0〜4%の範囲について、陽極の単位電気
量当りの重量減(mg/A・Hr)を、また、第2
図は、Sn含有量が、0.5%、2.5%、5%で、Sr含
有量0〜4%の範囲について、陽極の単位電気量
当りの重量減を示している。 第1図および第2図から分るように、Ag或い
はSn単独の場合に比べて、Srを併用することに
よつて、耐食性の著しい向上が見られる。 本発明において、Ag、Sn、Srの組成範囲を限
定したのは、得られる耐食性と製造コストとのバ
ランスから実用的な範囲を選んだものである。 実施例 1 通常の溶解法で、表に示す成分組成をもつた
Pb合金溶湯を調整し、鋳造し、圧延して、厚さ
1mmの板材とし、この板材より、厚さ1mm、巾30
mm、長さ100mmの寸法をもつた試験片を切出し、
この試験片を陽極とし、電解面積を12.5cm3とし
た。一方、陰極には同寸法のPt板材を用い、これ
ら両板材を、Na2SO4を100g/の割合で溶解し
た硫酸酸性芒硝溶液(PH2)中に浸漬し、浴温70
℃、印加電流10A(電流密度80A/dm2)、通電
時間100時間、の条件で試験を行つた。試験後、
NaOH160g/およびグリコース200g/の割合
で溶解した水溶液中に、この試験片を浸漬して電
解面の酸化皮膜を除去し、試験片の単位電気量当
りの重量減を測定した。これらの測定結果を表に
示した。 実施例 2 Ag0.5%、Sr1%、を含有する本発明Pb合金
(No.10)、および比較の目的で、Ag0.5%を含有す
るPb合金(No.7)を用い、これらのPb合金を炭
素鋼板の表面に約10mmの厚さにホモゲン加工によ
り肉盛りすることにより不溶性陽極を製造し、つ
いでこれら不溶性陽極を電気メツキセルに適用
し、亜鉛メツキを実施した。亜鉛メツキの浴組成
としては、ZnSO4400g/、Na2SO475g/、浴
PH1.8〜2.0、浴温50±5℃とし、被メツキ材には
冷延鋼板を用い、電流密度は40〜60A/dm2とし
た。 6カ月経過後における前記不溶性陽極の平均消
耗深さを測定した。その結果、本発明Pb合金の
ものは平均1.2mm、比較Pb電極のものは平均5.0mm
を示し、本発明Pb合金製不溶性陽極は、比較Pb
合金製不溶性陽極に比して優れた耐久性を示すこ
とが分つた。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to an insoluble anode made of a Pb alloy that has excellent durability, especially in sulfuric acid electroplating baths. Prior art In general, an insoluble anode is used in an electroplating bath, and Zn, Sn, Ni,
Electroplating of Fe, Cu, alloys thereof, etc. has been carried out, and the insoluble anode is made of, for example, Pb. This is because Pb has corrosion resistance against electroplating baths.
In addition, lead oxide (hereinafter referred to as PbO 2 ) is formed on the surface of the plating energization, and this PbO 2 functions as an insoluble anode. However, the Pb insoluble anode does not necessarily exhibit satisfactory durability (use life) because the PbO 2 formed on the surface has weak adhesion to the Pb substrate. Therefore, in recent years, PbO 2 -coated insoluble anodes have been developed, in which PbO 2 is coated on the surface of a highly corrosion-resistant substrate such as Ti or Nb, and various alloy components have been developed to increase the adhesion of PbO 2 to the Pb substrate. Insoluble anodes made of Pb alloys with various compositions have been proposed, but in the former insoluble anodes, internal strain is the main cause.
There is a problem that the PbO 2 coating is easily peeled off, and the latter insoluble anode does not necessarily exhibit excellent durability, especially when a sulfuric acid electroplating bath is used. OBJECTS OF THE INVENTION The present invention aims to improve the problems of conventional insoluble anodes, and provides a ternary Pb alloy electrode that has excellent durability, particularly in sulfuric acid electroplating baths. Structure of the Invention The gist of the present invention is an insoluble anode as described in (1) and (2) below. (Hereinafter, all percentages indicate weight percent). (1) An insoluble anode consisting of 0.5-5% Ag, 0.1-3% Sr, and the balance Pb and inevitable impurities. (2) An insoluble anode consisting of 0.5-5% Sn, 0.1-3% Sr, and the balance Pb and inevitable impurities. The present invention improves the conventional binary Pb electrode in which Ag or Sn is added alone, and improves Pb-Ag-Sr and Pb-
By using a ternary system of Sn--Sr, a Pb alloy electrode with corrosion resistance that is several orders of magnitude better than conventional electrodes was obtained. FIGS. 1 and 2 are graphs showing the relationship between the component composition and corrosion resistance of the insoluble anode of the present invention. 1st
The figure shows the weight loss per unit electricity of the anode (mg/A・Hr) for Ag contents of 0.5%, 2.5%, and 5% and Sr contents of 0 to 4%. 2
The figure shows the weight loss per unit electricity of the anode for Sn contents of 0.5%, 2.5%, and 5% and Sr contents in the range of 0 to 4%. As can be seen from FIGS. 1 and 2, the corrosion resistance is significantly improved by using Sr in combination, compared to when Ag or Sn is used alone. In the present invention, the composition ranges of Ag, Sn, and Sr are limited to a practical range in view of the balance between the resulting corrosion resistance and manufacturing cost. Example 1 A product with the composition shown in the table was prepared using a normal dissolution method.
The Pb alloy molten metal is adjusted, cast, and rolled to form a 1 mm thick plate. From this plate, 1 mm thick and 30 mm wide
Cut out a test piece with dimensions of mm and length of 100 mm.
This test piece was used as an anode, and the electrolytic area was set to 12.5 cm 3 . On the other hand, Pt plates of the same size were used as the cathode, and both plates were immersed in a sulfuric acid sodium sulfate solution (PH2) in which Na 2 SO 4 was dissolved at a rate of 100 g.
The test was conducted under the following conditions: °C, applied current of 10 A (current density: 80 A/dm 2 ), and energized for 100 hours. After the exam,
The test piece was immersed in an aqueous solution containing 160 g of NaOH and 200 g of glycose to remove the oxide film on the electrolytic surface, and the weight loss per unit of electricity of the test piece was measured. The results of these measurements are shown in the table. Example 2 Using the Pb alloy of the present invention (No. 10) containing 0.5% Ag and 1% Sr, and for comparison purposes, the Pb alloy (No. 7) containing 0.5% Ag, these Pb Insoluble anodes were manufactured by applying the alloy to the surface of a carbon steel plate to a thickness of about 10 mm by homogenization, and then these insoluble anodes were applied to an electric plating cell and galvanized. The bath composition for galvanizing is ZnSO 4 400g/, Na 2 SO 4 75g/, bath
The pH was 1.8 to 2.0, the bath temperature was 50±5°C, a cold rolled steel plate was used as the material to be plated, and the current density was 40 to 60 A/dm 2 . The average depth of wear of the insoluble anode after 6 months was measured. As a result, the average of the Pb alloy of the present invention was 1.2 mm, and the average of the comparative Pb electrode was 5.0 mm.
The Pb alloy insoluble anode of the present invention has a comparative Pb
It was found that the anode exhibited superior durability compared to insoluble alloy anodes.

【表】【table】

【表】【table】

【表】 発明の効果 第1図、第2図および表から明らかなように、
本発明の不溶性電極は、従来電極に比べて、顕著
な耐食性を有する。また、本発明の電極は、微量
の溶解により電気メツキ浴を汚染したとしても、
陰極での電気メツキの析出に影響がないことが明
らかとなつた。
[Table] Effect of the invention As is clear from Figures 1 and 2 and the table,
The insoluble electrode of the present invention has remarkable corrosion resistance compared to conventional electrodes. Furthermore, even if the electrode of the present invention contaminates the electroplating bath due to a small amount of dissolution,
It was found that there was no effect on electroplating deposition at the cathode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のPb―Ag―Sr陽極の耐食性
を示す図、第2図は、本発明のPb―Sn―Sr陽極
の耐食性を示す図である。
FIG. 1 is a diagram showing the corrosion resistance of the Pb-Ag-Sr anode of the present invention, and FIG. 2 is a diagram showing the corrosion resistance of the Pb-Sn-Sr anode of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、Ag0.5〜5%、Sr0.1〜3%、残
りがPbと不可避不純物からなる電気メツキ用不
溶性陽極。 2 重量%で、Sn0.5〜5%、Sr0.1〜3%、残り
がPbと不可避不純物からなる電気メツキ用不溶
性陽極。
[Claims] An insoluble anode for electroplating consisting of 1% by weight, 0.5 to 5% Ag, 0.1 to 3% Sr, and the remainder Pb and unavoidable impurities. 2. An insoluble anode for electroplating consisting of 0.5 to 5% Sn, 0.1 to 3% Sr, and the remainder Pb and unavoidable impurities.
JP4835883A 1983-03-23 1983-03-23 Insoluble anode for electroplating Granted JPS59173297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4835883A JPS59173297A (en) 1983-03-23 1983-03-23 Insoluble anode for electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4835883A JPS59173297A (en) 1983-03-23 1983-03-23 Insoluble anode for electroplating

Publications (2)

Publication Number Publication Date
JPS59173297A JPS59173297A (en) 1984-10-01
JPS6239239B2 true JPS6239239B2 (en) 1987-08-21

Family

ID=12801123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4835883A Granted JPS59173297A (en) 1983-03-23 1983-03-23 Insoluble anode for electroplating

Country Status (1)

Country Link
JP (1) JPS59173297A (en)

Also Published As

Publication number Publication date
JPS59173297A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4465561A (en) Electroplating film-forming metals in non-aqueous electrolyte
JPS60228693A (en) Manufacture of steel plate plated with zn-ni alloy
US4167459A (en) Electroplating with Ni-Cu alloy
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JPS6239239B2 (en)
JP2529557B2 (en) Lead alloy insoluble anode
JPH0251996B2 (en)
JP2577965B2 (en) Insoluble anode material
JPH04365828A (en) Titanium alloy for anode
JP2639950B2 (en) Insoluble anode material
JPS5928599A (en) Insoluble anode made of pb alloy for electroplating
JPH01177399A (en) Pb-base insoluble anode for electroplating
KR920002998B1 (en) Insoluble anode of a lead-alloy
JPH0723558B2 (en) Insoluble anode for high current density electroplating
JPS6026635A (en) Pb alloy for electrode for electroplating
GB2206895A (en) Pb alloy insoluble anode and continuous electroplating of zinc using it
US3007856A (en) Insoluble anodes
JPH052745B2 (en)
JPH05279891A (en) Method for electrogalvanizing aluminum strip and device therefor
JPS6045718B2 (en) Electrode for plating
JPH0713316B2 (en) Method for producing Al-Ti alloy plated metal material
JPS61147895A (en) Method for suppressing elution of pb ion of pb electrode
Braund et al. Electrodeposition of zinc and cadmium on aluminium and aluminium alloys
JPS6121318B2 (en)
JPS589998A (en) Manufacture of steel plate plated with zinc-nickel alloy