JPS6045718B2 - Electrode for plating - Google Patents

Electrode for plating

Info

Publication number
JPS6045718B2
JPS6045718B2 JP8225582A JP8225582A JPS6045718B2 JP S6045718 B2 JPS6045718 B2 JP S6045718B2 JP 8225582 A JP8225582 A JP 8225582A JP 8225582 A JP8225582 A JP 8225582A JP S6045718 B2 JPS6045718 B2 JP S6045718B2
Authority
JP
Japan
Prior art keywords
electrode
plating
addition ratio
sample
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8225582A
Other languages
Japanese (ja)
Other versions
JPS58199900A (en
Inventor
信和 鈴木
樹夫 栗本
敦義 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8225582A priority Critical patent/JPS6045718B2/en
Publication of JPS58199900A publication Critical patent/JPS58199900A/en
Publication of JPS6045718B2 publication Critical patent/JPS6045718B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 本発明は硫酸浴系で耐久性のあるメッキ用不溶性電極
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a durable insoluble electrode for plating in a sulfuric acid bath system.

金属表面の電解処理、例えば銅板の連続電気メッキラ
インのメッキ用電極としてはメッキ液中でPb(鉛)表
面に形成されるPbO。
PbO is formed on a Pb (lead) surface in a plating solution for electrolytic treatment of metal surfaces, for example, as a plating electrode in a continuous electroplating line for copper plates.

(二酸化鉛)を陽極として利用するために、一般にPb
が直接用いられてきた。しかしながら、HO。は内部歪
を有するためにPbの表面から剥離しやすく陽極として
の使用の耐久性に問題点がある。これの対策として従来
よりPb中にAg(銀)またはSn(スズ)が0.01
〜10%程度添加された鉛合金が用いられてきた。この
場合のAg及びSn(7)Pb02中での働きは、Pb
()Oの構成粒子間の空隙にAg及びSnの元素が入り
込むことによつて粒子間がそれらの元素の被膜て覆われ
、その結果としてPbO2の構成粒 子全体が形成被膜
によつて保護されることにある。し力士Ag及びSnの
添加によってもpbO。のメッキ液に対する耐久性は充
分ではなく、陽極の取替えなどに要する作業時間および
費用に問題点があつた。他のメッキ用電極としてはTi
(チタン)基材のPt(白金)メッキ陽極またはPtク
ラッド陽極が知られているが、前者は価格の割には耐久
性が悪く、後者は非常に高価であるため現実には使用す
ることが出来ないなどの欠点があつた。 一方、P暗合
の耐久性の向上を目的としてPb中にTe(テルル)、
Sb(アンチモン)、As(ヒ素)、Ag及びTi(タ
リウム)等の元素を添加した場合の効果については従来
より種々研究されている。それらの研究によれば、Ag
−Te−P暗合ではAg:2%且つTe:10〜15%
の場合に効果があるが、TeをPb中に近一に含有させ
ることは困難であると報告されている。またAg−Sb
−P暗合についてはAgの添加は耐食性に効果があるが
Ag−Sbの併用下でも特にはSb添加の効果は認めら
Jれず、さらにまたAs−Ti−Pb合金についてはT
iの耐久性向上効果をAsが減殺する等の事例が報告さ
れている。このように前述した問題点についての完全な
解決方法は見出されておらず、AgまたはSnが添加さ
れたPb合金が使用されているのが現状である。本発明
者は斯かる問題点を解決するためにPb合金への添加元
素については実験研究の結果、後述するような範囲内の
T1或は′11,Agを含むPb合金が優れた耐久性を
示すことを知見した。
(lead dioxide) as an anode, generally Pb
has been used directly. However, H.O. Since it has internal strain, it easily peels off from the Pb surface, which poses a problem in the durability of use as an anode. As a countermeasure for this, conventionally, 0.01% of Ag (silver) or Sn (tin) was added to Pb.
Lead alloys to which approximately 10% of lead has been added have been used. In this case, the function of Ag and Sn(7) in Pb02 is Pb
By the elements of Ag and Sn entering the voids between the constituent particles of ()O, the spaces between the particles are covered with a film of these elements, and as a result, the entire constituent particles of PbO2 are protected by the formed film. There are many things. pbO also by adding Ag and Sn. The durability against the plating solution was not sufficient, and there were problems in the time and cost required for replacing the anode. Other plating electrodes include Ti
(Titanium) based Pt (platinum) plated anodes or Pt clad anodes are known, but the former has poor durability considering its price, and the latter is very expensive, so it cannot be used in reality. There were drawbacks such as the inability to do so. On the other hand, in order to improve the durability of P darkening, Te (tellurium) was added to Pb.
Various studies have been conducted on the effects of adding elements such as Sb (antimony), As (arsenic), Ag, and Ti (thallium). According to those studies, Ag
-Te-P dark combination: Ag: 2% and Te: 10-15%
However, it is reported that it is difficult to incorporate Te into Pb in a similar manner. Also Ag-Sb
Regarding -P darkening, the addition of Ag has an effect on corrosion resistance, but even when Ag-Sb is used in combination, the effect of Sb addition is not observed. Furthermore, for As-Ti-Pb alloy, T
Cases have been reported in which As reduces the durability improvement effect of i. A complete solution to the above-mentioned problems has not yet been found, and at present Pb alloys to which Ag or Sn is added are used. In order to solve this problem, the present inventor conducted experimental research on the elements added to the Pb alloy, and found that a Pb alloy containing T1 or '11 and Ag within the range described below has excellent durability. We found that this shows that

本発明はかかる知見に基いてなされたものであつて、実
用に供し得る高耐久性の、つまり不溶性の硫酸浴系メッ
キ電極を提供することを目的とする。
The present invention has been made based on this knowledge, and it is an object of the present invention to provide a highly durable, ie, insoluble, sulfuric acid bath-based plating electrode that can be used in practice.

本発明に係るメッキ用電極はTIを0.8〜6%含有し
且つAgを0.3〜6%含有するη一〜−Pb合金から
なることを特徴とする。上述の如く1或はTl,Agの
含有量を限定した理由は次の実験結果に基く。
The plating electrode according to the present invention is characterized by being made of an η--Pb alloy containing 0.8-6% TI and 0.3-6% Ag. The reason for limiting the content of 1, Tl, and Ag as described above is based on the following experimental results.

以下先ず、その実験条件及び結果について説明する。試
料としては第1表に示すような組成の試料(NO.l〜
NO.45)及びこれらとの比較試料として第2表に示
すような組成の試料(NO.46〜NO.5O)を用い
た。上記試料を硫酸酸性芒硝溶液(Na2SO4:20
0y/f1温度70℃でPH=2に調整された溶液)中
で陽極とし、Ptを対極として整流器により10Aの電
流を印加せしめて電解を行わせる。電解条件としての電
流密度は80A/DTlとし、電解時間は10時間通電
して1時間通電停止の断続供給とする。そして110C
@間の耐食試験後に試料を前記芒硝溶液から取り出し、
試料表面に形成されている酸化被膜をNaOH:16ダ
/fグリコースニ200g/′から成る溶液にて溶解せ
しめて、耐食試験前後の試料の重量測定より110(ロ
)間後の重量減少量即ち腐食量を調査した。
First, the experimental conditions and results will be explained below. Samples include samples with compositions as shown in Table 1 (No. 1~
No. 45) and samples having compositions as shown in Table 2 (No. 46 to No. 5O) were used as comparative samples. The above sample was mixed with sulfuric acid acidic mirabilite solution (Na2SO4:20
Electrolysis is performed by applying a current of 10 A using a rectifier using Pt as an anode and a counter electrode in a solution adjusted to PH=2 at a temperature of 70° C. The current density as the electrolytic conditions is 80 A/DTl, and the electrolytic time is an intermittent supply in which the current is applied for 10 hours and the electricity is stopped for 1 hour. and 110C
After the corrosion resistance test between @, the sample was taken out from the sodium sulfate solution,
The oxide film formed on the surface of the sample was dissolved in a solution consisting of 200 g/' of NaOH: 16 da/f glycose, and the weight loss after 110 (b), that is, corrosion, was determined by measuring the weight of the sample before and after the corrosion resistance test. The amount was investigated.

第1,2表には各試料の組成〔%〕.の外に腐食量〔M
9〕を示した。第1図は第1表のNO.l〜NO.lO
と第2表のNO24eK第2図は第1表のNO.ll〜
NO45と第2表のNO47〜NO.5Oの実験結果を
、夫々縦軸に腐食量を、また横軸にT1の添加割合をと
つて示している。なお第2図において、×点;(破線連
結)はAg添加割合が0.05%の試料片、Δ点(破線
連結)は同じく0.1%のもの、Δ点(実線連結)は同
じく0.3%のもの、O点(実線連結)は1.0%のも
の、×点(実線連結)は同じく5.0%のもの、◎点(
実線連結)は同じく6.0%の・もの、O点(破線連結
)は同じく10%のものについて夫々の結果を示してい
る。第1図よりTlの添加割合が0〜0.8%の場合に
は添加割合を増やす程、腐食量は顕著に減少していく傾
向となるが、添加割合が6%を超えた場合には腐食量は
逆に増加傾向となり、墳の添加割合としては0.8〜6
%の範囲が耐食性に優れた効果を示すことが分かる。な
お、第1表のNO.l〜NO.lOの試料について、添
加割合が上記0.8〜6%の範囲にあるものには試料N
O.欄に●印を付した。また第2図より、1の添加割合
としては0.8〜6%の範囲が耐食性に優れており、A
?加割合としては0.3%より少いか又は6%より多い
ものは耐食性につきいずれ)も効果が低く、0.3〜6
%の範囲が優れていることが分かる。第1表のNO.l
l〜NO.45の試料についてη、Nの添加割合が上記
範囲にあるものには試料NO.欄にA印を付した。次に
上記結果についての他の実証例を示す。
Tables 1 and 2 show the composition [%] of each sample. In addition to the amount of corrosion [M
9] was shown. Figure 1 shows No. 1 in Table 1. l~NO. lO
and NO24eK in Table 2. Figure 2 shows NO.2 in Table 1. ll~
No. 45 and No. 47 to No. 4 in Table 2. The experimental results for 5O are shown with the amount of corrosion taken on the vertical axis and the addition ratio of T1 on the horizontal axis. In Fig. 2, the x point (connected by the broken line) is a sample piece with an Ag addition ratio of 0.05%, the Δ point (connected by the broken line) is also for a sample with an Ag addition rate of 0.1%, and the Δ point (connected by the solid line) is also 0. .3%, O point (solid line connection) is 1.0%, × point (solid line connection) is also 5.0%, ◎ point (
The solid line connection) shows the results for the same 6.0% case, and the O point (broken line connection) shows the results for the same 10% case. From Figure 1, when the addition ratio of Tl is 0 to 0.8%, the amount of corrosion tends to decrease significantly as the addition ratio increases, but when the addition ratio exceeds 6%, On the contrary, the amount of corrosion tends to increase, and the addition ratio of the mound is 0.8 to 6.
% range shows an excellent effect on corrosion resistance. In addition, No. 1 in Table 1. l~NO. Regarding the sample of 1O, if the addition ratio is in the above range of 0.8 to 6%, sample N
O. I marked the column with a ●. Also, from Figure 2, the addition ratio of 1 in the range of 0.8 to 6% is excellent in corrosion resistance, and A
? If the addition ratio is less than 0.3% or more than 6%, the effect on corrosion resistance is low;
It can be seen that the range of % is excellent. No. 1 in Table 1. l
l~NO. Sample No. 45 has the addition ratio of η and N within the above range. Marked A in the column. Next, another demonstration example of the above results will be shown.

試・料としては、一般にメッキ用電極として使用されて
いるAg:l%を含有するAg−Pb合金及び本発明に
よるT1:1%、Ag:1%を含有するT1−Ag一P
b合金の夫々が鉄基材の上にホモゲン加工によつて約1
0m1nの厚みでライニングされた2種類を”用いる。
上記試料を電流密度40A/Dm2の操業下で半年間に
亘つて電気亜鉛メッキ用の陽極として用いた場合の腐食
量を調査した。第3表はこの結果を半年間におけるライ
ニン厚み減少量〔蒜〕として示している。この表より、
Tl−Ag−Pb合金はAg−P暗金に対して約4皓の
耐久性を有していることが分る。またPb電極を使用す
る場合には、欠落したPlO2がメッキ対象の銅板に付
着し、それが鋼板を移送するロール等により押込まれる
現象がよくみられるが、本願発明の電極を使用する場合
は皆無である。
The samples include Ag-Pb alloy containing 1% Ag, which is generally used as a plating electrode, and T1-Ag-P alloy containing 1% Ag and T1:1% according to the present invention.
Each of the b alloys is deposited on the iron base material by homogenization to approximately 1
Two types of lining with a thickness of 0m1n are used.
The amount of corrosion was investigated when the above sample was used as an anode for electrogalvanizing for half a year under operation at a current density of 40 A/Dm2. Table 3 shows the results as the amount of decrease in linin thickness over half a year. From this table,
It can be seen that the Tl-Ag-Pb alloy has a durability of about 4 times higher than that of Ag-P dark gold. Furthermore, when using a Pb electrode, it is common for missing PlO2 to adhere to the copper plate to be plated and being pushed in by the rolls that transport the steel plate, but when using the electrode of the present invention, There are none.

更に本願発明の電極を使用する場合は亜鉛メッキ浴液中
へのPド4の溶出が防止できるので、メッキ製品の外観
が向上し、これに伴い耐食性も向上する。なお本願発明
の電極は電気メッキに限らず電気化学的な陽極反応が同
一である亜鉛の電解精錬等の分野の陽極としても用いら
れる。
Furthermore, when the electrode of the present invention is used, the elution of P-4 into the galvanizing bath solution can be prevented, so the appearance of the plated product is improved, and the corrosion resistance is also improved accordingly. The electrode of the present invention is not limited to electroplating, but can also be used as an anode in fields such as electrolytic refining of zinc, where the electrochemical anode reaction is the same.

以上詳述した如く本発明による場合は、電気メッキライ
ンのメッキ用電極(陽極)としてT1−Pb合金又はT
1−P胎金を使用することにより電極の耐食性が大幅に
向上し、電極取替えのために要していた作業時間及び費
用の大幅な節減が図れ、しかもPt等を用いたものに比
して極めて安価であり実用性が長いなど、本発明は優れ
た効果を奏するものてある。
As detailed above, according to the present invention, T1-Pb alloy or T
By using 1-P metal, the corrosion resistance of the electrode is greatly improved, and the work time and cost required for replacing the electrode can be significantly reduced, compared to those using Pt etc. The present invention has excellent effects such as being extremely inexpensive and long in practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTl−Pb合金の錯添加割合と腐食量について
の実験結果を、また第2図はT1−Ag−Pb合金のA
g添加割合を変数として羽添加割合と腐食量についての
実験結果を夫々示すグラフである。
Figure 1 shows the experimental results regarding the complex addition ratio and corrosion amount of Tl-Pb alloy, and Figure 2 shows the A of T1-Ag-Pb alloy.
3 is a graph showing experimental results regarding the feather addition ratio and the amount of corrosion, using the g addition ratio as a variable.

Claims (1)

【特許請求の範囲】 1 Tlを0.8〜6%含有し、残部Pbおよび不純物
からなることを特徴とする硫酸浴系メッキ用不溶性電極
。 2 Tlを0.8〜6%、Agを0.3〜6%含有し、
残部Pbおよび不純物からなることを特徴とする硫酸浴
系メッキ用不溶性電極。
[Scope of Claims] 1. An insoluble electrode for sulfuric acid bath-based plating, characterized in that it contains 0.8 to 6% Tl, with the remainder consisting of Pb and impurities. 2 Contains 0.8 to 6% Tl and 0.3 to 6% Ag,
An insoluble electrode for plating in a sulfuric acid bath, characterized in that the remainder consists of Pb and impurities.
JP8225582A 1982-05-14 1982-05-14 Electrode for plating Expired JPS6045718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8225582A JPS6045718B2 (en) 1982-05-14 1982-05-14 Electrode for plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8225582A JPS6045718B2 (en) 1982-05-14 1982-05-14 Electrode for plating

Publications (2)

Publication Number Publication Date
JPS58199900A JPS58199900A (en) 1983-11-21
JPS6045718B2 true JPS6045718B2 (en) 1985-10-11

Family

ID=13769331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8225582A Expired JPS6045718B2 (en) 1982-05-14 1982-05-14 Electrode for plating

Country Status (1)

Country Link
JP (1) JPS6045718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396297A (en) * 1986-10-13 1988-04-27 Yoshizawa Kiko Toubu Kk Insoluble anode made of lead alloy

Also Published As

Publication number Publication date
JPS58199900A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
KR890010288A (en) High corrosion resistance composite electroplating steel sheet and manufacturing method
MY101998A (en) Coated metal electrodes for electrolysis and process for production thereof
DE1960047A1 (en) Process for the electrolytic deposition of a gold alloy and an aqueous deposition bath for carrying out the process
JPS60228693A (en) Manufacture of steel plate plated with zn-ni alloy
JPS6045718B2 (en) Electrode for plating
US4274926A (en) Process for the electrolytic deposition of silver and silver alloy coatings and compositions therefore
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
Prengaman The metallurgy of lead alloys for electrowinning anodes
US931944A (en) Process for electrolytic deposition of metals.
US3819406A (en) Hot-dip lead coating
JPH0684553B2 (en) Electrodeposition bath of gold / tin alloy coating
US2817629A (en) Antimony plating bath
JPH04365828A (en) Titanium alloy for anode
JP2639950B2 (en) Insoluble anode material
US1851219A (en) Method of electrodeposition of zinc
JP2529557B2 (en) Lead alloy insoluble anode
Bełtowska-Lehman et al. Kinetics of electrodeposition of Ni-Sn alloy deposits from an acid chloride bath
Siqueira et al. The effect of sorbitol on the morphological characteristics of lead–tin films electrodeposited from an alkaline bath
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
JPS6045719B2 (en) Pb alloy insoluble anode for electroplating
JPS5824509B2 (en) Silver-palladium alloy plating solution and silver-palladium alloy plating method
JPS6239239B2 (en)
JPS63243300A (en) Insoluble anode for electroplating
GB189701657A (en) An Improvement in the Electro Deposition of Metals and Alloys.